市場調査レポート
商品コード
1697458

耐放射線FPGA市場- 世界および地域別分析:用途別、タイプ別、材料別、製造技術別、動作周波数別、国別 - 分析と予測(2024年~2034年)

Radiation-Hardened FPGA Market - A Global and Regional Analysis: Focus on Application, Type, Material, Manufacturing Technique, Operating Frequency, and Country-Wise Analysis - Analysis and Forecast, 2024-2034


出版日
発行
BIS Research
ページ情報
英文 197 Pages
納期
1~5営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
耐放射線FPGA市場- 世界および地域別分析:用途別、タイプ別、材料別、製造技術別、動作周波数別、国別 - 分析と予測(2024年~2034年)
出版日: 2025年04月08日
発行: BIS Research
ページ情報: 英文 197 Pages
納期: 1~5営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

耐放射線FPGAの市場規模は、2024年に4億6,550万米ドルとなりました。

同市場は、5.54%のCAGRで拡大し、2034年には7億9,830万米ドルに達すると予測されています。耐放射線FPGAの需要増は、宇宙、軍事、原子力における耐放射線電子部品の必要性が背景にあります。これらのFPGAは高放射線環境の過酷な条件に耐えるように設計されており、衛星通信、防衛機器、原子力施設などの重要なシステムで安定した性能を発揮します。宇宙探査や軍事技術の進歩に伴い、耐放射線FPGAの需要は今後も増え続けるでしょう。より高性能で低消費電力を実現し、耐障害性とエネルギー効率に優れたFPGAの開発が進むことで、市場の成長はさらに高まると予想されます。

主要市場統計
予測期間 2024年~2034年
2024年の評価額 4億6,550万米ドル
2034年の予測 7億9,830万米ドル
CAGR 5.54%

耐放射線フィールド・プログラマブル・ゲート・アレイ(FPGA)は、宇宙、軍事、原子力で一般的な高放射線環境で確実に機能するように設計された特殊な集積回路です。これらのFPGAは、衛星通信、防衛、航空宇宙技術など、放射線による障害に強いことが要求されるシステムにとって極めて重要です。その設計には、極度の放射線被ばくにも安定した動作を保証する高度な技術と材料が組み込まれています。宇宙開発、防衛、原子力などの分野の進歩に伴い、耐放射線チップの必要性はますます高まっています。FPGA技術の革新は、処理能力とエネルギー効率を向上させ、この高信頼性コンポーネントの需要をさらに押し上げています。

耐放射線FPGA市場は、宇宙開発、防衛、原子力など、堅牢な電子システムを必要とする産業への投資の増加により拡大しています。標準的なFPGAとは異なり、これらのデバイスは重要な用途で安定した性能を維持しながら、過酷な高放射線環境に耐えられるよう特別に設計されています。宇宙ミッション、衛星通信、軍事防衛システムが高度化するにつれて、耐放射線FPGAへの依存度は高まっています。また、FPGA技術の進歩により、宇宙および防衛ミッションの複雑化に対応できるFPGAの性能が向上していることも、市場の成長を後押ししています。さらに、これらの分野に対する政府および民間企業の資金調達が増加していることも、耐放射線FPGAの採用を加速させています。

耐放射線FPGA市場が産業界に与える影響は、航空宇宙、防衛、宇宙開発など、さまざまな重要部門に及んでいます。これらのFPGAは、衛星通信、軍事システム、宇宙ミッションなど、過酷な環境で信頼性の高い性能を必要とする用途に不可欠です。放射線や過酷な条件にも耐えられるため、安全性、精度、中断のない動作が不可欠な産業には欠かせません。この成長は、半導体メーカー、航空宇宙企業、防衛請負業者間の協力を促進し、ミッションクリティカルな用途のための弾力性のあるシステムの開発をさらに強化しています。宇宙計画、軍事契約、衛星システムの拡大も、半導体・エレクトロニクス分野におけるエンジニアリング、製造、研究の機会をもたらしています。

耐放射線FPGA市場に参入している企業には、BAE Systems、Honeywell International、Airbus、Microchip Technology、NanoXplore、Advanced Micro Devices、Teledyne、TT Electronics、VORAGO Technologies、Thales、Infineon Technologies AG、Renesas Electronics Corporationなどの大手企業があります。これらの企業は、戦略的パートナーシップや協力関係、技術の進歩を通じて能力を強化し、過酷な環境における耐放射線FPGAの耐障害性と性能を向上させています。研究開発への継続的な投資は、宇宙開発、防衛技術、重要インフラ用電子システムといった幅広い動向をサポートしながら、このニッチ市場の成長を牽引しています。

宇宙探査は、深宇宙ミッション、惑星探査、衛星ベースの調査などの複雑化により、耐放射線FPGA市場の成長をリードすると予想されます。宇宙船が地球低軌道(LEO)を超えて月、火星、恒星間へと進出するにつれて、耐放射線コンピューティング・ソリューションに対する需要は増加の一途をたどっています。耐放射線FPGAは、高放射線環境での継続的かつ信頼性の高い動作を保証するため、オンボード・データ処理、AI駆動の自律性、リアルタイム・ナビゲーション、適応型ミッション制御に不可欠です。

NASAや欧州宇宙機関(ESA)などの宇宙機関、SpaceXやBlue Originなどの民間企業が宇宙技術の限界に挑むなか、次世代の宇宙船やロボットミッションでは高性能で電力効率の高いFPGAへの依存度が高まっています。

SRAMベースの耐放射線FPGAは、その高性能、再プログラム可能性、優れたロジック密度により、市場を独占すると予想されます。アンチヒューズFPGAやフラッシュベースFPGAとは異なり、SRAM FPGAは柔軟性に富み、ミッション内でのアップデート、AI主導の処理、宇宙や防衛、高放射線環境に不可欠な複雑なリアルタイム計算が可能です。これらのFPGAは、衛星ペイロード、ミサイル誘導システム、深宇宙プローブ、および適応性と計算効率が重要な安全な軍事アプリケーションで広く使用されています。

シングルイベント・アップセット(SEU)や全電離線量(TID)の影響を受けやすいにもかかわらず、トリプル・モジュラー・リダンダンシー(TMR)、コンフィギュレーション・スクラビング、エラー修正アルゴリズムなどの放射線硬化技術の進歩により、耐障害性と信頼性が大幅に向上しています。

シリコン(Si)は、広く入手可能であること、半導体製造エコシステムが確立されていること、放射線硬化技術への適応性が高いことから、放射線硬化FPGA市場を独占すると予想されます。

シリコンベースのFPGAは、性能、電力効率、耐放射線性のバランスが取れており、宇宙船のアビオニクス、軍事防衛システム、高信頼性の産業用アプリケーションに不可欠です。シリコン・オン・インシュレータ(SOI)、ディープ・トレンチ・アイソレーション、ドーピング修正などの先進半導体プロセスは、シリコンの耐放射線を強化し、過酷な環境における高速で耐障害性の高いコンピューティングを保証します。

設計による放射線硬化(RHBD)は、費用対効果、拡張性、特殊な製造プロセスを必要とせずにシステムの信頼性を向上できることから、放射線硬化FPGA市場を独占すると予想されます。

このアプローチは標準的な半導体プロセスで大量生産が可能であるため、航空宇宙、防衛、高放射線産業アプリケーションに適しています。深宇宙探査、自律型軍事システム、AI駆動型衛星コンピューティングへの政府および商業投資の増加に伴い、RHBDベースの耐放射線FPGAは、過酷な環境でのミッションクリティカルな信頼性とコスト効率に優れた展開を保証し、市場を牽引すると予測されます。

51~100MHzで動作する耐放射線FPGAは、性能、電力効率、耐放射線性のバランスが最適であり、ミッションクリティカルな航空宇宙、防衛、宇宙開発アプリケーションに適しています。

これらのFPGAは、電離放射線やシングル・イベント・アップセット(SEU)に対する高い耐性を維持しながら、リアルタイムのデータ処理、安全な通信、制御システムに十分な処理能力を提供します。また、適度な動作周波数により、過剰な電力消費を伴わずに効率的なシステム性能を実現するため、衛星ペイロード処理、軍事用航空電子機器、深宇宙探査ミッションに最適です。

北米は、技術的リーダーシップ、強力な防衛投資、高度な半導体製造能力を背景に、耐放射線FPGA市場を独占すると予想されます。米国国防総省(DoD)、NASA、大手航空宇宙企業は、安全な衛星通信、AIを搭載した防衛システム、深宇宙探査のために耐放射線FPGAのイノベーションを開拓しています。

この地域の広範な衛星ネットワーク、AIとセキュア・コンピューティングの高度な研究開発、強力な官民連携は、この地域のリーダーシップをさらに強化しています。過酷な環境下での高信頼性コンピューティングに対する需要が高まるなか、北米は次世代FPGAの開発を推進し、軍事、航空宇宙、高セキュリティ・アプリケーションにおけるミッションクリティカルな耐障害性を確保し、将来の自律型宇宙ミッションの舞台を整え、AI主導の防衛インフラを確保する立場にあります。

当レポートでは、世界の耐放射線FPGA市場について調査し、市場の概要とともに、用途別、タイプ別、材料別、製造技術別、動作周波数別、国別の動向、および市場に参入する企業のプロファイルなどを提供しています。

目次

エグゼクティブサマリー

第1章 市場

  • 動向:現状と将来への影響評価
  • サプライチェーンの概要
  • 宇宙向け耐放射線FPGA機会分析
  • 研究開発レビュー
  • 規制状況
  • ステークホルダー分析
  • 市場力学の概要
  • スタートアップ資金調達のサマリー

第2章 用途

  • 用途のセグメンテーション
  • 用途のサマリー
  • 耐放射線FPGA市場(用途別)
    • 宇宙探査
    • 防衛
    • その他

第3章 製品

  • 製品のセグメンテーション
  • 製品のサマリー
  • 耐放射線FPGA市場(タイプ別)
    • アンチヒューズベース
    • フラッシュベース
    • SRAM
  • 耐放射線FPGA市場(材質別)
    • シリコン(Si)
    • 炭化ケイ素(SiC)
    • 窒化ガリウム(GaN)
  • 耐放射線FPGA市場(製造技術別)
    • 設計別耐放射線性強化
    • プロセス別放射線硬化
    • ソフトウェア別耐放射線強化
  • 耐放射線FPGA市場(動作周波数別FPGA)
    • 50MHz未満
    • 51~100MHz
    • 100MHz以上

第4章 地域

  • 地域のサマリー
  • 北米
  • 欧州
  • アジア太平洋
  • その他の地域

第5章 市場-競合ベンチマーキングと企業プロファイル

  • 今後の見通し
  • 地理的評価
    • BAE Systems
    • Honeywell International Inc.
    • Airbus
    • Microchip Technology Inc.
    • NanoXplore Inc.
    • Advanced Micro Devices, Inc.
    • Teledyne
    • TT Electronics
    • VORAGO Technologies
    • Thales
    • Infineon Technologies AG
    • Renesas Electronics Corporation
    • Northrop Grumman
    • Intel Corporation
    • Analog Devices, Inc.

第6章 調査手法

図表

List of Figures

  • Figure 1: Radiation-Hardened FPGA Market, Scenario, 2024, 2028, and 2034
  • Figure 2: Radiation-Hardened FPGA Market (by Region), 2023, 2027, and 2034
  • Figure 3: Radiation-Hardened FPGA Market (by Application), 2023, 2027, and 2034
  • Figure 4: Radiation-Hardened FPGA Market (by Type), 2023, 2027, and 2034
  • Figure 5: Radiation-Hardened FPGA Market (by Material), 2023, 2027, and 2034
  • Figure 6: Radiation-Hardened FPGA Market (by Manufacturing Technique), 2023, 2027, and 2034
  • Figure 7: Radiation-Hardened FPGA Market (by FPGA by Operating Frequency), 2023, 2027, and 2034
  • Figure 8: Key Events
  • Figure 9: Supply Chain and Risks within the Supply Chain
  • Figure 10: Value Chain Analysis
  • Figure 11: Radiation-Hardened FPGA Pricing Analysis, Global, 2023-2034
  • Figure 12: Radiation-Hardened FPGA Opportunity Analysis for Space Applications (by Region), 2024
  • Figure 13: Patent Analysis (by Country), January 2022-March 2025
  • Figure 14: Patent Analysis (by Company), January 2022-March 2025
  • Figure 15: Stakeholder Analysis in the Radiation-Hardened FPGA Market
  • Figure 16: Number of Satellites Launched in Space (by Application), 2022 and 2023
  • Figure 17: Share of Satellites Launched in Different Orbits on Space, 2023
  • Figure 18: Annual Number of Objects Launched into Space (by Country), 2021-2023
  • Figure 19: U.S. Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 20: Canada Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 21: Mexico Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 22: U.K. Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 23: Germany Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 24: France Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 25: Russia Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 26: Spain Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 27: Rest-of-Europe Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 28: China Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 29: India Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 30: Japan Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 31: Australia Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 32: South Korea Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 33: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 34: Brazil Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 35: U.A.E Radiation-Hardened FPGA Market, 2023-2034
  • Figure 36: Others Radiation-Hardened FPGA Market, $Million, 2023-2034
  • Figure 37: Strategic Initiatives, January 2022-March 2025
  • Figure 38: Share of Strategic Initiatives, 2024
  • Figure 39: Data Triangulation
  • Figure 40: Top-Down and Bottom-Up Approach
  • Figure 41: Assumptions and Limitations

List of Tables

  • Table 1: Market Snapshot
  • Table 2: Opportunities across Region
  • Table 3: Competitive Landscape Snapshot
  • Table 4: Trends Overview
  • Table 5: Space Exploration Projects and Rad-Hard FPGA Procurement
  • Table 6: Radiation-Hardened FPGA Procurement Landscape (by Country/Region)
  • Table 7: Radiation-Hardened FPGA Market Development Analysis (by Region), January 2021-March 2025
  • Table 8: Regulations in the Radiation-Hardened FPGA Market
  • Table 9: Impact Analysis of Market Navigating Factors, 2023-2034
  • Table 10: Start-Up Funding Summary of Radiation-Hardened FPGA Market
  • Table 11: Radiation-Hardened FPGA Market (by Region), $Million, 2023-2034
  • Table 12: Radiation-Hardened FPGA Customer Analysis (in North America)
  • Table 13: North America Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 14: North America Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 15: North America Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 16: North America Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 17: North America Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 18: U.S. Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 19: U.S. Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 20: U.S. Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 21: U.S. Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 22: U.S. Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 23: Canada Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 24: Canada Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 25: Canada Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 26: Canada Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 27: Canada Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 28: Mexico Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 29: Mexico Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 30: Mexico Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 31: Mexico Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 32: Mexico Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 33: Radiation-Hardened FPGA Customer Analysis (in Europe)
  • Table 34: Europe Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 35: Europe Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 36: Europe Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 37: Europe Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 38: Europe Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 39: U.K. Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 40: U.K. Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 41: U.K. Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 42: U.K. Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 43: U.K. Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 44: Germany Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 45: Germany Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 46: Germany Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 47: Germany Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 48: Germany Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 49: France Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 50: France Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 51: France Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 52: France Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 53: France Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 54: Russia Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 55: Russia Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 56: Russia Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 57: Russia Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 58: Russia Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 59: Spain Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 60: Spain Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 61: Spain Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 62: Spain Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 63: Spain Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 64: Rest-of-Europe Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 65: Rest-of-Europe Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 66: Rest-of-Europe Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 67: Rest-of-Europe Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 68: Rest-of-Europe Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 69: Radiation-Hardened FPGA Customer Analysis (in Asia-Pacific)
  • Table 70: Asia-Pacific Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 71: Asia-Pacific Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 72: Asia-Pacific Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 73: Asia-Pacific Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 74: Asia-Pacific Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 75: China Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 76: China Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 77: China Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 78: China Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 79: China Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 80: India Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 81: India Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 82: India Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 83: India Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 84: India Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 85: Japan Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 86: Japan Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 87: Japan Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 88: Japan Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 89: Japan Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 90: Australia Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 91: Australia Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 92: Australia Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 93: Australia Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 94: Australia Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 95: South Korea Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 96: South Korea Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 97: South Korea Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 98: South Korea Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 99: South Korea Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 100: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 101: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 102: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 103: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 104: Rest-of-Asia-Pacific Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 105: Radiation-Hardened FPGA Customer Analysis (in Rest-of-the-World)
  • Table 106: Rest-of-the-World Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 107: Rest-of-the-World Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 108: Rest-of-the-World Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 109: Rest-of-the-World Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 110: Rest-of-the-World Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 111: Brazil Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 112: Brazil Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 113: Brazil Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 114: Brazil Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 115: Brazil Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 116: U.A.E. Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 117: U.A.E. Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 118: U.A.E. Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 119: U.A.E. Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 120: U.A.E. Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 121: Others Radiation-Hardened FPGA Market (by Application), $Million, 2023-2034
  • Table 122: Others Radiation-Hardened FPGA Market (by Type), $Million, 2023-2034
  • Table 123: Others Radiation-Hardened FPGA Market (by Material), $Million, 2023-2034
  • Table 124: Others Radiation-Hardened FPGA Market (by Manufacturing Technique), $Million, 2023-2034
  • Table 125: Others Radiation-Hardened FPGA Market (FPGA by Operating Frequency), $Million, 2023-2034
  • Table 126: Market Share
目次
Product Code: DSM2656SA

Radiation-Hardened FPGA Market Overview

The radiation-hardened FPGA market was valued at $465.5 million in 2024 and is expected to grow at a CAGR of 5.54%, reaching $798.3 million by 2034. The increasing demand for radiation-hardened FPGAs is driven by the need for radiation-hardened electronic components in space, military, and nuclear applications. These FPGAs are designed to withstand the harsh conditions of high-radiation environments, ensuring consistent performance in critical systems such as satellite communications, defense equipment, and nuclear facilities. As space exploration and military technologies continue to advance, the demand for radiation-hardened FPGAs will continue to rise. The ongoing development of more resilient, energy-efficient FPGAs with higher performance and lower power consumption is expected to increase the market's growth further.

Introduction to the Radiation-Hardened FPGA Market

KEY MARKET STATISTICS
Forecast Period2024 - 2034
2024 Evaluation$465.5 Million
2034 Forecast$798.3 Million
CAGR5.54%

Radiation-hardened field-programmable gate arrays (FPGAs) are specialized integrated circuits engineered to function reliably in high-radiation environments, which are typical in space, military, and nuclear applications. These FPGAs are crucial for systems that demand resilience against radiation-induced disruptions, such as satellite communications, defense, and aerospace technologies. Their design incorporates advanced techniques and materials to ensure consistent operation in the face of extreme radiation exposure. As sectors such as space exploration, defense, and nuclear energy continue to advance, the need for radiation-hardened chips is growing. Innovations in FPGA technology are enhancing processing power and energy efficiency, further driving the demand for these highly reliable components in high-stakes industries.

Market Introduction

The radiation-hardened FPGA market is expanding due to increasing investments in industries that require robust electronic systems, including space exploration, defense, and nuclear energy. Unlike standard FPGAs, these devices are specifically designed to endure harsh, high-radiation environments while maintaining consistent performance in critical applications. As space missions, satellite communications, and military defense systems become more sophisticated, the reliance on radiation-hardened FPGAs is intensifying. The market's growth is also driven by advancements in FPGA technology, which are making these devices more capable of handling the increasing complexity of space and defense missions. Additionally, rising government and private sector funding for these sectors is further contributing to the accelerated adoption of radiation-hardened FPGAs.

Industrial Impact

The industrial impact of the radiation-hardened FPGA market is significant across a range of critical sectors, including aerospace, defense, and space exploration. These FPGAs are integral in applications that require reliable performance in extreme environments, such as satellite communications, military systems, and space missions. Their ability to withstand radiation and harsh conditions makes them vital for industries where safety, precision, and uninterrupted operation are essential. This growth is promoting collaborations among semiconductor manufacturers, aerospace companies, and defense contractors, further enhancing the development of resilient systems for mission-critical applications. The expansion of space programs, military contracts, and satellite systems also presents opportunities for engineering, manufacturing, and research in the semiconductor and electronics sectors.

The companies involved in the radiation-hardened FPGA market include major industry players such as BAE Systems, Honeywell International Inc., Airbus, Microchip Technology Inc., NanoXplore Inc., Advanced Micro Devices, Inc., Teledyne, TT Electronics, VORAGO Technologies, Thales, Infineon Technologies AG, Renesas Electronics Corporation, and others. These companies are enhancing their capabilities through strategic partnerships, collaborations, and technology advancements to improve the resilience and performance of radiation-hardened FPGAs in demanding environments. Their continued investments in research and development are driving the growth of this niche market while supporting the broader trends in space exploration, defense technologies, and electronic systems for critical infrastructure.

Market Segmentation:

Segmentation 1: by Application

  • Space Exploration
    • Satellites
    • Launch Vehicles
  • Defense
    • Defense Vehicles
    • Missiles
    • Munitions
  • Others

Space Exploration to Dominate the Radiation-Hardened FPGA Market (by Application)

Space exploration is expected to lead the growth of the radiation-hardened FPGA market, driven by the increasing complexity of deep-space missions, planetary exploration, and satellite-based research. As spacecraft venture beyond low Earth orbit (LEO) to lunar, Martian, and interstellar destinations, the demand for radiation-tolerant computing solutions continues to rise. Radiation-hardened FPGAs are essential for onboard data processing, AI-driven autonomy, real-time navigation, and adaptive mission control, ensuring continuous and reliable operation in high-radiation environments.

With space agencies such as NASA, the European Space Agency (ESA), and private firms such as SpaceX and Blue Origin pushing the boundaries of space technology, next-generation spacecraft and robotic missions increasingly rely on high-performance, power-efficient FPGAs.

Segmentation 2: by Type

  • Antifuse-based
  • Flash-based
  • SRAM

SRAM to Dominate the Radiation-Hardened FPGA Market (by Type)

SRAM-based radiation-hardened FPGAs are expected to dominate the market due to their high-performance capabilities, reprogrammability, and superior logic density. Unlike anti-fuse and flash-based FPGAs, SRAM FPGAs offer flexibility, allowing for in-mission updates, AI-driven processing, and complex real-time computations essential for space, defense, and high-radiation environments. These FPGAs are widely used in satellite payloads, missile guidance systems, deep-space probes, and secure military applications, where adaptability and computational efficiency are critical.

Despite their susceptibility to single-event upsets (SEUs) and total ionizing dose (TID) effects, advancements in radiation-hardening techniques, including triple modular redundancy (TMR), configuration scrubbing, and error correction algorithms, have significantly improved their resilience and reliability.

Segmentation 3: by Material

  • Silicon (Si)
  • Silicon Carbide (SiC)
  • Gallium Nitride (GaN)

Silicon (Si) to Dominate the Radiation-Hardened FPGA Market (by Material)

Silicon (Si) is expected to dominate the radiation-hardened FPGA market owing to its widespread availability, well-established semiconductor manufacturing ecosystem, and adaptability to radiation-hardening techniques.

Silicon-based FPGAs offer a balance of performance, power efficiency, and radiation resilience, making them essential for spacecraft avionics, military defense systems, and high-reliability industrial applications. Advanced semiconductor processes, such as silicon-on-insulator (SOI), deep trench isolation, and doping modifications, enhance silicon's radiation tolerance, ensuring high-speed, fault-tolerant computing in extreme environments.

Segmentation 4: by Manufacturing Technique

  • Radiation-Hardening by Design
  • Radiation-Hardening by Process
  • Radiation-Hardening by Software

Radiation-Hardening by Design to Dominate the Radiation-Hardened FPGA Market (by Manufacturing Technique)

Radiation-hardening by design (RHBD) is expected to dominate the radiation-hardened FPGA market due to its cost-effectiveness, scalability, and ability to enhance system reliability without requiring specialized fabrication processes.

This approach enables mass production using standard semiconductor processes, making it a preferred choice for aerospace, defense, and high-radiation industrial applications. With increasing government and commercial investments in deep-space exploration, autonomous military systems, and AI-driven satellite computing, RHBD-based radiation-hardened FPGAs are projected to drive the market, ensuring mission-critical reliability and cost-efficient deployment in extreme environments.

Segmentation 5: by Operating Frequency

  • Upto 50 MHz
  • 51-100 MHz
  • Above 100MHz
  • 51-100 MHz to Dominate the Radiation-Hardened FPGA Market (by FPGA by Operating Frequency)

Radiation-hardened FPGAs operating in the 51-100 MHz range offer an optimal balance between performance, power efficiency, and radiation resistance, making them well-suited for mission-critical aerospace, defense, and space exploration applications.

These FPGAs provide sufficient processing power for real-time data handling, secure communication, and control systems while maintaining high resilience against ionizing radiation and single-event upsets (SEUs). Their moderate operating frequency ensures efficient system performance without excessive power consumption, making them ideal for satellite payload processing, military avionics, and deep-space exploration missions.

Segmentation 6: by Region

  • North America: U.S., Canada, and Mexico
  • Europe: U.K., Germany, France, Russia, Spain and Rest-of-Europe
  • Asia-Pacific: China, India, Japan, Australia, South Korea and Rest-of-Asia-Pacific
  • Rest-of-the-World: Brazil, U.A.E. and Others of Rest-of-the-World

North America is expected to dominate the radiation-hardened FPGA market, driven by technological leadership, strong defense investments, and advanced semiconductor manufacturing capabilities. The U.S. Department of Defense (DoD), NASA, and leading aerospace firms are pioneering radiation-hardened FPGA innovations for secure satellite communications, AI-powered defense systems, and deep-space exploration.

The region's extensive satellite networks, advanced R&D in AI and secure computing, and strong public-private collaborations further reinforce its leadership. With the increasing demand for high-reliability computing in extreme environments, North America is positioned to drive next-generation FPGA developments, ensuring mission-critical resilience in military, aerospace, and high-security applications, setting the stage for future autonomous space missions, and securing AI-driven defense infrastructure.

Recent Developments in the Radiation-Hardened FPGA Market

  • In February 2025, Honeywell International Inc. announced a strategic collaboration with ForwardEdge to develop advanced ASICs, further accelerating innovation. While Honeywell International Inc. has made a significant impact in the radiation-hardened FPGA sector, to enhance its market position, it must expand its portfolio by increasing collaborations with industry leaders, along with staying aligned with evolving regulatory standards, which will be crucial in ensuring the company's long-term competitiveness in the market.
  • In May 2024, Microchip Technology Inc. highlighted its commitment to supplying radiation-resistant semiconductors to South Korea's space sector at the Advanced Semiconductor Safety Innovation Conference (ASSIC) 2024. To further strengthen its market position, forming strategic alliances with government agencies and private aerospace firms will be critical in securing long-term contracts and sustaining its competitive edge in the rapidly evolving radiation-hardened FPGA market.
  • In 2023, BAE Systems further emphasized its commitment to expanding the domestic supply of radiation-hardened microelectronics, ensuring that its products are reliable but also strategically sourced for long-term availability. However, to strengthen its leadership, the company could enhance its portfolio by incorporating next-generation manufacturing technologies and collaborations with industry leaders and regulatory bodies, which will be essential to influence emerging standards and maintain competitive advantage.
  • In January 2023, NanoXplore emphasized the importance of European government collaboration in developing EU-built FPGA technology. To further strengthen its presence in the radiation-hardened FPGA market, the company should scale up its manufacturing capabilities to meet the increasing demand for high-reliability chips. Expanding its customer base in other regions through strategic alliances will help NanoXplore gain a competitive edge.

Demand - Drivers, Limitations, and Opportunities

Market Drivers: Increasing Space Exploration and Satellite Launches

The surge in space exploration and the proliferation of satellite launches have significantly propelled the demand for radiation-hardened field-programmable gate arrays (FPGAs). These specialized FPGAs are engineered to withstand the harsh radiation environments encountered in space, ensuring the reliability and longevity of satellite and spacecraft systems. As missions venture deeper into space and satellite constellations and expand, the necessity for robust electronic components that can endure cosmic radiation becomes paramount, positioning radiation-hardened FPGAs as critical components in modern aerospace technology.

Industry leaders have recognized this need, leading to the development of advanced radiation-hardened FPGAs. For instance, NASA's SpaceCube platform utilizes Xilinx's Virtex-4 commercial FPGAs, offering reconfigurable, high-performance systems designed for spaceflight applications requiring intensive onboard processing. Additionally, in May 2023, BAE Systems introduced the RH1020B, a radiation-hardened field-programmable gate array designed for military and space applications. Built on BAE Systems' 0.8µ epitaxial bulk complementary metal-oxide semiconductor (CMOS) process, this FPGA delivers high performance, gate array flexibility, and fast design implementation while ensuring radiation resistance.

Overall, the increasing integration of radiation-hardened FPGAs in space missions highlights their pivotal role in advancing aerospace technology. As space agencies and private enterprises continue to embark on ambitious projects, the reliance on these resilient components is expected to grow, driving innovation and ensuring the success of future explorations. This trend highlights the importance of developing durable electronic systems and signifies a robust market trajectory for radiation-hardened FPGAs in the aerospace sector.

Market Challenges: High Costs of Development and Production

The development and production of radiation-hardened field-programmable gate arrays (FPGAs) present significant financial challenges due to the specialized materials, manufacturing processes, and rigorous testing required to ensure resilience in high-radiation environments. These stringent requirements lead to substantially higher costs than standard electronic components, limiting their accessibility and adoption, particularly in cost-sensitive projects or emerging markets.

For instance, the higher cost of a radiation-hardened FPGA could prompt some space missions to consider using radiation-tolerant or even automotive/industrial-grade versions as alternatives. Additionally, the extensive testing and validation processes necessary to certify these components for high-radiation environments further escalate production costs, posing substantial financial hurdles for manufacturers and end users alike.

The industry is exploring cost-effective approaches, such as developing radiation-hardened commercial off-the-shelf (COTS) products to mitigate these challenges. This strategy involves modifying standard, mass-produced components to resist radiation effects through physical alterations or software techniques, thereby reducing development time and production expenses. Implementing such solutions could lower the entry barrier for companies aiming to participate in sectors such as space, defense, and nuclear industries, promoting broader adoption of radiation-hardened FPGAs.

Market Opportunities: Development of Rad Hard Commercial Off-the-Shelf (COTS) Products

The development of radiation-hardened commercial off-the-shelf (COTS) products presents a significant opportunity in the radiation-hardened FPGA market, aiming to balance cost-effectiveness with the stringent reliability requirements of space and defense applications. By utilizing existing commercial technologies and enhancing them for radiation tolerance, manufacturers can reduce development time and costs associated with custom radiation-hardened components, thereby making advanced technologies more accessible to a broader range of missions.

For instance, in February 2025, Zero-Error Systems launched the industry's first COTS FPGA-based radiation-tolerant system-on-module for space applications. This pre-integrated subsystem combines core processing components with radiation mitigation products on a single module, significantly reducing the time, complexity, and risks associated with developing satellite payload systems. The radiation-hardened by design (RHBD) platform extends satellite longevity by three times, minimizing space debris while enhancing the return on investment of expensive payloads up to four times.

Adopting radiation-hardened COTS products is expected to transform the radiation-hardened FPGA market by offering more affordable and readily available solutions without compromising performance and reliability. This approach accelerates development cycles and enables a wider array of organizations, including smaller companies and emerging nations, to participate in space and defense endeavors.

How can this report add value to an organization?

Product/Innovation Strategy: The product segment provides insights into the radiation-hardened FPGA market based on various applications of radiation-hardened FPGAs, categorized into space exploration (covering satellites and launch vehicles), defense (including defense vehicles, missiles, and munitions), and others. FPGA types segment it into antifuse-based, flash-based, and SRAM-based solutions. By material, the market focuses on silicon (Si), silicon carbide (SiC), and gallium nitride (GaN). The manufacturing techniques are categorized into radiation-hardening by design (RHBD), by process (RHBP), and by software (RHBS). Additionally, the market is analyzed by operating frequency, segmented into up to 50 MHz, 51-100 MHz, and above 100 MHz. Continuous technological innovations, growing investments in digital infrastructure, and rising demand for cloud and edge computing have been driving the adoption of these modular solutions. Consequently, the radiation-hardened FPGA market represents a high-growth and high-revenue business model with substantial opportunities for industry players.

Growth/Marketing Strategy: The radiation-hardened FPGA market has been growing at a rapid pace. The market offers enormous opportunities for existing and emerging market players. Some of the strategies covered in this segment are mergers and acquisitions, product launches, partnerships and collaborations, business expansions, and investments. The strategies preferred by companies to maintain and strengthen their market position primarily include product development.

Competitive Strategy: The key players in the radiation-hardened FPGA market analyzed and profiled in the study include professionals with expertise in the automobile and automotive domains. Additionally, a comprehensive competitive landscape such as partnerships, agreements, and collaborations are expected to aid the reader in understanding the untapped revenue pockets in the market.

Research Methodology

Factors for Data Prediction and Modelling

  • The base currency considered for the market analysis is US$. Considering the average conversion rate for that particular year, currencies other than the US$ have been converted to the US$ for all statistical calculations.
  • The currency conversion rate was taken from the historical exchange rate on the Oanda website.
  • Nearly all the recent developments from January 2022 to March 2025 have been considered in this research study.
  • The information rendered in the report is a result of in-depth primary interviews, surveys, and secondary analysis.
  • Where relevant information was not available, proxy indicators and extrapolation were employed.
  • Any economic downturn in the future has not been taken into consideration for the market estimation and forecast.
  • Technologies currently used are expected to persist through the forecast with no major technological breakthroughs.

Market Estimation and Forecast

This research study involves the usage of extensive secondary sources, such as certified publications, articles from recognized authors, white papers, annual reports of companies, directories, and major databases to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the radiation-hardened FPGA market.

The market engineering process involves the calculation of the market statistics, market size estimation, market forecast, market crackdown, and data triangulation (the methodology for such quantitative data processes is explained in further sections). The primary research study has been undertaken to gather information and validate the market numbers for segmentation types and industry trends of the key players in the market.

Primary Research

The primary sources involve industry experts from the radiation-hardened FPGA market and various stakeholders in the ecosystem. Respondents such as CEOs, vice presidents, marketing directors, and technology and innovation directors have been interviewed to obtain and verify both qualitative and quantitative aspects of this research study.

The key data points taken from primary sources include:

  • validation and triangulation of all the numbers and graphs
  • validation of reports segmentation and key qualitative findings
  • understanding the competitive landscape
  • validation of the numbers of various markets for market type
  • percentage split of individual markets for geographical analysis

Secondary Research

This research study of the radiation-hardened FPGA market involves extensive secondary research, directories, company websites, and annual reports. It also makes use of databases, such as Hoovers, Bloomberg, Businessweek, and Factiva, to collect useful and effective information for an extensive, technical, market-oriented, and commercial study of the global market. In addition to the aforementioned data sources, the study has been undertaken with the help of other data sources and websites, such as IRENA and IEA.

Secondary research was done in order to obtain crucial information about the industry's value chain, revenue models, the market's monetary chain, the total pool of key players, and the current and potential use cases and applications.

The key data points taken from secondary research include:

  • segmentations and percentage shares
  • data for market value
  • key industry trends of the top players of the market
  • qualitative insights into various aspects of the market, key trends, and emerging areas of innovation
  • quantitative data for mathematical and statistical calculations

Key Market Players and Competition Synopsis

The companies that are profiled in the radiation-hardened FPGA market have been selected based on inputs gathered from primary experts who have analyzed company coverage, product portfolio, and market penetration.

Some of the prominent names in this market are:

Radiation-Hardened FPGA Market Manufacturers

  • BAE Systems
  • Honeywell International Inc.
  • Airbus
  • Microchip Technology Inc.
  • NanoXplore Inc.
  • Advanced Micro Devices, Inc.
  • Teledyne
  • TT Electronics
  • VORAGO Technologies
  • Thales
  • Infineon Technologies AG
  • Renesas Electronics Corporation
  • Northrop Grumman
  • Intel Corporation
  • Analog Devices, Inc.

Companies not part of the aforementioned pool have been well represented across different sections of the report (wherever applicable).

Table of Contents

Executive Summary

Scope and Definition

1 Markets

  • 1.1 Trends: Current and Future Impact Assessment
    • 1.1.1 Growing Adoption of Advanced Materials and Processes
    • 1.1.2 Increased Emphasis on 3D Integration and Packaging
  • 1.2 Supply Chain Overview
    • 1.2.1 Value Chain Analysis
    • 1.2.2 Radiation-Hardened FPGA Pricing Analysis
      • 1.2.2.1 Radiation-Hardened FPGA Procurement (by Application)
      • 1.2.2.2 Factors Influencing Radiation-Hardened FPGA Pricing
      • 1.2.2.3 Factors Affecting the Radiation-Hardened FPGA Price Trend
      • 1.2.2.4 Radiation-Hardened FPGA Price Trend and Procurement (by Country)
  • 1.3 Radiation-Hardened FPGA Opportunity Analysis for Space Applications
    • 1.3.1 Radiation-Hardened FPGA Market Size Analysis for Space Applications
    • 1.3.2 Radiation-Hardened FPGA Market Development Analysis
  • 1.4 Research and Development Review
    • 1.4.1 Patent Filing Trend (by Country, by Company)
  • 1.5 Regulatory Landscape
  • 1.6 Stakeholder Analysis
  • 1.7 Market Dynamics Overview
    • 1.7.1 Market Drivers
      • 1.7.1.1 Increasing Space Exploration and Satellite Launches
      • 1.7.1.2 Advancements in Nuclear Technology
      • 1.7.1.3 Modernization of Defense Systems
    • 1.7.2 Market Restraints
      • 1.7.2.1 High Costs of Development and Production
      • 1.7.2.2 Technological Complexity and Integration Challenge
    • 1.7.3 Market Opportunities
      • 1.7.3.1 Development of Rad Hard Commercial Off-the-Shelf (COTS) Products
      • 1.7.3.2 Growing Synergy among Research Institutions and Private Companies
  • 1.8 Start-Up Funding Summary

2 Application

  • 2.1 Application Segmentation
  • 2.2 Application Summary
  • 2.3 Radiation-Hardened FPGA Market (by Application)
    • 2.3.1 Space Exploration
      • 2.3.1.1 Satellites
      • 2.3.1.2 Launch Vehicles
    • 2.3.2 Defense
      • 2.3.2.1 Defense Vehicles
      • 2.3.2.2 Missiles
      • 2.3.2.3 Munitions
    • 2.3.3 Others

3 Products

  • 3.1 Product Segmentation
  • 3.2 Product Summary
  • 3.3 Radiation-Hardened FPGA Market(by Type)
    • 3.3.1 Antifuse-based
    • 3.3.2 Flash-based
    • 3.3.3 SRAM
  • 3.4 Radiation-Hardened FPGA Market(by Material)
    • 3.4.1 Silicon (Si)
    • 3.4.2 Silicon Carbide (SiC)
    • 3.4.3 Gallium Nitride (GaN)
  • 3.5 Radiation-Hardened FPGA Market(by Manufacturing Technique)
    • 3.5.1 Radiation-Hardening by Design
    • 3.5.2 Radiation-Hardening by Process
    • 3.5.3 Radiation-Hardening by Software
  • 3.6 Radiation-Hardened FPGA Market(FPGA by Operating Frequency)
    • 3.6.1 Upto 50 MHz
    • 3.6.2 51-100 MHz
    • 3.6.3 Above 100MHz

4 Regions

  • 4.1 Regional Summary
  • 4.2 North America
    • 4.2.1 Regional Overview
    • 4.2.2 Radiation-Hardened FPGA Customer Analysis in North America
    • 4.2.3 Driving Factors for Market Growth
    • 4.2.4 Factors Challenging the Market
    • 4.2.5 Application
    • 4.2.6 Product
    • 4.2.7 North America (by Country)
      • 4.2.7.1 U.S.
        • 4.2.7.1.1 Application
        • 4.2.7.1.2 Product
      • 4.2.7.2 Canada
        • 4.2.7.2.1 Application
        • 4.2.7.2.2 Product
      • 4.2.7.3 Mexico
        • 4.2.7.3.1 Application
        • 4.2.7.3.2 Product
  • 4.3 Europe
    • 4.3.1 Regional Overview
    • 4.3.2 Radiation-Hardened FPGA Customer Analysis in Europe
    • 4.3.3 Driving Factors for Market Growth
    • 4.3.4 Factors Challenging the Market
    • 4.3.5 Application
    • 4.3.6 Product
    • 4.3.7 Europe (by Country)
      • 4.3.7.1 U.K.
        • 4.3.7.1.1 Application
        • 4.3.7.1.2 Product
      • 4.3.7.2 Germany
        • 4.3.7.2.1 Application
        • 4.3.7.2.2 Product
      • 4.3.7.3 France
        • 4.3.7.3.1 Application
        • 4.3.7.3.2 Product
      • 4.3.7.4 Russia
        • 4.3.7.4.1 Application
        • 4.3.7.4.2 Product
      • 4.3.7.5 Spain
        • 4.3.7.5.1 Application
        • 4.3.7.5.2 Product
      • 4.3.7.6 Rest-of-Europe
        • 4.3.7.6.1 Application
        • 4.3.7.6.2 Product
  • 4.4 Asia-Pacific
    • 4.4.1 Regional Overview
    • 4.4.2 Radiation-Hardened FPGA Customer Analysis in Asia-Pacific
    • 4.4.3 Driving Factors for Market Growth
    • 4.4.4 Factors Challenging the Market
    • 4.4.5 Application
    • 4.4.6 Product
    • 4.4.7 Asia-Pacific (by Country)
      • 4.4.7.1 China
        • 4.4.7.1.1 Application
        • 4.4.7.1.2 Product
      • 4.4.7.2 India
        • 4.4.7.2.1 Application
        • 4.4.7.2.2 Product
      • 4.4.7.3 Japan
        • 4.4.7.3.1 Application
        • 4.4.7.3.2 Product
      • 4.4.7.4 Australia
        • 4.4.7.4.1 Application
        • 4.4.7.4.2 Product
      • 4.4.7.5 South Korea
        • 4.4.7.5.1 Application
        • 4.4.7.5.2 Product
      • 4.4.7.6 Rest-of-Asia-Pacific
        • 4.4.7.6.1 Application
        • 4.4.7.6.2 Product
  • 4.5 Rest-of-the-World
    • 4.5.1 Regional Overview
    • 4.5.2 Radiation-Hardened FPGA Customer Analysis in Rest-of-the-World
    • 4.5.3 Driving Factors for Market Growth
    • 4.5.4 Factors Challenging the Market
    • 4.5.5 Application
    • 4.5.6 Product
    • 4.5.7 Rest-of-the-World (by Region)
      • 4.5.7.1 Brazil
        • 4.5.7.1.1 Application
        • 4.5.7.1.2 Product
      • 4.5.7.2 U.A.E
        • 4.5.7.2.1 Application
        • 4.5.7.2.2 Product
      • 4.5.7.3 Others
        • 4.5.7.3.1 Application
        • 4.5.7.3.2 Product

5 Markets - Competitive Benchmarking and Company Profiles

  • 5.1 Next Frontiers
  • 5.2 Geographic Assessment
    • 5.2.1 BAE Systems
      • 5.2.1.1 Overview
      • 5.2.1.2 Top Products/Product Portfolio
      • 5.2.1.3 Top Competitors
      • 5.2.1.4 Target Customers/End Users
      • 5.2.1.5 Key Personnel
      • 5.2.1.6 Analyst View
      • 5.2.1.7 Market Share, 2023
    • 5.2.2 Honeywell International Inc.
      • 5.2.2.1 Overview
      • 5.2.2.2 Top Products/Product Portfolio
      • 5.2.2.3 Top Competitors
      • 5.2.2.4 Target Customers/End Users
      • 5.2.2.5 Key Personnel
      • 5.2.2.6 Analyst View
      • 5.2.2.7 Market Share, 2023
    • 5.2.3 Airbus
      • 5.2.3.1 Overview
      • 5.2.3.2 Top Products/Product Portfolio
      • 5.2.3.3 Top Competitors
      • 5.2.3.4 Target Customers/End Users
      • 5.2.3.5 Key Personnel
      • 5.2.3.6 Analyst View
      • 5.2.3.7 Market Share, 2023
    • 5.2.4 Microchip Technology Inc.
      • 5.2.4.1 Overview
      • 5.2.4.2 Top Products/Product Portfolio
      • 5.2.4.3 Top Competitors
      • 5.2.4.4 Target Customers/End Users
      • 5.2.4.5 Key Personnel
      • 5.2.4.6 Analyst View
      • 5.2.4.7 Market Share, 2023
    • 5.2.5 NanoXplore Inc.
      • 5.2.5.1 Overview
      • 5.2.5.2 Top Products/Product Portfolio
      • 5.2.5.3 Top Competitors
      • 5.2.5.4 Target Customers/End Users
      • 5.2.5.5 Key Personnel
      • 5.2.5.6 Analyst View
      • 5.2.5.7 Market Share, 2023
    • 5.2.6 Advanced Micro Devices, Inc.
      • 5.2.6.1 Overview
      • 5.2.6.2 Top Products/Product Portfolio
      • 5.2.6.3 Top Competitors
      • 5.2.6.4 Target Customers/End Users
      • 5.2.6.5 Key Personnel
      • 5.2.6.6 Analyst View
      • 5.2.6.7 Market Share, 2023
    • 5.2.7 Teledyne
      • 5.2.7.1 Overview
      • 5.2.7.2 Top Products/Product Portfolio
      • 5.2.7.3 Top Competitors
      • 5.2.7.4 Target Customers/End Users
      • 5.2.7.5 Key Personnel
      • 5.2.7.6 Analyst View
      • 5.2.7.7 Market Share, 2023
    • 5.2.8 TT Electronics
      • 5.2.8.1 Overview
      • 5.2.8.2 Top Products/Product Portfolio
      • 5.2.8.3 Top Competitors
      • 5.2.8.4 Target Customers/End Users
      • 5.2.8.5 Key Personnel
      • 5.2.8.6 Analyst View
      • 5.2.8.7 Market Share, 2023
    • 5.2.9 VORAGO Technologies
      • 5.2.9.1 Overview
      • 5.2.9.2 Top Products/Product Portfolio
      • 5.2.9.3 Top Competitors
      • 5.2.9.4 Target Customers/End Users
      • 5.2.9.5 Key Personnel
      • 5.2.9.6 Analyst View
      • 5.2.9.7 Market Share, 2023
    • 5.2.10 Thales
      • 5.2.10.1 Overview
      • 5.2.10.2 Top Products/Product Portfolio
      • 5.2.10.3 Top Competitors
      • 5.2.10.4 Target Customers/End Users
      • 5.2.10.5 Key Personnel
      • 5.2.10.6 Analyst View
      • 5.2.10.7 Market Share, 2023
    • 5.2.11 Infineon Technologies AG
      • 5.2.11.1 Overview
      • 5.2.11.2 Top Products/Product Portfolio
      • 5.2.11.3 Top Competitors
      • 5.2.11.4 Target Customers/End Users
      • 5.2.11.5 Key Personnel
      • 5.2.11.6 Analyst View
      • 5.2.11.7 Market Share, 2023
    • 5.2.12 Renesas Electronics Corporation
      • 5.2.12.1 Overview
      • 5.2.12.2 Top Products/Product Portfolio
      • 5.2.12.3 Top Competitors
      • 5.2.12.4 Target Customers/End Users
      • 5.2.12.5 Key Personnel
      • 5.2.12.6 Analyst View
      • 5.2.12.7 Market Share, 2023
    • 5.2.13 Northrop Grumman
      • 5.2.13.1 Overview
      • 5.2.13.2 Top Products/Product Portfolio
      • 5.2.13.3 Top Competitors
      • 5.2.13.4 Target Customers/End Users
      • 5.2.13.5 Key Personnel
      • 5.2.13.6 Analyst View
      • 5.2.13.7 Market Share, 2023
    • 5.2.14 Intel Corporation
      • 5.2.14.1 Overview
      • 5.2.14.2 Top Products/Product Portfolio
      • 5.2.14.3 Top Competitors
      • 5.2.14.4 Target Customers/End Users
      • 5.2.14.5 Key Personnel
      • 5.2.14.6 Analyst View
      • 5.2.14.7 Market Share, 2023
    • 5.2.15 Analog Devices, Inc.
      • 5.2.15.1 Overview
      • 5.2.15.2 Top Products/Product Portfolio
      • 5.2.15.3 Top Competitors
      • 5.2.15.4 Target Customers/End Users
      • 5.2.15.5 Key Personnel
      • 5.2.15.6 Analyst View
      • 5.2.15.7 Market Share, 2023

6 Research Methodology

  • 6.1 Data Sources
    • 6.1.1 Primary Data Sources
    • 6.1.2 Secondary Data Sources
    • 6.1.3 Data Triangulation
  • 6.2 Market Estimation and Forecast