デフォルト表紙
市場調査レポート
商品コード
1763867

AIを活用した予知保全システム市場-世界の産業規模、シェア、動向、機会、予測、コンポーネント別、展開別、技術別、用途別、地域別、競合別、2020年~2030年

AI-Powered Predictive Maintenance Systems Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, By Component, By Deployment, By Technology, By Application, By Region & Competition, 2020-2030F


出版日
ページ情報
英文 185 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=147.66円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

AIを活用した予知保全システム市場-世界の産業規模、シェア、動向、機会、予測、コンポーネント別、展開別、技術別、用途別、地域別、競合別、2020年~2030年
出版日: 2025年06月30日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

AIを活用した予知保全システムの世界市場は、2024年には7億7,303万米ドルとなり、2030年までには15億2,887万米ドルに達すると予測され、予測期間中のCAGRは12.04%で成長すると予測されます。

この市場には、センサー、機械、制御システムからのデータを分析し、機器の故障を事前に予測するAI主導型ソリューションが含まれます。従来のリアクティブメンテナンスや定期メンテナンスとは異なり、これらのシステムは、効率を高め、ダウンタイムを最小限に抑え、資産の寿命を延ばすプロアクティブリアルタイムアプローチを提供します。製造業、エネルギー、運輸、ヘルスケアなどの分野で広く利用されているAIを活用した予知保全の導入は、産業オートメーション、IoT統合、リアルタイム分析の普及により加速しています。クラウドコンピューティングとエッジAIの進化により、導入はよりスケーラブルになり、中堅企業でも利用しやすくなっています。これらの要因が、資産パフォーマンスと運用継続性への関心の高まりと相まって、この市場の急成長を後押ししています。

市場概要
予測期間 2026年~2030年
市場規模:2024年 7億7,303万米ドル
市場規模:2030年 15億2,887万米ドル
CAGR:2025年~2030年 12.04%
急成長セグメント コンディションモニタリング
最大市場 北米

主要な市場促進要因

産業オートメーションとスマート製造の急増

主要な市場課題

レガシーシステム間のデータサイロと統合の複雑さ

主要な市場動向

リアルタイム資産シミュレーションのためのデジタルツインの統合

目次

第1章 ソリューションの概要

  • 市場の定義
  • 市場の範囲
    • 対象市場
    • 調査対象年
    • 主要市場セグメンテーション

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界のAIを活用した予知保全システム市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • コンポーネント別(ハードウェア、ソフトウェア、サービス)
    • 展開別(オンプレミス、クラウドベース、ハイブリッド)
    • テクノロジー別(機械学習、ディープラーニング、自然言語処理、コンピュータービジョン、エッジAI)
    • 用途別(状態監視、障害検出と診断、資産パフォーマンス管理、エネルギー消費最適化、その他)
    • 地域別(北米、欧州、南米、中東・アフリカ、アジア太平洋)
  • 企業別(2024年)
  • 市場マップ

第6章 北米のAIを活用した予知保全システム市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州のAIを活用した予知保全システム市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 欧州:国別分析
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン

第8章 アジア太平洋のAIを活用した予知保全システム市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • アジア太平洋:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 中東・アフリカのAIを活用した予知保全システム市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • アラブ首長国連邦
    • 南アフリカ

第10章 南米のAIを活用した予知保全システム市場展望

  • 市場規模・予測
  • 市場シェア・予測
  • 南米:国別分析
    • ブラジル
    • コロンビア
    • アルゼンチン

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 合併と買収
  • 製品上市
  • 最近の動向

第13章 企業プロファイル

  • IBM Corporation
  • Microsoft Corporation
  • SAP SE
  • Siemens AG
  • General Electric Company
  • PTC Inc.
  • Schneider Electric SE
  • ABB Ltd.

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 29745

The Global AI-Powered Predictive Maintenance Systems Market was valued at USD 773.03 million in 2024 and is projected to reach USD 1528.87 million by 2030, growing at a CAGR of 12.04% during the forecast period. This market encompasses AI-driven solutions that analyze data from sensors, machinery, and control systems to predict equipment failures before they happen. Unlike traditional reactive or scheduled maintenance, these systems offer a proactive, real-time approach that enhances efficiency, minimizes downtime, and extends asset lifespan. Widely used across sectors such as manufacturing, energy, transportation, and healthcare, the adoption of AI-powered predictive maintenance is accelerating due to the proliferation of industrial automation, IoT integration, and real-time analytics. With the evolution of cloud computing and edge AI, deployment has become more scalable and accessible, even for mid-sized enterprises. These factors, combined with the increasing focus on asset performance and operational continuity, are driving the rapid growth of this market.

Market Overview
Forecast Period2026-2030
Market Size 2024USD 773.03 Million
Market Size 2030USD 1528.87 Million
CAGR 2025-203012.04%
Fastest Growing SegmentCondition Monitoring
Largest MarketNorth America

Key Market Drivers

Surge in Industrial Automation and Smart Manufacturing

The expansion of Industry 4.0 has led to a widespread implementation of connected systems and automation in sectors like manufacturing, oil & gas, and logistics. As operational uptime becomes a critical success factor, AI-powered predictive maintenance systems are enabling industries to proactively manage equipment performance and minimize unplanned outages. Smart factories are embedding sensors and AI algorithms to capture and interpret real-time machine data, facilitating early anomaly detection and effective maintenance scheduling. This capability not only ensures continuous operation of complex equipment but also improves planning and resource allocation. As enterprises become increasingly reliant on data-driven decision-making, predictive maintenance is emerging as a core strategy for sustaining asset performance. According to the International Federation of Robotics (IFR), global industrial robot installations reached 553,052 units in 2022, underscoring the growing demand for predictive maintenance tools to support automated infrastructure worldwide.

Key Market Challenges

Data Silos and Integration Complexity Across Legacy Systems

A significant obstacle in deploying AI-powered predictive maintenance systems lies in the difficulty of integrating data from legacy equipment and outdated enterprise infrastructures. Many industrial operations still depend on machinery that lacks modern sensors or standardized data protocols, which complicates the process of collecting consistent, high-quality machine data. These fragmented data environments hinder the performance of AI models by limiting access to comprehensive operational insights needed for accurate failure prediction. Without integrated, real-time data streams, predictive algorithms struggle to detect meaningful patterns or anomalies, diminishing the effectiveness and reliability of the system. Consequently, this challenge can limit ROI and hinder large-scale adoption, especially in sectors with extensive legacy infrastructure.

Key Market Trends

Integration of Digital Twins for Real-Time Asset Simulation

One of the emerging trends in the AI-powered predictive maintenance systems market is the incorporation of digital twin technology. A digital twin serves as a dynamic, virtual replica of a physical asset, continuously updated using sensor data and AI analytics to simulate real-time performance and conditions. This integration enhances predictive accuracy by allowing companies to virtually test operating scenarios and detect potential faults before they affect physical systems. Industries such as aerospace, automotive, and energy are increasingly leveraging digital twins to improve asset lifecycle management, perform remote monitoring, and support faster diagnostics. As AI models become more refined, digital twins are playing a vital role in delivering context-rich, actionable insights. They are also valuable for training maintenance personnel, evaluating failure risks, and ensuring business continuity, making them a foundational tool in the predictive maintenance ecosystem.

Key Market Players

  • IBM Corporation
  • Microsoft Corporation
  • SAP SE
  • Siemens AG
  • General Electric Company
  • PTC Inc.
  • Schneider Electric SE
  • ABB Ltd.

Report Scope:

In this report, the Global AI-Powered Predictive Maintenance Systems Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

AI-Powered Predictive Maintenance Systems Market, By Component:

  • Hardware
  • Software
  • Services

AI-Powered Predictive Maintenance Systems Market, By Deployment:

  • On-Premises
  • Cloud-Based
  • Hybrid

AI-Powered Predictive Maintenance Systems Market, By Technology:

  • Machine Learning
  • Deep Learning
  • Natural Language Processing
  • Computer Vision
  • Edge AI

AI-Powered Predictive Maintenance Systems Market, By Application:

  • Condition Monitoring
  • Failure Detection & Diagnosis
  • Asset Performance Management
  • Energy Consumption Optimization
  • Others

AI-Powered Predictive Maintenance Systems Market, By Region:

  • North America
    • United States
    • Canada
    • Mexico
  • Europe
    • Germany
    • France
    • United Kingdom
    • Italy
    • Spain
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • South Africa
  • South America
    • Brazil
    • Colombia
    • Argentina

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global AI-Powered Predictive Maintenance Systems Market.

Available Customizations:

Global AI-Powered Predictive Maintenance Systems Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Solution Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global AI-Powered Predictive Maintenance Systems Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Component (Hardware, Software, Services)
    • 5.2.2. By Deployment (On-Premises, Cloud-Based, Hybrid)
    • 5.2.3. By Technology (Machine Learning, Deep Learning, Natural Language Processing, Computer Vision, Edge AI)
    • 5.2.4. By Application (Condition Monitoring, Failure Detection & Diagnosis, Asset Performance Management, Energy Consumption Optimization, Others)
    • 5.2.5. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 5.3. By Company (2024)
  • 5.4. Market Map

6. North America AI-Powered Predictive Maintenance Systems Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Component
    • 6.2.2. By Deployment
    • 6.2.3. By Technology
    • 6.2.4. By Application
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States AI-Powered Predictive Maintenance Systems Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Component
        • 6.3.1.2.2. By Deployment
        • 6.3.1.2.3. By Technology
        • 6.3.1.2.4. By Application
    • 6.3.2. Canada AI-Powered Predictive Maintenance Systems Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Component
        • 6.3.2.2.2. By Deployment
        • 6.3.2.2.3. By Technology
        • 6.3.2.2.4. By Application
    • 6.3.3. Mexico AI-Powered Predictive Maintenance Systems Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Component
        • 6.3.3.2.2. By Deployment
        • 6.3.3.2.3. By Technology
        • 6.3.3.2.4. By Application

7. Europe AI-Powered Predictive Maintenance Systems Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component
    • 7.2.2. By Deployment
    • 7.2.3. By Technology
    • 7.2.4. By Application
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany AI-Powered Predictive Maintenance Systems Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Component
        • 7.3.1.2.2. By Deployment
        • 7.3.1.2.3. By Technology
        • 7.3.1.2.4. By Application
    • 7.3.2. France AI-Powered Predictive Maintenance Systems Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Component
        • 7.3.2.2.2. By Deployment
        • 7.3.2.2.3. By Technology
        • 7.3.2.2.4. By Application
    • 7.3.3. United Kingdom AI-Powered Predictive Maintenance Systems Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Component
        • 7.3.3.2.2. By Deployment
        • 7.3.3.2.3. By Technology
        • 7.3.3.2.4. By Application
    • 7.3.4. Italy AI-Powered Predictive Maintenance Systems Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Component
        • 7.3.4.2.2. By Deployment
        • 7.3.4.2.3. By Technology
        • 7.3.4.2.4. By Application
    • 7.3.5. Spain AI-Powered Predictive Maintenance Systems Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Component
        • 7.3.5.2.2. By Deployment
        • 7.3.5.2.3. By Technology
        • 7.3.5.2.4. By Application

8. Asia Pacific AI-Powered Predictive Maintenance Systems Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Deployment
    • 8.2.3. By Technology
    • 8.2.4. By Application
    • 8.2.5. By Country
  • 8.3. Asia Pacific: Country Analysis
    • 8.3.1. China AI-Powered Predictive Maintenance Systems Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Deployment
        • 8.3.1.2.3. By Technology
        • 8.3.1.2.4. By Application
    • 8.3.2. India AI-Powered Predictive Maintenance Systems Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Deployment
        • 8.3.2.2.3. By Technology
        • 8.3.2.2.4. By Application
    • 8.3.3. Japan AI-Powered Predictive Maintenance Systems Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Deployment
        • 8.3.3.2.3. By Technology
        • 8.3.3.2.4. By Application
    • 8.3.4. South Korea AI-Powered Predictive Maintenance Systems Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Component
        • 8.3.4.2.2. By Deployment
        • 8.3.4.2.3. By Technology
        • 8.3.4.2.4. By Application
    • 8.3.5. Australia AI-Powered Predictive Maintenance Systems Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Component
        • 8.3.5.2.2. By Deployment
        • 8.3.5.2.3. By Technology
        • 8.3.5.2.4. By Application

9. Middle East & Africa AI-Powered Predictive Maintenance Systems Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Deployment
    • 9.2.3. By Technology
    • 9.2.4. By Application
    • 9.2.5. By Country
  • 9.3. Middle East & Africa: Country Analysis
    • 9.3.1. Saudi Arabia AI-Powered Predictive Maintenance Systems Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Deployment
        • 9.3.1.2.3. By Technology
        • 9.3.1.2.4. By Application
    • 9.3.2. UAE AI-Powered Predictive Maintenance Systems Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Deployment
        • 9.3.2.2.3. By Technology
        • 9.3.2.2.4. By Application
    • 9.3.3. South Africa AI-Powered Predictive Maintenance Systems Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Deployment
        • 9.3.3.2.3. By Technology
        • 9.3.3.2.4. By Application

10. South America AI-Powered Predictive Maintenance Systems Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Deployment
    • 10.2.3. By Technology
    • 10.2.4. By Application
    • 10.2.5. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil AI-Powered Predictive Maintenance Systems Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Deployment
        • 10.3.1.2.3. By Technology
        • 10.3.1.2.4. By Application
    • 10.3.2. Colombia AI-Powered Predictive Maintenance Systems Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Deployment
        • 10.3.2.2.3. By Technology
        • 10.3.2.2.4. By Application
    • 10.3.3. Argentina AI-Powered Predictive Maintenance Systems Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Deployment
        • 10.3.3.2.3. By Technology
        • 10.3.3.2.4. By Application

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends and Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Company Profiles

  • 13.1. IBM Corporation
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel
    • 13.1.5. Key Product/Services Offered
  • 13.2. Microsoft Corporation
  • 13.3. SAP SE
  • 13.4. Siemens AG
  • 13.5. General Electric Company
  • 13.6. PTC Inc.
  • 13.7. Schneider Electric SE
  • 13.8. ABB Ltd.

14. Strategic Recommendations

15. About Us & Disclaimer