デフォルト表紙
市場調査レポート
商品コード
1611276

宇宙用耐放射線エレクトロニクス市場:製造技術、コンポーネント別-2025~2030年の世界予測

Radiation-Hardened Electronics for Space Application Market by Manufacturing Technique (Radiation Hardening by Design, Radiation Hardening by Process ), Component - Global Forecast 2025-2030


出版日
発行
360iResearch
ページ情報
英文 190 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.99円
宇宙用耐放射線エレクトロニクス市場:製造技術、コンポーネント別-2025~2030年の世界予測
出版日: 2024年10月31日
発行: 360iResearch
ページ情報: 英文 190 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

宇宙用耐放射線エレクトロニクス市場は、2023年に9億3,489万米ドルと評価され、2024年には9億6,292万米ドルに達すると予測され、CAGR 6.03%で成長し、2030年には14億923万米ドルに達すると予測されています。

放射線耐性エレクトロニクスは、宇宙線と太陽フレアによる極端な放射線レベルに耐え、重要なシステムの安定性と機能性を確保する宇宙ミッションの成功に不可欠です。この技術は、地球の保護大気を超えた衛星、宇宙船、航空電子機器の故障を防ぐ能力があるため必要です。主要用途は、商業、民間、軍事、国家安全保障の宇宙活動です。最終用途は通信、地球観測、深宇宙探査、防衛など多岐にわたり、これらの用途は厳しい環境下で機能する信頼性の高い電子機器に依存しています。宇宙探査活動の活発化、衛星技術への政府・民間投資、航空宇宙セグメントの進歩が市場の成長を牽引しています。政府宇宙機関と非公開会社の協力関係の確立は、技術革新と新型システムの展開を促進します。特に、過酷な条件に耐える高性能で耐久性のあるシステムに対する需要が急増しているため、プロセッサー、メモリーデバイス、集積回路などの放射線硬化コンポーネントの開発機会が豊富です。しかし、市場開拓は、製造コストの高さ、厳しい検査要件、開発期間の長さといった課題に直面し、幅広い採用が制限されています。さらに、国際的な競合や厳しい規制は、新興参入企業にとって参入障壁となる可能性があります。サステイナブル成長のためには、新しい複合材料や半導体技術など、材料科学の進歩を活用できる可能性があり、より低コストで放射線耐性を向上させるための研究開発に投資することが推奨されます。研究機関と密接に協力し、AIを活用して設計プロセスを最適化することで、イノベーションが促進される可能性があります。小型衛星や商業宇宙旅行の需要の高まりは、こうした高信頼性エレクトロニクスに新たな市場をもたらします。課題はあるもの、進化する航空宇宙産業において、機敏で信頼性の高いソリューションに対する需要の高まりに対応するため、性能を犠牲にすることなく小型化と費用対効果の改善に注力することが不可欠です。

主要市場の統計
基準年[2023年] 9億3,489万米ドル
予測年[2024年] 9億6,292万米ドル
予測年[2030年] 14億923万米ドル
CAGR(%) 6.03%

市場力学:急速に進化する宇宙用耐放射線エレクトロニクス市場の主要市場洞察を公開

宇宙用耐放射線エレクトロニクス市場は、需要と供給のダイナミックな相互作用によって変貌を遂げています。このような市場力学の進化を理解することで、企業は十分な情報に基づいた投資決定、戦略的意思決定、新たなビジネス機会の獲得を行うことができます。これらの動向を包括的に把握することで、企業は政治的、地理的、技術的、社会的、経済的な領域にわたる様々なリスクを軽減することができるとともに、消費者行動とそれが製造コストや購買動向に与える影響をより明確に理解することができます。

  • 市場促進要因
    • 世界のモニタリング・諜報・偵察(ISR)活動の増加
    • 衛星打ち上げと深宇宙活動の増加
  • 市場抑制要因
    • 放射線硬化型電子部品の開発・設計コストの高さ
  • 市場機会
    • 耐放射線エレクトロニクスの高度化に関する研究の活発化
    • 宇宙活動への投資と資金調達の増加
  • 市場課題
    • 耐放射線エレクトロニクスの検査における困難性

ポーターのファイブフォース:宇宙用耐放射線エレクトロニクス市場をナビゲートする戦略ツール

ポーターのファイブフォースフレームワークは、市場情勢の競合情勢を理解するための重要なツールです。ポーターのファイブフォースフレームワークは、企業の競合を評価し、戦略的機会を探るための明確な手法を記載しています。このフレームワークは、企業が市場内の勢力図を評価し、新規事業の収益性を判断するのに役立ちます。これら洞察により、企業は自社の強みを活かし、弱みに対処し、潜在的な課題を回避することで、より強靭な市場でのポジショニングを確保することができます。

PESTLE分析:宇宙用耐放射線エレクトロニクス市場における外部からの影響の把握

外部マクロ環境要因は、宇宙用耐放射線エレクトロニクス市場の業績力学を形成する上で極めて重要な役割を果たします。政治的、経済的、社会的、技術的、法的、環境的要因の分析は、これらの影響をナビゲートするために必要な情報を記載しています。PESTLE要因を調査することで、企業は潜在的なリスクと機会をよりよく理解することができます。この分析により、企業は規制、消費者の嗜好、経済動向の変化を予測し、先を見越した積極的な意思決定を行う準備ができます。

市場シェア分析:宇宙用耐放射線エレクトロニクス市場における競合情勢の把握

宇宙用耐放射線エレクトロニクス市場の詳細な市場シェア分析により、ベンダーの業績を包括的に評価することができます。企業は、収益、顧客ベース、成長率などの主要指標を比較することで、競争上のポジショニングを明らかにすることができます。この分析により、市場の集中、セグメント化、統合の動向が明らかになり、ベンダーは競争が激化する中で自社の地位を高める戦略的意思決定を行うために必要な知見を得ることができます。

FPNVポジショニングマトリックス:宇宙用耐放射線エレクトロニクス市場におけるベンダーのパフォーマンス評価

FPNVポジショニングマトリックスは、宇宙用耐放射線エレクトロニクス市場においてベンダーを評価するための重要なツールです。このマトリックスにより、ビジネス組織はベンダーのビジネス戦略と製品満足度に基づき評価することで、目標に沿った十分な情報に基づいた意思決定を行うことができます。4つの象限によってベンダーを明確かつ正確にセグメント化し、戦略目標に最適なパートナーやソリューションを特定することができます。

戦略分析と推奨:宇宙用耐放射線エレクトロニクス市場における成功への道筋を描く

宇宙用耐放射線エレクトロニクス市場の戦略分析は、世界市場でのプレゼンス強化を目指す企業にとって不可欠です。主要なリソース、能力、業績指標を見直すことで、企業は成長機会を特定し、改善に取り組むことができます。このアプローチにより、競合情勢における課題を克服し、新たなビジネス機会を活かして長期的な成功を収めるための体制を整えることができます。

本レポートでは、主要な注目セグメントを網羅した市場の包括的な分析を提供しています。

1.市場の浸透度:現在の市場環境の詳細なレビュー、主要企業による広範なデータ、市場でのリーチと全体的な影響力を評価します。

2.市場の開拓度:新興市場における成長機会を特定し、既存セグメントにおける拡大可能性を評価し、将来の成長に向けた戦略的ロードマップを記載しています。

3.市場の多様化:最近の製品発売、未開拓の地域、産業の主要な進歩、市場を形成する戦略的投資を分析します。

4.競合の評価と情報:競合情勢を徹底的に分析し、市場シェア、事業戦略、製品ポートフォリオ、認証、規制当局の承認、特許動向、主要企業の技術進歩などを検証します。

5.製品開発とイノベーション:将来の市場成長を促進すると期待される最先端技術、研究開発活動、製品イノベーションをハイライトしています。

また、利害関係者が十分な情報を得た上で意思決定できるよう、重要な質問にも答えています。

1.現在の市場規模と今後の成長予測は?

2.最高の投資機会を提供する製品、地域はどこか?

3.市場を形成する主要技術動向と規制の影響とは?

4.主要ベンダーの市場シェアと競合ポジションは?

5.ベンダーの市場参入・撤退戦略の原動力となる収益源と戦略的機会は何か?

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場概要

第5章 市場洞察

  • 市場力学
    • 促進要因
      • 世界的にモニタリング、情報収集、偵察(ISR)活動が増加
      • 衛星打ち上げと深宇宙活動の増加
    • 抑制要因
      • 耐放射線性電子部品に関連する高コストの開発と設計
    • 機会
      • 耐放射線性電子機器の進歩に関する強力な研究
      • 宇宙活動への投資と資金提供活動の増加
    • 課題
      • 耐放射線電子機器の検査の難しさ
  • 市場セグメンテーション分析
  • ポーターのファイブフォース分析
  • PESTEL分析
    • 政治
    • 経済
    • 社会
    • 技術
    • 法律
    • 環境

第6章 宇宙用耐放射線エレクトロニクス市場:製造技術別

  • イントロダクション
  • 設計による放射線耐性強化(RHBD)
  • プロセスによる放射線硬化(RHBP)

第7章 宇宙用耐放射線エレクトロニクス市場:コンポーネント別

  • イントロダクション
  • メモリ
  • 電源管理
  • プロセッサとコントローラ

第8章 南北アメリカの宇宙用耐放射線エレクトロニクス市場

  • イントロダクション
  • アルゼンチン
  • ブラジル
  • カナダ
  • メキシコ
  • 米国

第9章 アジア太平洋の宇宙用耐放射線エレクトロニクス市場

  • イントロダクション
  • オーストラリア
  • 中国
  • インド
  • インドネシア
  • 日本
  • マレーシア
  • フィリピン
  • シンガポール
  • 韓国
  • 台湾
  • タイ
  • ベトナム

第10章 欧州・中東・アフリカの宇宙用耐放射線エレクトロニクス市場

  • イントロダクション
  • デンマーク
  • エジプト
  • フィンランド
  • フランス
  • ドイツ
  • イスラエル
  • イタリア
  • オランダ
  • ナイジェリア
  • ノルウェー
  • ポーランド
  • カタール
  • ロシア
  • サウジアラビア
  • 南アフリカ
  • スペイン
  • スウェーデン
  • スイス
  • トルコ
  • アラブ首長国連邦
  • 英国

第11章 競合情勢

  • 市場シェア分析、2023年
  • FPNVポジショニングマトリックス、2023年
  • 競合シナリオ分析
  • 戦略分析と提言

企業一覧

  • Advanced Micro Devices, Inc.
  • Analog Devices, Inc.
  • Arquimea Group, SA
  • BAE Systems PLC
  • City Labs Inc.
  • Cobham Advanced Electronic Solutions
  • Data Device Corporation by Transdigm Group, Inc.
  • Everspin Technologies Inc.
  • Honeywell International Inc.
  • Infineon Technologies AG
  • Mercury Systems, Inc.
  • Microchip Technology Inc.
  • PCB Piezotronics, Inc.
  • Presto Engineering, Inc.
  • pSemi Corporation by Murata Manufacturing Co., Ltd.
  • Renesas Electronics Corporation
  • Saphyrion Sagl
  • Semiconductor Components Industries, LLC
  • STMicroelectronics International N.V.
  • Synopsys, Inc.
  • Teledyne Technologies Incorporated
  • Texas Instruments Incorporated
  • TT Electronics PLC
  • TTM Technologies, Inc.
  • VORAGO Technologies
図表

LIST OF FIGURES

  • FIGURE 1. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET RESEARCH PROCESS
  • FIGURE 2. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2023 VS 2030 (%)
  • FIGURE 7. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 11. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 13. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 15. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 17. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 19. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET DYNAMICS
  • TABLE 7. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY RADIATION HARDENING BY DESIGN (RHBD), BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY RADIATION HARDENING BY PROCESS (RHBP), BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MEMORY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY POWER MANAGEMENT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY PROCESSORS & CONTROLLERS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 15. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 16. AMERICAS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 17. ARGENTINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 18. ARGENTINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 19. BRAZIL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 20. BRAZIL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 21. CANADA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 22. CANADA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 23. MEXICO RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 24. MEXICO RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 25. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 26. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 27. UNITED STATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 28. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 29. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 30. ASIA-PACIFIC RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 31. AUSTRALIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 32. AUSTRALIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 33. CHINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 34. CHINA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 35. INDIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 36. INDIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 37. INDONESIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 38. INDONESIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 39. JAPAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 40. JAPAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 41. MALAYSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 42. MALAYSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 43. PHILIPPINES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 44. PHILIPPINES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 45. SINGAPORE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 46. SINGAPORE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 47. SOUTH KOREA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 48. SOUTH KOREA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 49. TAIWAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 50. TAIWAN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 51. THAILAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 52. THAILAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 53. VIETNAM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 54. VIETNAM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 55. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 56. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 57. EUROPE, MIDDLE EAST & AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 58. DENMARK RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 59. DENMARK RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 60. EGYPT RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 61. EGYPT RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 62. FINLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 63. FINLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 64. FRANCE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 65. FRANCE RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 66. GERMANY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 67. GERMANY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 68. ISRAEL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 69. ISRAEL RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 70. ITALY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 71. ITALY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 72. NETHERLANDS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 73. NETHERLANDS RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 74. NIGERIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 75. NIGERIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 76. NORWAY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 77. NORWAY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 78. POLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 79. POLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 80. QATAR RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 81. QATAR RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 82. RUSSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 83. RUSSIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 84. SAUDI ARABIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 85. SAUDI ARABIA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 86. SOUTH AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 87. SOUTH AFRICA RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 88. SPAIN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 89. SPAIN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 90. SWEDEN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 91. SWEDEN RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 92. SWITZERLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 93. SWITZERLAND RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 94. TURKEY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 95. TURKEY RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 96. UNITED ARAB EMIRATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 97. UNITED ARAB EMIRATES RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 98. UNITED KINGDOM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY MANUFACTURING TECHNIQUE, 2018-2030 (USD MILLION)
  • TABLE 99. UNITED KINGDOM RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SIZE, BY COMPONENT, 2018-2030 (USD MILLION)
  • TABLE 100. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 101. RADIATION-HARDENED ELECTRONICS FOR SPACE APPLICATION MARKET, FPNV POSITIONING MATRIX, 2023
目次
Product Code: MRR-5C6F41F5B017

The Radiation-Hardened Electronics for Space Application Market was valued at USD 934.89 million in 2023, expected to reach USD 962.92 million in 2024, and is projected to grow at a CAGR of 6.03%, to USD 1,409.23 million by 2030.

Radiation-hardened electronics are integral to the successful operation of space missions, where they endure extreme radiation levels from cosmic rays and solar flares, ensuring the stability and functionality of critical systems. This technology is necessary due to its ability to prevent failures in satellites, spacecraft, and avionics beyond the Earth's protective atmosphere. The primary applications are found in commercial, civil, military, and national security space operations. The end-use scope is extensive, including telecommunications, Earth observation, deep-space exploration, and defense applications, which rely on these reliable electronics to function in challenging environments. The market is poised for growth driven by increased space exploration activities, government and private investment in satellite technologies, and advancements in the aerospace sector. Establishing collaborations between government space agencies and private companies enhances innovation and the deployment of newer systems. Notably, opportunities abound in developing radiation-hardened components like processors, memory devices, and integrated circuits, as demand surges for higher-performing, durable systems that can withstand harsh conditions. However, market expansion faces challenges such as high manufacturing costs, stringent testing requirements, and lengthy development timelines, limiting broader adoption. Additionally, international competition and stringent regulations can pose barriers to entry for emerging players. For sustainable growth, it is recommended to invest in research and development to refine radiation tolerance at lower costs, potentially leveraging materials science advancements, such as new composite materials or semiconductor technologies. Collaborating closely with research institutions and using AI to optimize design processes could fuel innovation. Rising demand for small satellites and commercial space tourism presents fresh markets for these high-reliability electronics. Despite the challenges, a focus on miniaturization and improving cost-effectiveness without compromising performance is vital, catering to increasing demand for agile, reliable solutions in the evolving aerospace landscape.

KEY MARKET STATISTICS
Base Year [2023] USD 934.89 million
Estimated Year [2024] USD 962.92 million
Forecast Year [2030] USD 1,409.23 million
CAGR (%) 6.03%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Radiation-Hardened Electronics for Space Application Market

The Radiation-Hardened Electronics for Space Application Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing surveillance, intelligence, and reconnaissance (ISR) operations globally
    • Growing satellite launches and deep space activities
  • Market Restraints
    • High cost development and designing associated with radiation-hardened electronic components
  • Market Opportunities
    • Robust research on advancing radiation-hardened electronics
    • Rising investments and funding activities for space activities
  • Market Challenges
    • Difficulties in testing of radiation-hardened electronics

Porter's Five Forces: A Strategic Tool for Navigating the Radiation-Hardened Electronics for Space Application Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Radiation-Hardened Electronics for Space Application Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Radiation-Hardened Electronics for Space Application Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Radiation-Hardened Electronics for Space Application Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Radiation-Hardened Electronics for Space Application Market

A detailed market share analysis in the Radiation-Hardened Electronics for Space Application Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Radiation-Hardened Electronics for Space Application Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Radiation-Hardened Electronics for Space Application Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Radiation-Hardened Electronics for Space Application Market

A strategic analysis of the Radiation-Hardened Electronics for Space Application Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Radiation-Hardened Electronics for Space Application Market, highlighting leading vendors and their innovative profiles. These include Advanced Micro Devices, Inc., Analog Devices, Inc., Arquimea Group, SA, BAE Systems PLC, City Labs Inc., Cobham Advanced Electronic Solutions, Data Device Corporation by Transdigm Group, Inc., Everspin Technologies Inc., Honeywell International Inc., Infineon Technologies AG, Mercury Systems, Inc., Microchip Technology Inc., PCB Piezotronics, Inc., Presto Engineering, Inc., pSemi Corporation by Murata Manufacturing Co., Ltd., Renesas Electronics Corporation, Saphyrion Sagl, Semiconductor Components Industries, LLC, STMicroelectronics International N.V., Synopsys, Inc., Teledyne Technologies Incorporated, Texas Instruments Incorporated, TT Electronics PLC, TTM Technologies, Inc., and VORAGO Technologies.

Market Segmentation & Coverage

This research report categorizes the Radiation-Hardened Electronics for Space Application Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Manufacturing Technique, market is studied across Radiation Hardening by Design (RHBD) and Radiation Hardening by Process (RHBP).
  • Based on Component, market is studied across Memory, Power Management, and Processors & Controllers.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing surveillance, intelligence, and reconnaissance (ISR) operations globally
      • 5.1.1.2. Growing satellite launches and deep space activities
    • 5.1.2. Restraints
      • 5.1.2.1. High cost development and designing associated with radiation-hardened electronic components
    • 5.1.3. Opportunities
      • 5.1.3.1. Robust research on advancing radiation-hardened electronics
      • 5.1.3.2. Rising investments and funding activities for space activities
    • 5.1.4. Challenges
      • 5.1.4.1. Difficulties in testing of radiation-hardened electronics
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Radiation-Hardened Electronics for Space Application Market, by Manufacturing Technique

  • 6.1. Introduction
  • 6.2. Radiation Hardening by Design (RHBD)
  • 6.3. Radiation Hardening by Process (RHBP)

7. Radiation-Hardened Electronics for Space Application Market, by Component

  • 7.1. Introduction
  • 7.2. Memory
  • 7.3. Power Management
  • 7.4. Processors & Controllers

8. Americas Radiation-Hardened Electronics for Space Application Market

  • 8.1. Introduction
  • 8.2. Argentina
  • 8.3. Brazil
  • 8.4. Canada
  • 8.5. Mexico
  • 8.6. United States

9. Asia-Pacific Radiation-Hardened Electronics for Space Application Market

  • 9.1. Introduction
  • 9.2. Australia
  • 9.3. China
  • 9.4. India
  • 9.5. Indonesia
  • 9.6. Japan
  • 9.7. Malaysia
  • 9.8. Philippines
  • 9.9. Singapore
  • 9.10. South Korea
  • 9.11. Taiwan
  • 9.12. Thailand
  • 9.13. Vietnam

10. Europe, Middle East & Africa Radiation-Hardened Electronics for Space Application Market

  • 10.1. Introduction
  • 10.2. Denmark
  • 10.3. Egypt
  • 10.4. Finland
  • 10.5. France
  • 10.6. Germany
  • 10.7. Israel
  • 10.8. Italy
  • 10.9. Netherlands
  • 10.10. Nigeria
  • 10.11. Norway
  • 10.12. Poland
  • 10.13. Qatar
  • 10.14. Russia
  • 10.15. Saudi Arabia
  • 10.16. South Africa
  • 10.17. Spain
  • 10.18. Sweden
  • 10.19. Switzerland
  • 10.20. Turkey
  • 10.21. United Arab Emirates
  • 10.22. United Kingdom

11. Competitive Landscape

  • 11.1. Market Share Analysis, 2023
  • 11.2. FPNV Positioning Matrix, 2023
  • 11.3. Competitive Scenario Analysis
  • 11.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Micro Devices, Inc.
  • 2. Analog Devices, Inc.
  • 3. Arquimea Group, SA
  • 4. BAE Systems PLC
  • 5. City Labs Inc.
  • 6. Cobham Advanced Electronic Solutions
  • 7. Data Device Corporation by Transdigm Group, Inc.
  • 8. Everspin Technologies Inc.
  • 9. Honeywell International Inc.
  • 10. Infineon Technologies AG
  • 11. Mercury Systems, Inc.
  • 12. Microchip Technology Inc.
  • 13. PCB Piezotronics, Inc.
  • 14. Presto Engineering, Inc.
  • 15. pSemi Corporation by Murata Manufacturing Co., Ltd.
  • 16. Renesas Electronics Corporation
  • 17. Saphyrion Sagl
  • 18. Semiconductor Components Industries, LLC
  • 19. STMicroelectronics International N.V.
  • 20. Synopsys, Inc.
  • 21. Teledyne Technologies Incorporated
  • 22. Texas Instruments Incorporated
  • 23. TT Electronics PLC
  • 24. TTM Technologies, Inc.
  • 25. VORAGO Technologies