デフォルト表紙
市場調査レポート
商品コード
1530044

自動機械学習の市場規模、シェア、動向分析レポート:オファリング別、企業規模別、用途別、業界別、地域別、およびセグメント動向:2024年~2030年

Automated Machine Learning Market Size, Share & Trend Analysis Report By Offering (Solution, Services), By Enterprise Size, By Application, By Vertical, By Region, And Segment Forecasts, 2024 - 2030


出版日
ページ情報
英文 150 Pages
納期
2~10営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.70円
自動機械学習の市場規模、シェア、動向分析レポート:オファリング別、企業規模別、用途別、業界別、地域別、およびセグメント動向:2024年~2030年
出版日: 2024年07月03日
発行: Grand View Research
ページ情報: 英文 150 Pages
納期: 2~10営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

自動機械学習市場の成長と動向:

Grand View Research, Inc.の最新レポートによると、世界の自動機械学習市場規模は2030年までに219億6,970万米ドルに達し、2024~2030年のCAGRは42.2%で成長すると予測されています。

世界市場規模は、高度な不正検出ソリューションに対するニーズの高まりを背景に拡大しています。教師ありニューラルネットワークを含むデータ分析技術は、予測、クラスタリング、分類を通じて不正を検出するために非常に求められるようになっています。

組織は、顧客の信頼を高め、法令遵守を確実にするために、自動機械学習(AutoML)に投資すると予想されます。AutoMLは、反復的で時間のかかる作業を自動化する生来のプロセスです。これにより、開発者、アナリスト、データサイエンティストは、生産性、効率性、高いスケールでMLモデルを構築できるようになります。AutoMLは、機械学習モデルの実装と学習に必要な知識ベースのリソースを最小化するために支持を得ています。

クラウドベースのセグメントは、カスタムMLモデルの動向とスケーラビリティの要求により、顕著な成長を示すと考えられます。クラウドベースのAutoMLは、画像認識、トレーニング、モデル管理のために企業全体で動向となっています。さらに、生産準備完了モデルの納期短縮、精度の向上、シンプルなグラフィカル・ユーザー・インターフェースといったいくつかの要因が、クラウド自動機械学習への投資を組織に促しています。

さらに、不正検知は市場の成長を大きく促進しています。この動向は主に、疑わしい活動のリアルタイム監視によるものです。金融サービスの不正利用をなくそうとする動きが顕著になり、AutoMLソリューションとサービスのニーズがさらに高まると考えられます。オンライン・クレジットカード詐欺の増加や、財布や携帯電話を通じた取引の急増は、詐欺検出用AutoMLツールの需要をさらに加速させると考えられます。

さらに、医療セグメントでは、病気の進行予測、治療計画、臨床情報抽出、患者ケアにAutoMLが使用されていることから、AutoMLソリューションの拡大が重視されます。自動機械学習サービスは、糖尿病診断や電子カルテ(EHR)、アルツハイマー診断分析におけるMLアルゴリズムの適用を拡大する可能性があります。例を挙げると、2020年12月、グーグルは、医療専門家が拡大性と再現性のある方法で医療文書を評価・レビューできるよう、医療向けAutoMLエンティティ抽出と医療自然言語APIを展開しました。

自動機械学習市場レポートのハイライト

  • サービスセグメントが市場をリードし、2023年の世界収益の52.4%を占める。自動機械学習サービスは、機械学習ワークフローの様々な段階を簡素化・自動化し、データサイエンスや機械学習の豊富な専門知識を持たないユーザーでも利用しやすくすることを目的としています。
  • 自動機械学習ソリューションは、機械学習モデルの開発と導入に関わる作業を自動化するように設計されています。これにより、企業は、データサイエンスや機械学習の専門知識がなくても、機械学習のパワーを簡単に活用できるようになります。
  • 企業規模に基づき、自動機械学習市場は中小企業(SME)と大企業に分類されます。大企業では、クラウドベースのAutoMLプラットフォームとサービスの採用が進んでいます。クラウドプラットフォームのスケーラブルでコスト効率の高いインフラは、機械学習モデルのトレーニングと展開を容易にします。
  • 機械学習の展開は、中小企業の間で急速に拡大しています。リソースが限られていることが多い中小企業では、大規模なデータセットを分析するために特別な専門知識が必要になることがあります。機械学習プラットフォームと技術はデータ分析プロセスを自動化できるため、中小企業は最小限の手作業でデータから価値ある洞察を得ることができます。
  • クラウドベースのAutoMLソリューションは、近年大きな支持を得ており、企業や組織に自動機械学習機能を活用する便利でスケーラブルな方法を提供しています。
  • 自動機械学習市場は、欠損値の検出、データフォーマットの問題の修正、機械学習モデルの精度に影響を与える可能性のある異常値の除去など、データエラーの特定と修正のプロセスを合理化します。

目次

第1章 調査手法と範囲

第2章 エグゼクティブサマリー

第3章 自動機械学習市場の変数、動向、範囲

  • 市場系統の展望
  • 市場力学
    • 市場促進要因分析
    • 市場抑制要因分析
    • 業界の課題
  • 自動機械学習市場分析ツール
    • 業界分析-ポーターのファイブフォース分析
    • PESTEL分析
  • 問題点分析

第4章 自動機械学習市場:オファリング別、推定・動向分析

  • セグメントダッシュボード
  • 自動機械学習市場:オファリング変動分析、100万米ドル、2023年と2030年
  • ソリューション
  • サービス

第5章 自動機械学習市場:企業規模別、推定・動向分析

  • セグメントダッシュボード
  • 自動化機械学習市場:企業規模変動分析、100万米ドル、2023年と2030年
  • 中小企業
  • 大企業

第6章 自動機械学習市場:展開別、推定・動向分析

  • セグメントダッシュボード
  • 自動機械学習市場:展開変動分析、100万米ドル、2023年と2030年
  • クラウド
  • オンプレミス

第7章 自動機械学習市場:用途別、推定・動向分析

  • セグメントダッシュボード
  • 自動機械学習市場:用途変動分析、100万米ドル、2023年と2030年
  • データ処理
  • 機能エンジニアリング
  • モデルの選択
  • ハイパーパラメータ最適化チューニング
  • モデルのアンサンブル
  • その他

第8章 自動機械学習市場:業界別、推定・動向分析

  • セグメントダッシュボード
  • 自動機械学習市場:業界変動分析、100万米ドル、2023年と2030年
  • BFSI
  • 小売業とeコマース
  • 医療
  • 政府と防衛
  • 製造業
  • メディアとエンターテイメント
  • 自動車・輸送
  • ITと通信
  • その他

第9章 自動機械学習市場:地域別、推定・動向分析

  • 自動化機械学習市場シェア、地域別、2023年と2030年、100万米ドル
  • 北米
    • 北米の自動機械学習市場推定・予測、2017~2030年
    • 米国
    • カナダ
  • 欧州
    • 欧州の自動機械学習市場推定・予測、2017~2030年
    • 英国
    • ドイツ
    • フランス
  • アジア太平洋
    • アジア太平洋の自動機械学習市場推定・予測、2017~2030年
    • 中国
    • 日本
    • インド
    • 韓国
    • オーストラリア
  • ラテンアメリカ
    • ラテンアメリカの自動機械学習市場推定・予測、2017~2030年
    • ブラジル
    • メキシコ
  • 中東・アフリカ
    • 中東・アフリカの自動機械学習市場推定・予測、2017~2030年
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第10章 競合情勢

  • 企業分類
  • 企業の市場ポジショニング
  • 参入企業概要
  • 企業ヒートマップ分析
  • 戦略マッピング
  • 企業プロファイル/上場企業
    • IBM
    • Oracle
    • Microsoft
    • ServiceNow
    • Google LLC
    • Baidu Inc.
    • AWS
    • Alteryx
    • Salesforce
    • Altair
    • Teradata
    • H2O.ai
    • BigML
    • Databricks
    • Dataiku
    • Alibaba Cloud
図表

List of Tables

  • Table 1 Global Automated Machine Learning market by Offering, 2017 - 2030 (USD Million)
  • Table 2 Global Automated Machine Learning market by Enterprise size, 2017 - 2030 (USD Million)
  • Table 3 Global Automated Machine Learning market by Deployment, 2017 - 2030 (USD Million)
  • Table 4 Global Automated Machine Learning market by Application, 2017 - 2030 (USD Million)
  • Table 5 Global Automated Machine Learning market by Vertical, 2017 - 2030 (USD Million)
  • Table 6 North America Automated Machine Learning market by country, 2017 - 2030 (USD Million)
  • Table 7 Europe Automated Machine Learning market by country, 2017 - 2030 (USD Million)
  • Table 8 Asia Pacific Automated Machine Learning market by country, 2017 - 2030 (USD Million)
  • Table 9 Latin America Automated Machine Learning market by country, 2017 - 2030 (USD Million)
  • Table 10 MEA Automated Machine Learning market by country, 2017 - 2030 (USD Million)
  • Table 11 Key companies launching new products/services.
  • Table 12 Key companies engaged in mergers & acquisition.
  • Table 13 Key companies engaged in Research & development.
  • Table 14 Key Companies engaged in expansion.

List of Figures

  • Fig. 1 Information procurement
  • Fig. 2 Primary research pattern
  • Fig. 3 Market research approaches
  • Fig. 4 Value chain-based sizing & forecasting
  • Fig. 5 QFD modelling for market share assessment.
  • Fig. 6 Parent market analysis
  • Fig. 7 Patient-population model
  • Fig. 8 Market formulation & validation
  • Fig. 9 Automated Machine Learning market snapshot
  • Fig. 10 Automated Machine Learning market segment snapshot
  • Fig. 11 Automated Machine Learning market competitive landscape snapshot
  • Fig. 12 Market research process
  • Fig. 13 Market driver relevance analysis (Current & future impact)
  • Fig. 14 Market restraint relevance analysis (Current & future impact)
  • Fig. 15 Automated Machine Learning market, Offerings outlook key takeaways (USD Million)
  • Fig. 16 Automated Machine Learning market: Offerings movement analysis (USD Million), 2023 & 2030
  • Fig. 17 Solution Automated Machine Learning Market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 18 Services Automated Machine Learning Market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 19 Automated Machine Learning market: Enterprise size outlook key takeaways (USD Million)
  • Fig. 20 Automated Machine Learning market: Enterprise size movement analysis (USD Million), 2023 & 2030
  • Fig. 21 SMEs Automated Machine Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 22 Large enterprises Automated Machine Learning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 23 Automated Machine Learning market: Deployment outlook key takeaways (USD Million)
  • Fig. 24 Automated Machine Learning market: Deployment movement analysis (USD Million), 2023 & 2030
  • Fig. 25 Cloud market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 26 On-premises market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 27 Automated Machine Learning market: Application outlook key takeaways (USD Million)
  • Fig. 28 Automated Machine Learning market: Application movement analysis (USD Million), 2023 & 2030
  • Fig. 29 Data Processing market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 30 Feature Engineering market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 31 Model Selection market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 32 Hyperparameter Optimization Tuning market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 33 Model Ensembling market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 34 Others market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 35 Automated Machine Learning market: Vertical outlook key takeaways (USD Million)
  • Fig. 36 Automated Machine Learning market: Vertical movement analysis (USD Million), 2023 & 2030
  • Fig. 37 BFSI market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 38 Retail & E commerce market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 39 Healthcare market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 40 Government & Defense market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 41 Manufacturing market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 42 Media & Entertainment market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 43 Automotive & transportation market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 44 IT & Telecommunications market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 45 Others market revenue estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 46 Regional marketplace: Key takeaways
  • Fig. 47 Automated Machine Learning market: Regional outlook, 2023 & 2030, USD Million
  • Fig. 48 North America Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 49 U.S. Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 50 Canada Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 51 Europe Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 52 UK Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 53 Germany Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 54 France Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 55 Asia Pacific Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 56 Japan Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 57 China Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 58 India Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 59 South Korea Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 60 Australia Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 61 Latin America Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 62 Brazil Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 63 Mexico Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 64 MEA Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 65 South Africa Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 66 Saudi Arabia Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 67 UAE Automated Machine Learning market estimates and forecasts, 2017 - 2030 (USD Million)
  • Fig. 68 Company Categorization
  • Fig. 69 Company Market Positioning
  • Fig. 70 Strategy framework
目次
Product Code: GVR-4-68040-325-1

Automated Machine Learning Market Growth & Trends:

The global automated machine learning market size is expected to reach USD 21,969.7 million by 2030, and growing at a CAGR of 42.2% from 2024 to 2030, according to a new report by Grand View Research, Inc. The global market size expanding on the backdrop of the rising need for advanced fraud detection solutions. Data analysis techniques, including supervised neural networks, have become highly sought-after to detect fraud through forecasting, clustering, and classification.

Organizations are expected to invest in automated machine learning (AutoML) to boost customer trust and ensure compliance with laws. AutoML is an innate process of automating iterative and time-consuming tasks. It enables developers, analysts, and data scientists to build ML models with productivity, efficiency, and high scale. AutoML has gained traction to minimize the knowledge-based resources needed to implement and train machine learning models.

The cloud-based segment will exhibit notable growth due to the trend for custom ML models and the demand for scalability. Cloud-based AutoML has become trendier across businesses for image recognition, training, and managing models. Furthermore, some factors, such as faster turnaround time for the production-ready models, increased accuracy, and simple graphical user interface have encouraged organizations to invest in cloud automated machine learning.

Moreover, the fraud detection is significantly augmenting the market growth. The trend is mainly due to real-time monitoring of suspicious activity. A palpable rise to do away with the unauthorized use of financial services will further the need for AutoML solutions and services. An uptick in online credit card fraud and a soaring number of transactions through wallets and cell phones will further expedite the demand for AutoML tools for fraud detection.

Additionally, the healthcare sector will emphasize the expansion of AutoML solutions following the latter's use in projecting disease progression, treatment planning, clinical information extraction, and patient care. Automated machine learning services could expand the application of ML algorithms in diabetes diagnosis and electronic health records (EHR), and Alzheimer's diagnosis analysis. To illustrate, in December 2020, Google rolled out AutoML Entity Extraction for Healthcare and healthcare Natural Language API to help healthcare professionals assess and review medical documents in a scalable and repeatable way.

Automated Machine Learning Market Report Highlights:

  • Based on offering, the service segment led the market and accounted for 52.4% of the global revenue in 2023. Automated Machine Learning (AutoML) services aim to simplify and automate various stages of the machine learning workflow, making it more accessible to users without extensive expertise in data science and machine learning.
  • Automated machine learning solutions are designed to automate the tasks involved in developing and deploying machine learning models. This makes it easier for organizations to leverage the power of machine learning without requiring significant expertise in data science or machine learning.
  • Based on enterprise size, the automated machine learning market is categorized into Small and Medium Enterprises (SMEs) and large enterprises. Large businesses are increasingly adopting cloud-based AutoML platforms and services. The scalable and cost-effective infrastructure of cloud platforms facilitates the training and deployment of machine learning models.
  • The adoption of machine learning is rapidly growing among small and medium-sized enterprises (SMEs). With often limited resources, SMEs may need extra expertise to analyze large data sets. Machine learning platforms and technologies can automate data analysis processes, allowing SMEs to gain valuable insights from their data with minimal manual effort.
  • Based on deployment, cloud-based AutoML solutions have gained significant traction in recent years, offering businesses and organizations a convenient and scalable way to leverage automated machine learning capabilities.
  • The Automated Machine Learning (AutoML) market streamlines the process of identifying and correcting data errors, including detecting missing values, fixing data formatting issues, and removing outliers that could impact the accuracy of machine learning models.

Table of Contents

Chapter 1. Methodology and Scope

  • 1.1. Market Segmentation and Scope
  • 1.2. Research Methodology
    • 1.2.1. Information Procurement
  • 1.3. Information or Data Analysis
  • 1.4. Methodology
  • 1.5. Research Scope and Assumptions
  • 1.6. Market Formulation & Validation
  • 1.7. Country Based Segment Share Calculation
  • 1.8. List of Data Sources

Chapter 2. Executive Summary

  • 2.1. Market Outlook
  • 2.2. Segment Outlook
  • 2.3. Competitive Insights

Chapter 3. Automated machine learning market Variables, Trends, & Scope

  • 3.1. Market Lineage Outlook
  • 3.2. Market Dynamics
    • 3.2.1. Market Driver Analysis
    • 3.2.2. Market Restraint Analysis
    • 3.2.3. Industry Challenge
  • 3.3. Automated machine learning market Analysis Tools
    • 3.3.1. Industry Analysis - Porter's
      • 3.3.1.1. Bargaining power of the suppliers
      • 3.3.1.2. Bargaining power of the buyers
      • 3.3.1.3. Threats of substitution
      • 3.3.1.4. Threats from new entrants
      • 3.3.1.5. Competitive rivalry
    • 3.3.2. PESTEL Analysis
      • 3.3.2.1. Political landscape
      • 3.3.2.2. Economic and Social landscape
      • 3.3.2.3. Technological landscape
  • 3.4. Pain Point Analysis

Chapter 4. Automated machine learning market: Offering Estimates & Trend Analysis

  • 4.1. Segment Dashboard
  • 4.2. Automated machine learning market: Offering Movement Analysis, USD Million, 2023 & 2030
  • 4.3. Solution
    • 4.3.1. Solution Automated Machine Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 4.4. Services
    • 4.4.1. Offering Automated Machine Learning Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 5. Automated machine learning market: Enterprise Size Estimates & Trend Analysis

  • 5.1. Segment Dashboard
  • 5.2. Automated machine learning market: Enterprise Size Movement Analysis, USD Million, 2023 & 2030
  • 5.3. SMEs
    • 5.3.1. SMEs Enterprise Size market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 5.4. Large Enterprises
    • 5.4.1. Large Enterprises Enterprise Size market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 6. Automated machine learning market: Deployment Estimates & Trend Analysis

  • 6.1. Segment Dashboard
  • 6.2. Automated machine learning market: Deployment Movement Analysis, USD Million, 2023 & 2030
  • 6.3. Cloud
    • 6.3.1. Cloud Deployment market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 6.4. On-premises
    • 6.4.1. On-premises deployment market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 7. Automated machine learning market: Application Estimates & Trend Analysis

  • 7.1. Segment Dashboard
  • 7.2. Automated machine learning market: Application Movement Analysis, USD Million, 2023 & 2030
  • 7.3. Data Processing
    • 7.3.1. Data Processing market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.4. Feature Engineering
    • 7.4.1. Feature Engineering market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.5. Model Selection
    • 7.5.1. Model Selection market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.6. Hyperparameter Optimization Tuning
    • 7.6.1. Hyperparameter Optimization Tuning market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.7. Model Ensembling
    • 7.7.1. Model Ensembling market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 7.8. Others
    • 7.8.1. Others market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 8. Automated machine learning market: Vertical Estimates & Trend Analysis

  • 8.1. Segment Dashboard
  • 8.2. Automated machine learning market: Vertical Movement Analysis, USD Million, 2023 & 2030
  • 8.3. BFSI
    • 8.3.1. BFSI market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.4. Retail & E commerce
    • 8.4.1. Retail & E commerce market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.5. Healthcare
    • 8.5.1. Healthcare market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.6. Government & Defense
    • 8.6.1. Government & Defense market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.7. Manufacturing
    • 8.7.1. Manufacturing market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.8. Media & Entertainment
    • 8.8.1. Media & Entertainment market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.9. Automotive & transportation
    • 8.9.1. Automotive & transportation market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.10. IT & Telecommunications
    • 8.10.1. IT & Telecommunications market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 8.11. Others
    • 8.11.1. Others market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 9. Automated machine learning market: Regional Estimates & Trend Analysis

  • 9.1. Automated machine learning market Share, By Region, 2023 & 2030, USD Million
  • 9.2. North America
    • 9.2.1. North America Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.2.2. U.S.
      • 9.2.2.1. U.S. Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.2.3. Canada
      • 9.2.3.1. Canada Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 9.3. Europe
    • 9.3.1. Europe Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.3.2. U.K.
      • 9.3.2.1. U.K. Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.3.3. Germany
      • 9.3.3.1. Germany Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.3.4. France
      • 9.3.4.1. France Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 9.4. Asia Pacific
    • 9.4.1. Asia Pacific Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.4.2. China
      • 9.4.2.1. China Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.4.3. Japan
      • 9.4.3.1. Japan Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.4.4. India
      • 9.4.4.1. India Automated Machine Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.4.5. South Korea
      • 9.4.5.1. South Korea Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.4.6. Australia
      • 9.4.6.1. Australia Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 9.5. Latin America
    • 9.5.1. Latin America Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.5.2. Brazil
      • 9.5.2.1. Brazil Automated Machine Learning Market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.5.3. Mexico
      • 9.5.3.1. Mexico Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
  • 9.6. Middle East and Africa
    • 9.6.1. Middle East and Africa Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.6.2. South Africa
      • 9.6.2.1. South Africa Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.6.3. Saudi Arabia
      • 9.6.3.1. Saudi Arabia Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)
    • 9.6.4. UAE
      • 9.6.4.1. UAE Automated machine learning market Estimates and Forecasts, 2017 - 2030 (USD Million)

Chapter 10. Competitive Landscape

  • 10.1. Company Categorization
  • 10.2. Company Market Positioning
  • 10.3. Participant's Overview
  • 10.4. Financial Performance
  • 10.5. Product Benchmarking
  • 10.6. Company Heat Map Analysis
  • 10.7. Strategy Mapping
  • 10.8. Company Profiles/Listing
    • 10.8.1. IBM
    • 10.8.2. Oracle
    • 10.8.3. Microsoft
    • 10.8.4. ServiceNow
    • 10.8.5. Google LLC
    • 10.8.6. Baidu Inc.
    • 10.8.7. AWS
    • 10.8.8. Alteryx
    • 10.8.9. Salesforce
    • 10.8.10. Altair
    • 10.8.11. Teradata
    • 10.8.12. H2O.ai
    • 10.8.13. BigML
    • 10.8.14. Databricks
    • 10.8.15. Dataiku
    • 10.8.16. Alibaba Cloud