![]() |
市場調査レポート
商品コード
1675047
エンジニアリングプラスチックの世界市場:成長、将来展望、競合分析 (2025年~2033年)Engineering Plastics Market - Growth, Future Prospects and Competitive Analysis, 2025 - 2033 |
||||||
|
エンジニアリングプラスチックの世界市場:成長、将来展望、競合分析 (2025年~2033年) |
出版日: 2025年03月05日
発行: Acute Market Reports
ページ情報: 英文 178 Pages
納期: 即日から翌営業日
|
エンジニアリングプラスチックの市場規模は、2024年に1,132億米ドルと推計され、2025年から2033年にかけてCAGR 6.54%で拡大し、2033年にはほぼ2,002億米ドルに達すると予測されています。エンジニアリングに使用されるプラスチックは、機械的応力を受け、化学的・物理的に厳しい条件下で、幅広い温度範囲にわたって、構造用途に長時間効果的に機能する物理的性質を持つものです。エンジニアリングプラスチックは、機械部品の製造、容器の構造、様々な物質の包装に一般的に使用されています。エンジニアリングプラスチックは、金属やセラミックよりもはるかに軽量であるため、金属やセラミックに代わる材料として広く利用されています。加えて、耐荷重性、機械的強度、熱安定性、寿命に優れ、柔軟な設計が可能です。ポリサルフォン、ポリアミド (PA)、ポリカーボネート (PC)、アクリロニトリル・ブタジエン・スチレン (ABS)、アクリロニトリル・ブタジエン・スチレン (PA) などは、頻繁に利用されているテクニカル・プラスチックの一例である (PSU) 。
バイオベースグレードのエンジニアリングプラスチックに対する政府の有利な指令
排ガスレベルの低減と燃費の向上を目的とした法規制の強化により、自動車では金属がさまざまなエンジニアリングプラスチックに置き換えられつつあります。OEM (相手先商標製品製造会社) は、このような規制に対応するためにこのような取り組みを行っています。最近のブレークスルーにより、さまざまなエンジニアリングプラスチックのバイオベースグレードが誕生しました。これらのバイオベースグレードは現在入手可能です。エンジニアリングプラスチック市場の拡大は、これらの要因によって牽引されると予想されます。PLA、PHA、PETのようなバイオベースのエンジニアリング・プラスチックの用途は、包装、外食産業、バッグ、農業産業などにおいて非常に広い範囲に及んでいます。バイオベースの素材から生まれた製品への需要が高まっており、バイオベースのエンジニアリングプラスチックを市場に提供する販売者の数が増加しています。
電気自動車とハイブリッド車へのニーズがこの市場への新規参入者にチャンスをもたらす
エンジニアリングプラスチックに対するニーズの高まりと、これらの材料の新しい用途の多さから、この業界は、その汎用性の高さゆえに、すでにかなりの数の参入者を抱えています。このような競争の激化は、すでにエンジニアリングプラスチックに存在する市場の細分化の高さと組み合わさると、現在の市場がいかに望ましいものであるかを示しています。
原材料価格の変動
エンジニアリングプラスチックは、原材料の価格変動によるコスト高が市場拡大の阻害要因になると予測されます。これは、エンジニアリングプラスチックが原材料から作られていることに起因します。エンジニアリングプラスチックの特性はより高度であり、そのポリマーの製造はより複雑であるため、エンジニアリングプラスチックの総コストは高くなります。エンジニアリングプラスチックは3つのカテゴリーに分けることができます:この直接的な結果として、エンジニアリングプラスチックの高価格が業界の成長を減速させると予測されています。
プラスチックの種類による市場セグメンテーション
ポリアセタール (POM) 分野は、予測期間中に12.21%という最大の複合年間成長率を記録すると予測されています。ホルムアルデヒドの重合により、ポリアセタールとして知られるエンジニアリング・プラスチックが製造され、ポリオキシメチレン (POM) とも呼ばれることが多いです。ポリアセタールは、機械的、熱的、化学的、電気的性能に優れ、高温、溶剤、摩耗に強いです。さらに、幅広い電気的特性を持っています。優れた電気的性質に加え、さまざまな溶剤に対する耐性があるため、電気が関係する用途に理想的な材料です。ポリオキシメチレンの特性は、産業機械、電気・電子機器、自動車、輸送機器、消費財への応用に最適であり、エンジニアリングプラスチック産業の拡大に寄与しています。
用途別市場セグメンテーション
2033年には、自動車・輸送分野が33%の最大市場シェアを占めると予測されています。自動車産業では、エンジニアリングプラスチックは、内装や外装、モータートレイン、シャーシ、電気部品、エンジンルーム内部品など、様々な用途に使用されています。ダッシュボード、バンパー、シート、ボディパネル、燃料システム、内装トリム、ボンネット下部品、ライト、外装トリム、液体リザーバー、内装などの部品に利用されています。現在、環境と経済への関心が軽量エンジニアリング・プラスチックの需要増につながり、それが分析対象業界の市場成長を押し上げると予想されています。
地域別洞察
アジア太平洋地域がエンジニアリングプラスチック市場で最大のシェアを占めると予測されます。アジア太平洋地域は、2033年までに最大の市場シェア38%を占めると予測されています。同地域の市場は、中国、日本、インドといった国々からの需要の高まりを直接の要因として、急速に拡大しています。アジア太平洋地域では中国が最も有利なエンジニアリングプラスチック市場を構成し、インドは同地域と世界の両方で最も速い成長率を示す市場になると予想されています。自動車、電気、電子分野の拡大、半導体の製造、テレビやその他の家電製品の輸出の結果、エンジニアリングプラスチックの需要が大幅に増加しています。
予測期間中、主要プレーヤー間の競合が激化
エンジニアリングプラスチックの市場競争は中程度から高水準で、大企業が独占しています。BASF SE、Covestro AG、Solvay S.A.、Celanese Corporation、DuPont、LG Chem、SABIC、Evonik Industries、Lanxess、三菱エンジニアリングプラスチックス株式会社、DSM N.V.は、この市場における最も重要な競合企業のひとつです。世界中の研究者が、プラスチックの製造プロセスをより簡単にする最先端技術の開発に力を注いでいます。このため、今後予想される期間中の市場の成長は恩恵を受けると思われます。
In 2024, the size of the engineering plastics market was estimated to be US $113.2 billion, and it is anticipated that the total revenue will expand at a CAGR of 6.54% from 2025 to 2033, reaching almost US $200.2 billion by 2033. Plastics used in engineering are those that have physical qualities that allow them to function effectively for extended periods of time in structural applications, across a broad temperature range, while being subjected to mechanical stress, and in challenging chemical and physical conditions. In the manufacturing of mechanical parts, container construction, and the packaging of various substances, engineering plastics are typically utilised. Due to the fact that they are far lighter than both metal and ceramic, they have found widespread application as a favoured alternative to the former. In addition to this, they offer great load capacity, mechanical strength, thermal stability, and longevity, as well as flexible design options. Polysulphone, polyamides (PA), polycarbonates (PC), acrylonitrile butadiene styrene (ABS), and acrylonitrile butadiene styrene (PA) are some examples of the several types of technical plastics that are frequently utilised (PSU).
Favourable government mandates for bio-based grades of engineering plastic
Metals are being replaced in automobiles by a variety of engineering plastics as a result of increasingly rigorous laws aimed at lowering emission levels and increasing fuel economy. OEMs (Original Equipment Manufacturers) are doing this in response to these regulations. Recent breakthroughs have led to the creation of bio-based grades of various engineering plastics. These bio-based grades are now available. It is anticipated that the expansion of the engineering plastics market would be driven by these factors. Applications for bio-based engineered plastics such as PLA, PHA, and PET have found a tremendous breadth of use in the packaging, food service ware, bag, and agricultural industries. There is a growing demand for products derived from bio-based materials, which has led to an increase in the number of sellers who offer bio-based engineering plastics on the market.
Need for electric and hybrid vehicles presents opportunity for the new entrants in this market
Because of the growing need for engineering plastics and the plethora of new applications for these materials, this industry already has a significant number of participants due to the fact that it is so versatile. an increasing number of global and local players in each nation. This increase in competition, when combined with the high level of market fragmentation that already exists for engineering plastics, is symptomatic of how desirable the market now is.
Fluctuation in raw material prices
It is projected that the high costs of engineering plastics, which are caused by variations in the costs of raw materials, will be an impediment to the expansion of the market for engineering plastics. This is due to the fact that engineering plastics are made from raw materials. Both the more advanced properties of engineering plastics and the more complicated production of those polymers contribute to the higher total cost of engineering plastics. Engineering plastics can be broken down into three categories: As a direct consequence of this, it is projected that the high price of engineering plastics will slow down the growth of the industry.
Market Segmentation by Plastic Type
The polyacetals (POM) segment is anticipated to experience the largest compound annual growth rate of 12.21% during forecast period. Formaldehyde polymerization results in the production of an engineering plastic known as polyacetal, which is also frequently referred to as polyoxymethylene (POM). It has great mechanical, thermal, chemical, and electrical capabilities and is resistant to high temperatures, solvents, and abrasion. Additionally, it has a wide range of electrical properties. Because it is resistant to a wide variety of solvents in addition to having great electrical qualities, it is an ideal material for use in applications involving electricity. Polyoxymethylene's properties make it ideally suited for application in industrial machinery, electrical and electronic equipment, automotive and transportation, as well as consumer items, which contributes to the expansion of the engineering plastics industry.
Market Segmentation by End-use
It is anticipated that the automotive and transportation segment would hold the greatest market share of 33% by the year 2033. In the automotive industry, engineering plastics are used for a variety of applications, including interior and exterior furnishings, motor trains, chassis, electrical components, and objects found under the hood. It is utilised in the construction of components like as dashboards, bumpers, seats, body panels, fuel systems, interior trim, under-bonnet components, lights, external trim, liquid reservoirs, and upholstery. It is anticipated that current environmental and economic concerns will lead to an increase in demand for lightweight engineering plastic, which, in turn, would boost market growth in the industry that has been analysed.
Regional Insights
The Asia Pacific region is anticipated to hold the largest share of the engineering plastics market. It is anticipated that the Asia Pacific region will hold the greatest market share of 38% by the year 2033. The markets in the region are expanding at a rapid rate as a direct result of the rising levels of demand coming from countries such as China, Japan, and India. It is anticipated that China will constitute the most lucrative market for engineering plastics in the Asia Pacific and India will be the market with the quickest growth rate in both the region and the world. As a result of the expansion of the automotive, electrical, and electronics sectors, as well as the fabrication of semiconductors and the export of televisions and other consumer appliances, there has been a significant increase in the demand for engineering plastics.
Competition to Intensify Among the Key Players During the Forecast Period
The market for engineering plastics is moderate to highly competitive and dominated by large companies. The companies BASF SE, Covestro AG, Solvay S.A., Celanese Corporation, DuPont, LG Chem, SABIC, Evonik Industries, Lanxess, Mitsubishi Engineering-Plastics Corporation, DSM N.V. are among the most significant competitors in this market. Researchers from all over the world are focusing their efforts on the development of cutting-edge technologies that will make the process of creating plastics more straightforward. Because of this, the growth of the market during the period of time that is expected to follow will benefit.
Historical & Forecast Period
This study report represents an analysis of each segment from 2023 to 2033 considering 2024 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2025 to 2033.
The current report comprises quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends & technological analysis, case studies, strategic conclusions and recommendations and other key market insights.
Research Methodology
The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. The key data points that enable the estimation of Engineering Plastics market are as follows:
Research and development budgets of manufacturers and government spending
Revenues of key companies in the market segment
Number of end users & consumption volume, price, and value.
Geographical revenues generated by countries considered in the report
Micro and macro environment factors that are currently influencing the Engineering Plastics market and their expected impact during the forecast period.
Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top-down and bottom-up approach for validation of market estimation assures logical, methodical, and mathematical consistency of the quantitative data.