![]() |
市場調査レポート
商品コード
1806563
セカンドライフEVバッテリー市場:電池タイプ、電池容量、供給源、販売チャネル、用途別-2025-2030年世界予測Second-life EV Batteries Market by Battery Type, Battery Capacity, Source, Sales Channel, Application - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
セカンドライフEVバッテリー市場:電池タイプ、電池容量、供給源、販売チャネル、用途別-2025-2030年世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 192 Pages
納期: 即日から翌営業日
|
セカンドライフEVバッテリー市場は、2024年には259億2,000万米ドルとなり、2025年には285億2,000万米ドル、CAGR10.60%で成長し、2030年には474億6,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 259億2,000万米ドル |
推定年2025 | 285億2,000万米ドル |
予測年2030 | 474億6,000万米ドル |
CAGR(%) | 10.60% |
電気自動車用二次電池の台頭は、持続可能なエネルギー・ソリューションの探求における画期的な開発です。脱炭素化に向けた世界的な動きが強まる中、各企業は、車載用としては寿命を迎えたもの、据置型用途としては大容量を維持しているバッテリーに潜在的な価値があることを認識し始めています。このシフトは、使用済みバッテリーのリサイクルを延期することで環境への影響を軽減するだけでなく、コスト効率の高い方法でエネルギー安全保障と送電網の回復力を強化します。
過去10年間で、技術的な大きな進歩が、さまざまな分野でのセカンドライフEVバッテリーの採用を促進しました。バッテリー管理システムと予測分析の進歩により、再利用バッテリーパックの信頼性と安全性が向上し、住宅設備から産業用マイクログリッドまで多様な環境での展開が可能になりました。さらに、モジュール設計と標準化された通信プロトコルの改善により、統合プロセスが合理化され、プロジェクトのタイムラインと運用の複雑さが軽減されています。
輸入電池部品と再利用電池モジュールに対する米国の新関税導入は、セカンドライフEVバッテリー分野に課題と機会の両方をもたらしました。これらの関税の発効に伴い、サプライチェーンの関係者は、プロジェクトの実行可能性を維持しながら、コストへの影響を最小限に抑えるために調達戦略を再調整しています。その結果、一部のメーカーは、関税関連の費用を回避し、リードタイムを短縮するために、現地での組み立てや改修の拠点を模索しています。
詳細なセグメンテーションにより、バッテリーの化学的性質による性能、展開シナリオ、経済的成果の違いが明らかになります。例えば、リチウムイオンシステムは、その優れたエネルギー密度と長寿命により大きな注目を集め、ニッケル水素ユニットは、特定の据置型アプリケーションに有利な安全性プロファイルを提供します。鉛蓄電池は低コストであるにもかかわらず、重量とスペースの制約が最小限のニッチな役割を果たします。
セカンドライフEVバッテリーの採用ペースと規模を左右するのは、地域ダイナミックスです。南北アメリカでは、エネルギー回復力に対する強力なインセンティブと再生業者のネットワークの拡大により、パイロット・プロジェクトと商業展開が加速しています。利害関係者は、支持的な政策枠組みと、送電網の安定性向上を目指した官民パートナーシップの拡大から利益を得ています。
EV用セカンドライフバッテリー分野の主要企業は、戦略的提携、独自の再生技術、多様なサービス提供を通じて差別化を図っています。大手自動車メーカー数社は、エネルギー貯蔵企業と合弁会社を設立し、住宅や商業用マイクログリッド・アプリケーションで使用済みバッテリーを再利用しています。同時に、専門プロバイダーは、スループットを向上させ、一貫したモジュール品質を確保するために、高度な診断ツールと自動分解プロセスを導入しています。
急速に発展するセカンドライフ・バッテリーの分野を活用するために、業界のリーダーは、市場の信頼と安全性の保証を促進する標準化された試験・認証プロトコルの開発を優先すべきです。自動車メーカーやリサイクル企業との戦略的パートナーシップの確保は、高品質モジュールの安定供給を促進し、自動再生インフラへの投資は、業務効率と拡張性を促進することができます。
本分析を支える調査手法は、1次インタビュー、2次データレビュー、定量的サプライチェーン評価を厳格に組み合わせたものです。多様な視点を捉え、新たな動向を検証するために、相手先商標製品メーカー、再利用施設、エネルギーサービスプロバイダー、規制機関の利害関係者との専門家協議を実施しました。
セカンドライフEVバッテリー市場は、技術的進歩、政策的支援、持続可能なエネルギーインフラへの緊急の要請によって、変曲点を迎えています。利害関係者がビジネスモデルを洗練させ、協力的なエコシステムを構築するにつれて、再利用バッテリーは住宅、商業、産業、公益事業規模のアプリケーション全体でますます不可欠な役割を担うようになります。
The Second-life EV Batteries Market was valued at USD 25.92 billion in 2024 and is projected to grow to USD 28.52 billion in 2025, with a CAGR of 10.60%, reaching USD 47.46 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 25.92 billion |
Estimated Year [2025] | USD 28.52 billion |
Forecast Year [2030] | USD 47.46 billion |
CAGR (%) | 10.60% |
The emergence of second-life electric vehicle batteries represents a landmark development in the quest for sustainable energy solutions. As the global push toward decarbonization intensifies, organizations have begun to recognize the latent value embedded in batteries that have reached the end of their vehicular life but retain substantial capacity for stationary applications. This shift not only mitigates environmental impact by deferring end-of-life recycling but also bolsters energy security and grid resilience in a cost-effective manner.
By repurposing EV batteries for applications ranging from residential energy storage to grid-scale support, stakeholders can extract additional economic and environmental benefits. In this context, circular economy principles are gaining traction as companies seek to optimize resource utilization and establish new revenue streams. As industry leaders and policymakers align around these shared objectives, second-life battery programs are poised to become a critical component of broader clean energy strategies.
Over the past decade, significant technological progress has catalyzed the adoption of second-life EV batteries across multiple sectors. Advancements in battery management systems and predictive analytics have enhanced the reliability and safety of repurposed battery packs, enabling deployment in diverse environments from residential installations to industrial microgrids. Moreover, improvements in modular design and standardized communication protocols have streamlined integration processes, reducing project timelines and operational complexity.
In parallel, regulatory frameworks have evolved to support the second-life value chain, with incentives and guidelines emerging in key markets to accelerate adoption. This combination of innovation and policy support has fostered a marketplace where stakeholders-from automakers to energy service companies-collaborate to unlock the full potential of veteran EV batteries. As a result, the energy storage landscape is undergoing a transformative shift, with repurposed batteries playing an increasingly prominent role in achieving decarbonization goals and enhancing system flexibility.
The introduction of new United States tariffs on imported battery components and repurposed battery modules has introduced both challenges and opportunities within the second-life EV battery sector. As these levies take effect, supply chain actors are recalibrating sourcing strategies to minimize cost impacts while maintaining project viability. Consequently, some manufacturers are exploring localized assembly and refurbishment hubs to circumvent tariff-related expenses and reduce lead times.
As a result of these trade adjustments, partnerships between domestic integrators and international suppliers are evolving, with an emphasis on compliance, transparency, and logistics optimization. Although short-term disruptions may occur as the market adapts, long-term benefits could materialize through enhanced local capacity and strengthened domestic ecosystems. Stakeholders who proactively engage with tariff mitigation measures and strategic sourcing initiatives will be best positioned to sustain competitive advantage within this dynamic regulatory environment.
Detailed segmentation reveals variations in performance, deployment scenarios, and economic outcomes across battery chemistries. For instance, lithium-ion systems command significant attention due to their superior energy density and longevity, while nickel-metal hydride units offer favorable safety profiles for certain stationary applications. Lead-acid batteries, despite their lower cost, serve niche roles where weight and space constraints are minimal.
Capacity thresholds drive further differentiation, with smaller modules below fifty kilowatt-hours suited to residential installations and telecommunication backup systems, mid-range packs accommodating commercial energy storage needs, and larger units exceeding two hundred kilowatt-hours tailored for grid services and heavy-duty applications. Source-based segmentation underscores unique performance requirements and lifecycle considerations for vehicles such as passenger cars, two-wheelers, electric buses, and heavy-duty commercial fleets. Distribution channels encompass both offline avenues-spanning direct sales agreements and distributor networks-and online platforms that facilitate streamlined procurement. Application-specific insights highlight the versatility of second-life batteries across office complexes, shopping centers, data centers, manufacturing facilities, apartment developments, individual homes, utility-scale storage arrays, and telecommunications sites.
Regional dynamics play a pivotal role in dictating the pace and scale of second-life EV battery adoption. In the Americas, robust incentives for energy resilience and a growing network of refurbishers have accelerated pilot projects and commercial rollouts. Stakeholders benefit from supportive policy frameworks and an expanding array of public-private partnerships aimed at enhancing grid stability.
Across Europe, the Middle East and Africa, stringent decarbonization targets and regulatory mandates have catalyzed investments in second-life programs, particularly in Western Europe's established renewable energy markets. Meanwhile, emerging economies within the region are exploring tailored solutions to address energy access challenges. In the Asia-Pacific basin, high EV penetration rates in countries such as China and Japan have generated substantial volumes of retired battery packs, spurring the development of large-scale repurposing facilities and innovative business models that integrate second-life storage into renewable energy portfolios and microgrid projects.
Leading companies in the second-life EV battery domain are distinguishing themselves through strategic alliances, proprietary refurbishment technologies, and diversified service offerings. Several major automakers have forged joint ventures with energy storage firms to repurpose retired batteries within residential and commercial microgrid applications. At the same time, specialized providers are deploying advanced diagnostic tools and automated disassembly processes to enhance throughput and ensure consistent module quality.
In addition, technology startups are disrupting traditional value chains by offering turnkey second-life solutions that bundle system integration, financing, and operations support. These entrants leverage software platforms to optimize asset utilization and performance, while established energy companies incorporate second-life storage into broader portfolios spanning grid services, renewable integration, and demand response programs. Collectively, these initiatives are shaping a vibrant ecosystem, driving competitive differentiation and accelerating market maturation.
To capitalize on the rapidly evolving second-life battery sector, industry leaders should prioritize the development of standardized testing and certification protocols that foster market confidence and safety assurance. Securing strategic partnerships with automotive manufacturers and recycling firms will facilitate a steady supply of high-quality modules, while investments in automated refurbishment infrastructure can drive operational efficiency and scalability.
Furthermore, engaging proactively with regulators and utilities to shape policy frameworks will unlock incentives and streamline project approvals. Companies should also explore innovative financing mechanisms-such as performance-based leasing and energy service agreements-to lower customer entry barriers and promote adoption. By integrating digital monitoring platforms, stakeholders can deliver enhanced asset management and predictive maintenance capabilities, ensuring reliable performance and long-term value realization.
The research methodology underpinning this analysis integrates a rigorous combination of primary interviews, secondary data review, and quantitative supply chain assessments. Expert consultations were conducted with stakeholders across original equipment manufacturers, repurposing facilities, energy service providers, and regulatory bodies to capture diverse perspectives and validate emerging trends.
Complementing these insights, comprehensive desk research was performed using industry reports, academic publications, patent filings, and corporate disclosures. A multi-scenario modeling approach was employed to evaluate potential market trajectories under varying policy, technology, and economic conditions. Data integrity was ensured through triangulation, cross-verifying findings against multiple sources and incorporating feedback loops with domain experts.
The second-life EV battery market is at an inflection point, driven by technological advancements, supportive policy measures, and the urgent imperative for sustainable energy infrastructure. As stakeholders refine business models and forge collaborative ecosystems, repurposed batteries will assume an increasingly integral role across residential, commercial, industrial, and utility-scale applications.
Looking ahead, continuous innovation in battery management, digitalization, and modular design will be critical to unlocking broader adoption. Companies that align strategic investments with emerging regulations and customer needs are poised to lead the next wave of growth, delivering resilient, cost-effective energy solutions while advancing circular economy objectives.