デフォルト表紙
市場調査レポート
商品コード
1589329

ディープラーニング市場:タイプ別、エンドユーザー別、アプリケーション別-2025-2030年の世界予測

Deep Learning Market by Type (Hardware, Services, Software), End-User (Agriculture, Automotive, Fintech), Application - Global Forecast 2025-2030


出版日
発行
360iResearch
ページ情報
英文 184 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
ディープラーニング市場:タイプ別、エンドユーザー別、アプリケーション別-2025-2030年の世界予測
出版日: 2024年10月31日
発行: 360iResearch
ページ情報: 英文 184 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

ディープラーニング市場の2023年の市場規模は55億7,000万米ドルで、2024年には72億4,000万米ドルに達すると予測され、CAGR 30.39%で成長し、2030年には357億1,000万米ドルに達すると予測されています。

人工知能(AI)分野の機械学習のサブセットであるディープラーニングは、膨大なデータから学習することで人間の脳機能をシミュレートするように設計されています。その適用範囲は、家電、ヘルスケア、自動車、金融、小売など多様な分野に及び、画像認識や音声認識、自然言語処理、複雑な問題解決などのタスクを強化する能力により、その必要性が強調されています。ディープラーニングの最終用途の範囲は広大で、小売業における顧客サービスの向上チャットボットから、自動車における自律走行技術、ヘルスケアにおける診断ツールまで、その用途は業界全体のサービスと業務効率を根本的に変革します。ディープラーニング市場に影響を与える主な成長要因には、データ生成の急激な増加、コンピューティングパワーの進歩、多くの分野にわたるAI駆動型アプリケーションの急増などがあります。これらの要素は総体的に多額の投資を促し、市場の急速な拡大に拍車をかけています。ディープラーニングが個別化医療や予測分析のブレークスルーをもたらすヘルスケアや、不正検知やアルゴリズム取引などの金融サービスなどの分野に、最新の潜在的ビジネスチャンスが眠っています。こうした機会を活用するための提言としては、需要が急増しているエッジコンピューティングやAIを活用したサイバーセキュリティのイノベーションに注力することが挙げられます。とはいえ、市場の成長は、高い導入コスト、データプライバシーに関する懸念、AIの専門知識におけるスキルギャップなどの限界に直面しています。これらに対処するには、教育機関とのパートナーシップを育むとともに、トレーニングや開発にリソースを割く必要があります。課題には、AI導入をめぐる規制上の課題や倫理的配慮も含まれます。ビジネス成長のための革新的な分野は、AI能力を民主化し、中小企業でも利用できるようにし、透明性と説明可能性を提供するAIモデルを開発することにあります。全体として、市場はダイナミックで競合が激しく、急速な技術進化と、新たな動向や規制状況に機敏に対応する企業の必要性が特徴となっています。

主な市場の統計
基準年[2023] 55億7,000万米ドル
予測年[2024] 72億4,000万米ドル
予測年[2030] 357億1,000万米ドル
CAGR(%) 30.39%

市場力学:急速に進化するディープラーニング市場の主要市場インサイトを公開

ディープラーニング市場は、需要と供給のダイナミックな相互作用によって変貌を遂げています。このような市場力学の進化を理解することで、企業は十分な情報に基づいた投資決定、戦略的意思決定、新たなビジネスチャンスの獲得を行うことができます。これらの動向を包括的に把握することで、企業は政治的、地理的、技術的、社会的、経済的な領域にわたる様々なリスクを軽減することができ、また、消費者行動とそれが製造コストや購買動向に与える影響をより明確に理解することができます。

  • 市場促進要因
    • クラウドベースの技術採用の増加
    • 顧客中心のサービスにおけるAI採用の拡大
    • ヘルスケア、製造業、自動車産業におけるアプリケーションの増加
  • 市場抑制要因
    • 柔軟性とマルチタスク性の欠如
  • 市場機会
    • 自動運転技術の急速なイントロダクション
    • ニューラルネットワークアーキテクチャとトレーニングアルゴリズムの最近の動向
  • 市場の課題
    • 技術的専門知識の欠如、標準とプロトコルの不在

ポーターの5つの力:ディープラーニング市場をナビゲートする戦略ツール

ポーターの5つの力フレームワークは、ディープラーニング市場の競合情勢を理解するための重要なツールです。ポーターのファイブフォース・フレームワークは、企業の競争力を評価し、戦略的機会を探るための明確な手法を提供します。このフレームワークは、企業が市場内の勢力図を評価し、新規事業の収益性を判断するのに役立ちます。これらの洞察により、企業は自社の強みを活かし、弱みに対処し、潜在的な課題を回避することができ、より強靭な市場でのポジショニングを確保することができます。

PESTLE分析:ディープラーニング市場における外部からの影響の把握

外部マクロ環境要因は、ディープラーニング市場の業績ダイナミクスを形成する上で極めて重要な役割を果たします。政治的、経済的、社会的、技術的、法的、環境的要因の分析は、これらの影響をナビゲートするために必要な情報を提供します。PESTLE要因を調査することで、企業は潜在的なリスクと機会をよりよく理解することができます。この分析により、企業は規制、消費者の嗜好、経済動向の変化を予測し、先を見越した積極的な意思決定を行う準備ができます。

市場シェア分析ディープラーニング市場における競合情勢の把握

ディープラーニング市場の詳細な市場シェア分析により、ベンダーの業績を包括的に評価することができます。企業は、収益、顧客ベース、成長率などの主要指標を比較することで、競争上のポジショニングを明らかにすることができます。この分析により、市場の集中、断片化、統合の動向が明らかになり、ベンダーは競争が激化する中で自社の地位を高める戦略的な意思決定を行うために必要な知見を得ることができます。

FPNVポジショニング・マトリックスディープラーニング市場におけるベンダーのパフォーマンス評価

FPNVポジショニングマトリックスは、ディープラーニング市場においてベンダーを評価するための重要なツールです。このマトリックスにより、ビジネス組織はベンダーのビジネス戦略と製品満足度に基づき評価することで、目標に沿った十分な情報に基づいた意思決定を行うことができます。4つの象限によりベンダーを明確かつ的確にセグメント化し、戦略目標に最適なパートナーやソリューションを特定することができます。

戦略分析と推奨ディープラーニング市場における成功への道筋を描く

ディープラーニング市場の戦略分析は、世界市場でのプレゼンス強化を目指す企業にとって不可欠です。主要なリソース、能力、業績指標を検討することで、企業は成長機会を特定し、改善に取り組むことができます。このアプローチにより、競合情勢における課題を克服し、新たなビジネスチャンスを活かして長期的な成功を収めるための体制を整えることができます。

本レポートでは、主要な注目分野を網羅した市場の包括的な分析を提供しています:

1.市場の浸透度:現在の市場環境の詳細なレビュー、主要企業による広範なデータ、市場でのリーチと全体的な影響力の評価。

2.市場の開拓度:新興市場における成長機会を特定し、既存分野における拡大可能性を評価し、将来の成長に向けた戦略的ロードマップを提供します。

3.市場の多様化:最近の製品発売、未開拓の地域、業界の主要な進歩、市場を形成する戦略的投資を分析します。

4.競合の評価と情報:競合情勢を徹底的に分析し、市場シェア、事業戦略、製品ポートフォリオ、認証、規制当局の承認、特許動向、主要企業の技術進歩などを検証します。

5.製品開発およびイノベーション:将来の市場成長を促進すると期待される最先端技術、研究開発活動、製品イノベーションをハイライトしています。

また、利害関係者が十分な情報に基づいた意思決定を行う上で役立つ重要な質問にも回答しています:

1.現在の市場規模と今後の成長予測は?

2.最高の投資機会を提供する製品、セグメント、地域はどこか?

3.市場を形成する主な技術動向と規制の影響とは?

4.主要ベンダーの市場シェアと競合ポジションは?

5.ベンダーの市場参入・撤退戦略の原動力となる収益源と戦略的機会は何か?

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場の概要

第5章 市場洞察

  • 市場力学
    • 促進要因
      • クラウドベースの技術の採用の増加
      • 顧客中心のサービスにおけるAI導入の増加
      • ヘルスケア、製造、自動車業界でのアプリケーションの増加
    • 抑制要因
      • 柔軟性とマルチタスクの欠如
    • 機会
      • 自動運転技術の急速なイントロダクション
      • ニューラルネットワークアーキテクチャとトレーニングアルゴリズムの最近の動向
    • 課題
      • 技術的な専門知識の欠如と標準やプロトコルの欠如
  • 市場セグメンテーション分析
  • ポーターのファイブフォース分析
  • PESTEL分析
    • 政治的
    • 経済
    • 社交
    • 技術的
    • 法律上
    • 環境

第6章 ディープラーニング市場:タイプ別

  • ハードウェア
    • 中央処理装置
    • フィールドプログラマブルゲートアレイ
    • グラフィックスプロセッシングユニット
  • サービス
  • ソフトウェア
    • プラットフォームまたはAPI
    • ソリューション

第7章 ディープラーニング市場:エンドユーザー別

  • 農業
  • 自動車
  • フィンテック
  • ヘルスケア
  • 人事
  • 製造業
  • マーケティング
  • 小売り
  • セキュリティ

第8章 ディープラーニング市場:用途別

  • データマイニング
  • 画像認識
  • 信号認識

第9章 南北アメリカのディープラーニング市場

  • アルゼンチン
  • ブラジル
  • カナダ
  • メキシコ
  • 米国

第10章 アジア太平洋地域のディープラーニング市場

  • オーストラリア
  • 中国
  • インド
  • インドネシア
  • 日本
  • マレーシア
  • フィリピン
  • シンガポール
  • 韓国
  • 台湾
  • タイ
  • ベトナム

第11章 欧州・中東・アフリカのディープラーニング市場

  • デンマーク
  • エジプト
  • フィンランド
  • フランス
  • ドイツ
  • イスラエル
  • イタリア
  • オランダ
  • ナイジェリア
  • ノルウェー
  • ポーランド
  • カタール
  • ロシア
  • サウジアラビア
  • 南アフリカ
  • スペイン
  • スウェーデン
  • スイス
  • トルコ
  • アラブ首長国連邦
  • 英国

第12章 競合情勢

  • 市場シェア分析2023
  • FPNVポジショニングマトリックス, 2023
  • 競合シナリオ分析
  • 戦略分析と提言

企業一覧

  • Advanced Micro Devices, Inc.
  • ARM Ltd.
  • Broadcom Corporation
  • CEVA Inc.
  • Clarifai, Inc.
  • Google LLC
  • Huawei Technologies
  • Intel Corporation
  • International Business Machines Corporation
  • Microsoft Corporation
  • Neurala
  • NVIDIA Corporation
  • OpenAI
  • Qualcomm Technologies, Inc
  • Samsung Group
  • Starmind
図表

LIST OF FIGURES

  • FIGURE 1. DEEP LEARNING MARKET RESEARCH PROCESS
  • FIGURE 2. DEEP LEARNING MARKET SIZE, 2023 VS 2030
  • FIGURE 3. GLOBAL DEEP LEARNING MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 4. GLOBAL DEEP LEARNING MARKET SIZE, BY REGION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 5. GLOBAL DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 6. GLOBAL DEEP LEARNING MARKET SIZE, BY TYPE, 2023 VS 2030 (%)
  • FIGURE 7. GLOBAL DEEP LEARNING MARKET SIZE, BY TYPE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL DEEP LEARNING MARKET SIZE, BY END-USER, 2023 VS 2030 (%)
  • FIGURE 9. GLOBAL DEEP LEARNING MARKET SIZE, BY END-USER, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 10. GLOBAL DEEP LEARNING MARKET SIZE, BY APPLICATION, 2023 VS 2030 (%)
  • FIGURE 11. GLOBAL DEEP LEARNING MARKET SIZE, BY APPLICATION, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 12. AMERICAS DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 13. AMERICAS DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 14. UNITED STATES DEEP LEARNING MARKET SIZE, BY STATE, 2023 VS 2030 (%)
  • FIGURE 15. UNITED STATES DEEP LEARNING MARKET SIZE, BY STATE, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 16. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 17. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 18. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2030 (%)
  • FIGURE 19. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY COUNTRY, 2023 VS 2024 VS 2030 (USD MILLION)
  • FIGURE 20. DEEP LEARNING MARKET SHARE, BY KEY PLAYER, 2023
  • FIGURE 21. DEEP LEARNING MARKET, FPNV POSITIONING MATRIX, 2023

LIST OF TABLES

  • TABLE 1. DEEP LEARNING MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2023
  • TABLE 3. GLOBAL DEEP LEARNING MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL DEEP LEARNING MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL DEEP LEARNING MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. DEEP LEARNING MARKET DYNAMICS
  • TABLE 7. GLOBAL DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL DEEP LEARNING MARKET SIZE, BY HARDWARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL DEEP LEARNING MARKET SIZE, BY CENTRAL PROCESSING UNIT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL DEEP LEARNING MARKET SIZE, BY FIELD PROGRAMMABLE GATE ARRAY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL DEEP LEARNING MARKET SIZE, BY GRAPHICS PROCESSING UNIT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL DEEP LEARNING MARKET SIZE, BY SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. GLOBAL DEEP LEARNING MARKET SIZE, BY SOFTWARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 15. GLOBAL DEEP LEARNING MARKET SIZE, BY PLATFORM OR API, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 16. GLOBAL DEEP LEARNING MARKET SIZE, BY SOLUTIONS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 17. GLOBAL DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 18. GLOBAL DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 19. GLOBAL DEEP LEARNING MARKET SIZE, BY AGRICULTURE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 20. GLOBAL DEEP LEARNING MARKET SIZE, BY AUTOMOTIVE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 21. GLOBAL DEEP LEARNING MARKET SIZE, BY FINTECH, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 22. GLOBAL DEEP LEARNING MARKET SIZE, BY HEALTHCARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 23. GLOBAL DEEP LEARNING MARKET SIZE, BY HUMAN RESOURCES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 24. GLOBAL DEEP LEARNING MARKET SIZE, BY LAW, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 25. GLOBAL DEEP LEARNING MARKET SIZE, BY MANUFACTURING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 26. GLOBAL DEEP LEARNING MARKET SIZE, BY MARKETING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 27. GLOBAL DEEP LEARNING MARKET SIZE, BY RETAIL, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 28. GLOBAL DEEP LEARNING MARKET SIZE, BY SECURITY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 29. GLOBAL DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 30. GLOBAL DEEP LEARNING MARKET SIZE, BY DATA MINING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 31. GLOBAL DEEP LEARNING MARKET SIZE, BY IMAGE RECOGNITION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 32. GLOBAL DEEP LEARNING MARKET SIZE, BY SIGNAL RECOGNITION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 33. AMERICAS DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 34. AMERICAS DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 35. AMERICAS DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 36. AMERICAS DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 37. AMERICAS DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 38. AMERICAS DEEP LEARNING MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 39. ARGENTINA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 40. ARGENTINA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 41. ARGENTINA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 42. ARGENTINA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 43. ARGENTINA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 44. BRAZIL DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 45. BRAZIL DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 46. BRAZIL DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 47. BRAZIL DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 48. BRAZIL DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 49. CANADA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 50. CANADA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 51. CANADA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 52. CANADA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 53. CANADA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 54. MEXICO DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 55. MEXICO DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 56. MEXICO DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 57. MEXICO DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 58. MEXICO DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 59. UNITED STATES DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 60. UNITED STATES DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 61. UNITED STATES DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 62. UNITED STATES DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 63. UNITED STATES DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 64. UNITED STATES DEEP LEARNING MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 65. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 66. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 67. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 68. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 69. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 70. ASIA-PACIFIC DEEP LEARNING MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 71. AUSTRALIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 72. AUSTRALIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 73. AUSTRALIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 74. AUSTRALIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 75. AUSTRALIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 76. CHINA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 77. CHINA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 78. CHINA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 79. CHINA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 80. CHINA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 81. INDIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 82. INDIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 83. INDIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 84. INDIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 85. INDIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 86. INDONESIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 87. INDONESIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 88. INDONESIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 89. INDONESIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 90. INDONESIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 91. JAPAN DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 92. JAPAN DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 93. JAPAN DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 94. JAPAN DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 95. JAPAN DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 96. MALAYSIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 97. MALAYSIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 98. MALAYSIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 99. MALAYSIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 100. MALAYSIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 101. PHILIPPINES DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 102. PHILIPPINES DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 103. PHILIPPINES DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 104. PHILIPPINES DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 105. PHILIPPINES DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 106. SINGAPORE DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 107. SINGAPORE DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 108. SINGAPORE DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 109. SINGAPORE DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 110. SINGAPORE DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 111. SOUTH KOREA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 112. SOUTH KOREA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 113. SOUTH KOREA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 114. SOUTH KOREA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 115. SOUTH KOREA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 116. TAIWAN DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 117. TAIWAN DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 118. TAIWAN DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 119. TAIWAN DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 120. TAIWAN DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 121. THAILAND DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 122. THAILAND DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 123. THAILAND DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 124. THAILAND DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 125. THAILAND DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 126. VIETNAM DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 127. VIETNAM DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 128. VIETNAM DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 129. VIETNAM DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 130. VIETNAM DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 131. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 132. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 133. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 134. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 135. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 136. EUROPE, MIDDLE EAST & AFRICA DEEP LEARNING MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 137. DENMARK DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 138. DENMARK DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 139. DENMARK DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 140. DENMARK DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 141. DENMARK DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 142. EGYPT DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 143. EGYPT DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 144. EGYPT DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 145. EGYPT DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 146. EGYPT DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 147. FINLAND DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 148. FINLAND DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 149. FINLAND DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 150. FINLAND DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 151. FINLAND DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 152. FRANCE DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 153. FRANCE DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 154. FRANCE DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 155. FRANCE DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 156. FRANCE DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 157. GERMANY DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 158. GERMANY DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 159. GERMANY DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 160. GERMANY DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 161. GERMANY DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 162. ISRAEL DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 163. ISRAEL DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 164. ISRAEL DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 165. ISRAEL DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 166. ISRAEL DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 167. ITALY DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 168. ITALY DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 169. ITALY DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 170. ITALY DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 171. ITALY DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 172. NETHERLANDS DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 173. NETHERLANDS DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 174. NETHERLANDS DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 175. NETHERLANDS DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 176. NETHERLANDS DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 177. NIGERIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 178. NIGERIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 179. NIGERIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 180. NIGERIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 181. NIGERIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 182. NORWAY DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 183. NORWAY DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 184. NORWAY DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 185. NORWAY DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 186. NORWAY DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 187. POLAND DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 188. POLAND DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 189. POLAND DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 190. POLAND DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 191. POLAND DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 192. QATAR DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 193. QATAR DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 194. QATAR DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 195. QATAR DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 196. QATAR DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 197. RUSSIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 198. RUSSIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 199. RUSSIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 200. RUSSIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 201. RUSSIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 202. SAUDI ARABIA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 203. SAUDI ARABIA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 204. SAUDI ARABIA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 205. SAUDI ARABIA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 206. SAUDI ARABIA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 207. SOUTH AFRICA DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 208. SOUTH AFRICA DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 209. SOUTH AFRICA DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 210. SOUTH AFRICA DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 211. SOUTH AFRICA DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 212. SPAIN DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 213. SPAIN DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 214. SPAIN DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 215. SPAIN DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 216. SPAIN DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 217. SWEDEN DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 218. SWEDEN DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 219. SWEDEN DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 220. SWEDEN DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 221. SWEDEN DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 222. SWITZERLAND DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 223. SWITZERLAND DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 224. SWITZERLAND DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 225. SWITZERLAND DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 226. SWITZERLAND DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 227. TURKEY DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 228. TURKEY DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 229. TURKEY DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 230. TURKEY DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 231. TURKEY DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 232. UNITED ARAB EMIRATES DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 233. UNITED ARAB EMIRATES DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 234. UNITED ARAB EMIRATES DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 235. UNITED ARAB EMIRATES DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 236. UNITED ARAB EMIRATES DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 237. UNITED KINGDOM DEEP LEARNING MARKET SIZE, BY TYPE, 2018-2030 (USD MILLION)
  • TABLE 238. UNITED KINGDOM DEEP LEARNING MARKET SIZE, BY HARDWARE, 2018-2030 (USD MILLION)
  • TABLE 239. UNITED KINGDOM DEEP LEARNING MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 240. UNITED KINGDOM DEEP LEARNING MARKET SIZE, BY END-USER, 2018-2030 (USD MILLION)
  • TABLE 241. UNITED KINGDOM DEEP LEARNING MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 242. DEEP LEARNING MARKET SHARE, BY KEY PLAYER, 2023
  • TABLE 243. DEEP LEARNING MARKET, FPNV POSITIONING MATRIX, 2023
目次
Product Code: MRR-742BD517D024

The Deep Learning Market was valued at USD 5.57 billion in 2023, expected to reach USD 7.24 billion in 2024, and is projected to grow at a CAGR of 30.39%, to USD 35.71 billion by 2030.

Deep learning, a subset of machine learning in the field of artificial intelligence (AI), is designed to simulate human brain function by learning from vast amounts of data. Its scope encompasses diverse sectors including consumer electronics, healthcare, automotive, finance, and retail, underlining its necessity due to its capacity to enhance tasks like image and speech recognition, natural language processing, and complex problem-solving. The end-use scope of deep learning is vast; from chatbots enhancing customer service in retail to autonomous driving technologies in automotive, and diagnostic tools in healthcare, its applications fundamentally transform services and operational efficiencies across industries. Key growth factors influencing the deep learning market include exponential growth in data generation, advances in computing power, and the surge in AI-driven applications across numerous sectors. These elements collectively drive substantial investment, fueling rapid market expansion. The latest potential opportunities lie in sectors like healthcare, where deep learning can lead to breakthroughs in personalized medicine and predictive analytics, and financial services for fraud detection and algorithmic trading. Recommendations to leverage these opportunities include focusing on innovation in edge computing and AI-powered cybersecurity, where demand is skyrocketing. Nonetheless, market growth faces limitations including high implementation costs, data privacy concerns, and a skills gap in AI expertise. Addressing these involves dedicating resources to training and development alongside fostering partnerships with educational institutions. Challenging factors also include regulatory challenges and ethical considerations surrounding AI deployment. Innovative areas for business growth lie in democratizing AI capabilities, making them accessible for small and mid-sized businesses, and developing AI models that offer transparency and explainability. Overall, the market is dynamic and competitive, characterized by rapid technological evolution and the need for companies to remain agile and responsive to emerging trends and regulatory landscapes.

KEY MARKET STATISTICS
Base Year [2023] USD 5.57 billion
Estimated Year [2024] USD 7.24 billion
Forecast Year [2030] USD 35.71 billion
CAGR (%) 30.39%

Market Dynamics: Unveiling Key Market Insights in the Rapidly Evolving Deep Learning Market

The Deep Learning Market is undergoing transformative changes driven by a dynamic interplay of supply and demand factors. Understanding these evolving market dynamics prepares business organizations to make informed investment decisions, refine strategic decisions, and seize new opportunities. By gaining a comprehensive view of these trends, business organizations can mitigate various risks across political, geographic, technical, social, and economic domains while also gaining a clearer understanding of consumer behavior and its impact on manufacturing costs and purchasing trends.

  • Market Drivers
    • Increasing adoption of cloud-based technology
    • Growing AI adoption in customer centric services
    • Rising applications in healthcare, manufacturing, and automotive industries
  • Market Restraints
    • Lack of flexibility and multitasking
  • Market Opportunities
    • Rapid introduction of self-driving technology
    • Recent developments in neural network architecture and training algorithms
  • Market Challenges
    • Lack of technical expertise and absence of standards and protocols

Porter's Five Forces: A Strategic Tool for Navigating the Deep Learning Market

Porter's five forces framework is a critical tool for understanding the competitive landscape of the Deep Learning Market. It offers business organizations with a clear methodology for evaluating their competitive positioning and exploring strategic opportunities. This framework helps businesses assess the power dynamics within the market and determine the profitability of new ventures. With these insights, business organizations can leverage their strengths, address weaknesses, and avoid potential challenges, ensuring a more resilient market positioning.

PESTLE Analysis: Navigating External Influences in the Deep Learning Market

External macro-environmental factors play a pivotal role in shaping the performance dynamics of the Deep Learning Market. Political, Economic, Social, Technological, Legal, and Environmental factors analysis provides the necessary information to navigate these influences. By examining PESTLE factors, businesses can better understand potential risks and opportunities. This analysis enables business organizations to anticipate changes in regulations, consumer preferences, and economic trends, ensuring they are prepared to make proactive, forward-thinking decisions.

Market Share Analysis: Understanding the Competitive Landscape in the Deep Learning Market

A detailed market share analysis in the Deep Learning Market provides a comprehensive assessment of vendors' performance. Companies can identify their competitive positioning by comparing key metrics, including revenue, customer base, and growth rates. This analysis highlights market concentration, fragmentation, and trends in consolidation, offering vendors the insights required to make strategic decisions that enhance their position in an increasingly competitive landscape.

FPNV Positioning Matrix: Evaluating Vendors' Performance in the Deep Learning Market

The Forefront, Pathfinder, Niche, Vital (FPNV) Positioning Matrix is a critical tool for evaluating vendors within the Deep Learning Market. This matrix enables business organizations to make well-informed decisions that align with their goals by assessing vendors based on their business strategy and product satisfaction. The four quadrants provide a clear and precise segmentation of vendors, helping users identify the right partners and solutions that best fit their strategic objectives.

Strategy Analysis & Recommendation: Charting a Path to Success in the Deep Learning Market

A strategic analysis of the Deep Learning Market is essential for businesses looking to strengthen their global market presence. By reviewing key resources, capabilities, and performance indicators, business organizations can identify growth opportunities and work toward improvement. This approach helps businesses navigate challenges in the competitive landscape and ensures they are well-positioned to capitalize on newer opportunities and drive long-term success.

Key Company Profiles

The report delves into recent significant developments in the Deep Learning Market, highlighting leading vendors and their innovative profiles. These include Advanced Micro Devices, Inc., ARM Ltd., Broadcom Corporation, CEVA Inc., Clarifai, Inc., Google LLC, Huawei Technologies, Intel Corporation, International Business Machines Corporation, Microsoft Corporation, Neurala, NVIDIA Corporation, OpenAI, Qualcomm Technologies, Inc, Samsung Group, and Starmind.

Market Segmentation & Coverage

This research report categorizes the Deep Learning Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Based on Type, market is studied across Hardware, Services, and Software. The Hardware is further studied across Central Processing Unit, Field Programmable Gate Array, and Graphics Processing Unit. The Software is further studied across Platform or API and Solutions.
  • Based on End-User, market is studied across Agriculture, Automotive, Fintech, Healthcare, Human Resources, Law, Manufacturing, Marketing, Retail, and Security.
  • Based on Application, market is studied across Data Mining, Image Recognition, and Signal Recognition.
  • Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

The report offers a comprehensive analysis of the market, covering key focus areas:

1. Market Penetration: A detailed review of the current market environment, including extensive data from top industry players, evaluating their market reach and overall influence.

2. Market Development: Identifies growth opportunities in emerging markets and assesses expansion potential in established sectors, providing a strategic roadmap for future growth.

3. Market Diversification: Analyzes recent product launches, untapped geographic regions, major industry advancements, and strategic investments reshaping the market.

4. Competitive Assessment & Intelligence: Provides a thorough analysis of the competitive landscape, examining market share, business strategies, product portfolios, certifications, regulatory approvals, patent trends, and technological advancements of key players.

5. Product Development & Innovation: Highlights cutting-edge technologies, R&D activities, and product innovations expected to drive future market growth.

The report also answers critical questions to aid stakeholders in making informed decisions:

1. What is the current market size, and what is the forecasted growth?

2. Which products, segments, and regions offer the best investment opportunities?

3. What are the key technology trends and regulatory influences shaping the market?

4. How do leading vendors rank in terms of market share and competitive positioning?

5. What revenue sources and strategic opportunities drive vendors' market entry or exit strategies?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Increasing adoption of cloud-based technology
      • 5.1.1.2. Growing AI adoption in customer centric services
      • 5.1.1.3. Rising applications in healthcare, manufacturing, and automotive industries
    • 5.1.2. Restraints
      • 5.1.2.1. Lack of flexibility and multitasking
    • 5.1.3. Opportunities
      • 5.1.3.1. Rapid introduction of self-driving technology
      • 5.1.3.2. Recent developments in neural network architecture and training algorithms
    • 5.1.4. Challenges
      • 5.1.4.1. Lack of technical expertise and absence of standards and protocols
  • 5.2. Market Segmentation Analysis
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. Deep Learning Market, by Type

  • 6.1. Introduction
  • 6.2. Hardware
    • 6.2.1. Central Processing Unit
    • 6.2.2. Field Programmable Gate Array
    • 6.2.3. Graphics Processing Unit
  • 6.3. Services
  • 6.4. Software
    • 6.4.1. Platform or API
    • 6.4.2. Solutions

7. Deep Learning Market, by End-User

  • 7.1. Introduction
  • 7.2. Agriculture
  • 7.3. Automotive
  • 7.4. Fintech
  • 7.5. Healthcare
  • 7.6. Human Resources
  • 7.7. Law
  • 7.8. Manufacturing
  • 7.9. Marketing
  • 7.10. Retail
  • 7.11. Security

8. Deep Learning Market, by Application

  • 8.1. Introduction
  • 8.2. Data Mining
  • 8.3. Image Recognition
  • 8.4. Signal Recognition

9. Americas Deep Learning Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Deep Learning Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Deep Learning Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
  • 12.4. Strategy Analysis & Recommendation

Companies Mentioned

  • 1. Advanced Micro Devices, Inc.
  • 2. ARM Ltd.
  • 3. Broadcom Corporation
  • 4. CEVA Inc.
  • 5. Clarifai, Inc.
  • 6. Google LLC
  • 7. Huawei Technologies
  • 8. Intel Corporation
  • 9. International Business Machines Corporation
  • 10. Microsoft Corporation
  • 11. Neurala
  • 12. NVIDIA Corporation
  • 13. OpenAI
  • 14. Qualcomm Technologies, Inc
  • 15. Samsung Group
  • 16. Starmind