The global industrial biomanufacturing market represents a transformative force in industrial production. This sector encompasses the production of pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty products through biological processes, fundamentally reshaping how humanity approaches manufacturing. Biomanufacturing's significance extends far beyond economic metrics, positioning itself as a cornerstone of sustainable industrial development. Unlike traditional petrochemical manufacturing that relies on finite fossil fuel resources, biomanufacturing utilizes renewable biological feedstocks including agricultural residues, algae, and even carbon dioxide. This transition addresses critical resource scarcity challenges while reducing dependence on volatile petroleum markets.
The sector's contribution to the circular economy is particularly profound. Biomanufacturing processes excel at converting waste streams into valuable products, exemplifying circular economy principles. Agricultural waste becomes biofuels, food processing byproducts transform into specialty chemicals, and municipal solid waste generates bioplastics. This waste-to-value conversion reduces landfill burdens while creating economic value from previously discarded materials.
Environmental benefits are substantial and measurable. Biomanufacturing typically reduces greenhouse gas emissions by 30-80% compared to conventional processes, with some applications achieving carbon neutrality or even carbon negativity. The mild operating conditions of biological processes-typically 20-80 DegreeC versus 200-800 DegreeC for chemical processes-dramatically reduce energy consumption. Water usage often decreases through closed-loop systems and biological treatment processes that simultaneously purify and utilize water resources.
Biomanufactured drugs, including monoclonal antibodies, vaccines, and gene therapies, have revolutionized medical treatment while establishing robust regulatory frameworks that benefit other sectors. Industrial biotechnology applications are rapidly expanding, with bio-based chemicals, enzymes, and materials increasingly replacing petroleum-derived alternatives. Innovation drivers include advances in synthetic biology, which enable precise engineering of biological systems for specific applications. CRISPR gene editing, artificial intelligence, and automated bioprocessing are accelerating development cycles while reducing costs. These technological advances are making biomanufacturing economically competitive with traditional processes across an expanding range of products.
Regulatory support is strengthening globally, with governments implementing policies that favor bio-based products through tax incentives, carbon pricing, and procurement preferences. Challenges persist, including scale-up complexities, regulatory approval timelines, and competition from established petrochemical industries. However, the convergence of environmental necessity, technological capability, and economic opportunity positions biomanufacturing as an essential component of sustainable industrial development. The circular economy integration is particularly evident in emerging biorefinery concepts that process multiple feedstocks into diverse product portfolios, maximizing resource utilization while minimizing waste generation. These integrated approaches represent the future of sustainable manufacturing, where biological processes serve as the foundation for truly circular industrial ecosystems.
"The Global Industrial Biomanufacturing Market 2026-2036" provides an exhaustive analysis of the rapidly expanding biomanufacturing industry. This comprehensive 1,300 page plus market intelligence study examines the transformative shift toward biological production systems across pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty applications. The biomanufacturing market represents a critical nexus of sustainability, innovation, and economic growth, addressing global challenges including climate change, resource scarcity, and industrial decarbonization. This sector leverages living systems and biological processes to manufacture products traditionally produced through petrochemical routes, offering superior environmental profiles and often enhanced performance characteristics.
The report analyzes eight primary market segments: biopharmaceuticals, industrial enzymes, biofuels, bioplastics, biochemicals, bio-agritech, specialty chemicals, and emerging applications. Geographic analysis covers North America, Europe, Asia-Pacific, Latin America, and Middle East/Africa markets with detailed country-level assessments. Competitive landscape analysis profiles over 1,050 companies across the value chain, from technology developers to commercial manufacturers. The study identifies key strategic partnerships, mergers and acquisitions, and technology licensing agreements shaping market evolution. Innovation trends including cell-free systems, continuous manufacturing, and circular economy integration receive detailed examination.
Executive Summary and Market Overview
- Global market sizing and growth projections 2026-2036
- Technology trends and innovation drivers
- Regulatory landscape and policy impacts
- Competitive dynamics and market structure
Production Technologies and Manufacturing Systems
- Upstream processing: cell culture, fermentation advances
- Synthetic biology tools: CRISPR, DNA synthesis, protein engineering
- Downstream processing improvements and automation
- Alternative feedstocks and sustainability frameworks
- Scale-up strategies and commercial manufacturing
Biopharmaceuticals Market
- Monoclonal antibodies, recombinant proteins, vaccines
- Cell and gene therapies, nucleic acid therapeutics
- Generative biology and AI-driven drug discovery
- Market growth drivers, regulatory frameworks
- Company profiles of 131 leading organizations
Industrial Enzymes and Biocatalysts Market
- Detergent, food processing, textile applications
- Bioenergy enzymes and carbon capture technologies
- Plastics recycling and waste management applications
- Technology readiness assessments and market forecasts
- Profiles of 59 specialized enzyme companies
Biofuels Market
- Bioethanol, biodiesel, biogas production pathways
- Advanced biofuels: renewable diesel, bio-aviation fuel
- Feedstock analysis: first through fourth-generation
- Regional market dynamics and policy frameworks
- Analysis of 212 biofuel companies globally
Bioplastics Market
- PLA, PHAs, bio-based polyethylene markets
- Cellulose-based and starch-based alternatives
- Application markets and performance characteristics
- Sustainability profiles and end-of-life management
- Comprehensive profiles of 585 companies
Biochemicals Market
- Organic acids, amino acids, alcohol production
- Bio-based monomers and polymer intermediates
- Beauty and personal care applications
- Market economics and competitive positioning
- Analysis of 158 biochemical companies
Bio-Agritech Market
- Biopesticides, biofertilizers, biostimulants
- Agricultural enzymes and crop enhancement
- Regulatory frameworks and adoption patterns
- Market growth projections by application
- Profiles of 105 bio-agritech innovators
Companies Profiled Include:
and many more.....
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. Definition and Scope of Industrial Biomanufacturing
- 1.2. Overview of Industrial Biomanufacturing Processes
- 1.3. Key Components of Industrial Biomanufacturing
- 1.4. Importance of Industrial Biomanufacturing in the Global Economy
- 1.4.1. Role in Healthcare and Pharmaceutical Industries
- 1.4.2. Impact on Industrial Biotechnology and Sustainability
- 1.4.3. Food Security
- 1.4.4. Circular Economy
- 1.5. Colours of Biotechnology
- 1.6. Markets
- 1.6.1. Biopharmaceuticals
- 1.6.2. Industrial Enzymes
- 1.6.3. Biofuels
- 1.6.4. Biomaterials and Bioplastics
- 1.6.5. Specialty Chemicals
- 1.6.6. Food and Beverage
- 1.6.7. Agriculture and Animal Health
- 1.6.8. Environmental Biotechnology
- 1.7. AI and Robotics in Biomanufacturing
- 1.8. Other Advanced and Emerging Technologies in Biomanufacturing
2. PRODUCTION
- 2.1. Microbial Fermentation
- 2.2. Mammalian Cell Culture
- 2.3. Plant Cell Culture
- 2.4. Insect Cell Culture
- 2.5. Transgenic Animals
- 2.6. Transgenic Plants
- 2.7. Technologies
- 2.7.1. Upstream Processing
- 2.7.1.1. Cell Culture
- 2.7.1.1.1. Overview
- 2.7.1.1.2. Types of Cell Culture Systems
- 2.7.1.1.3. Factors Affecting Cell Culture Performance
- 2.7.1.1.4. Advances in Cell Culture Technology
- 2.7.1.1.4.1. Single-use systems
- 2.7.1.1.4.2. Process analytical technology (PAT)
- 2.7.1.1.4.3. Cell line development
- 2.7.2. Fermentation
- 2.7.2.1. Overview
- 2.7.2.1.1. Types of Fermentation Processes
- 2.7.2.1.2. Factors Affecting Fermentation Performance
- 2.7.2.1.3. Advances in Fermentation Technology
- 2.7.2.1.3.1. High-cell-density fermentation
- 2.7.2.1.3.2. Continuous processing
- 2.7.2.1.3.3. Metabolic engineering
- 2.7.2.1.3.4. Synthetic biology applications
- 2.7.2.1.3.5. Cell-free systems
- 2.7.2.1.3.6. Continuous vs batch biomanufacturing
- 2.7.3. Downstream Processing
- 2.7.3.1. Purification
- 2.7.3.1.1. Overview
- 2.7.3.1.2. Types of Purification Methods
- 2.7.3.1.3. Factors Affecting Purification Performance
- 2.7.3.1.4. Advances in Purification Technology
- 2.7.3.1.4.1. Affinity chromatography
- 2.7.3.1.4.2. Membrane chromatography
- 2.7.3.1.4.3. Continuous chromatography
- 2.7.3.1.4.4. Downstream processing (DSP) improvements
- 2.7.3.1.4.5. Tangential flow filtration (TFF) in downstream bioprocessing
- 2.7.4. Formulation
- 2.7.4.1. Overview
- 2.7.4.1.1. Types of Formulation Methods
- 2.7.4.1.2. Factors Affecting Formulation Performance
- 2.7.4.1.3. Advances in Formulation Technology
- 2.7.4.1.3.1. Controlled release
- 2.7.4.1.3.2. Nanoparticle formulation
- 2.7.4.1.3.3. 3D printing
- 2.7.5. Bioprocess Development
- 2.7.5.1. Scale-up
- 2.7.5.1.1. Overview
- 2.7.5.1.2. Factors Affecting Scale-up Performance
- 2.7.5.1.3. Scale-up Strategies
- 2.7.5.2. Optimization
- 2.7.5.2.1. Overview
- 2.7.5.2.2. Factors Affecting Optimization Performance
- 2.7.5.2.3. Optimization Strategies
- 2.7.5.2.4. Machine learning to improve biomanufacturing processes
- 2.7.5.2.5. Process intensification and high-cell-density fermentation
- 2.7.5.2.6. Hybrid biotechnological-chemical approaches
- 2.7.6. Analytical Methods
- 2.7.6.1. Quality Control
- 2.7.6.1.1. Overview
- 2.7.6.1.2. Types of Quality Control Tests
- 2.7.6.1.3. Factors Affecting Quality Control Performance
- 2.7.6.2. Characterization
- 2.7.6.2.1. Overview
- 2.7.6.2.2. Types of Characterization Methods
- 2.7.6.2.3. Factors Affecting Characterization Performance
- 2.7.7. Synthetic Biology Tools and Techniques
- 2.7.7.1. DNA synthesis
- 2.7.7.2. CRISPR-Cas9 systems
- 2.7.7.3. Protein/enzyme engineering
- 2.7.7.4. Computer-aided design
- 2.7.7.5. Strain construction and optimization
- 2.7.7.6. Robotics and automation
- 2.7.7.7. Artificial intelligence and machine learning
- 2.7.8. Alternative Feedstocks and Sustainability
- 2.7.8.1. C1 feedstocks: Metabolic pathways
- 2.7.8.2. C2 feedstocks
- 2.7.8.3. Lignocellulosic biomass feedstocks
- 2.7.8.4. Blue biotechnology feedstocks
- 2.7.8.5. Routes for carbon capture in biotechnology
- 2.8. Scale of Production
- 2.8.1. Laboratory Scale
- 2.8.1.1. Overview
- 2.8.1.2. Scale and Equipment
- 2.8.1.3. Advantages
- 2.8.1.4. Disadvantages
- 2.8.2. Pilot Scale
- 2.8.2.1. Overview
- 2.8.2.2. Scale and Equipment
- 2.8.2.3. Advantages
- 2.8.2.4. Disadvantages
- 2.8.3. Commercial Scale
- 2.8.3.1. Overview
- 2.8.3.2. Scale and Equipment
- 2.8.3.3. Advantages
- 2.8.3.4. Disadvantages
- 2.9. Mode of Operation
- 2.9.1. Batch Production
- 2.9.1.1. Overview
- 2.9.1.2. Advantages
- 2.9.1.3. Disadvantages
- 2.9.1.4. Applications
- 2.9.2. Fed-batch Production
- 2.9.2.1. Overview
- 2.9.2.2. Advantages
- 2.9.2.3. Disadvantages
- 2.9.2.4. Applications
- 2.9.3. Continuous Production
- 2.9.3.1. Overview
- 2.9.3.2. Advantages
- 2.9.3.3. Disadvantages
- 2.9.3.4. Applications
- 2.9.3.5. Key fermentation parameter comparison
- 2.9.4. Cell factories for biomanufacturing
- 2.9.4.1. Range of organisms
- 2.9.4.2. Escherichia coli (E.coli)
- 2.9.4.3. Corynebacterium glutamicum (C. glutamicum)
- 2.9.4.4. Bacillus subtilis (B. subtilis)
- 2.9.4.5. Saccharomyces cerevisiae (S. cerevisiae)
- 2.9.4.6. Yarrowia lipolytica (Y. lipolytica)
- 2.9.4.7. Non-model organisms
- 2.9.5. Perfusion Culture
- 2.9.5.1. Overview
- 2.9.5.2. Advantages
- 2.9.5.3. Disadvantages
- 2.9.5.4. Applications
- 2.9.5.5. Perfusion bioreactors
- 2.9.6. Other Modes of Operation
- 2.9.6.1. Immobilized Cell Culture
- 2.9.6.1.1. Immobilized enzymes
- 2.9.6.1.2. Immobilized catalysts
- 2.9.6.2. Two-Stage Production
- 2.9.6.3. Hybrid Systems
- 2.10. Host Organisms
3. BIOPHARMACEUTICALS
- 3.1. Overview
- 3.2. Technology/materials analysis
- 3.2.1. Monoclonal Antibodies (mAbs)
- 3.2.2. Recombinant Proteins
- 3.2.3. Vaccines
- 3.2.4. Cell and Gene Therapies
- 3.2.5. Blood Factors
- 3.2.6. Tissue Engineering Products
- 3.2.7. Nucleic Acid Therapeutics
- 3.2.8. Peptide Therapeutics
- 3.2.9. Biosimilars and Biobetters
- 3.2.10. Nanobodies and Antibody Fragments
- 3.2.11. Synthetic biology
- 3.2.11.1. Metabolic engineering
- 3.2.11.1.1. DNA synthesis
- 3.2.11.1.2. CRISPR
- 3.2.11.1.2.1. CRISPR/Cas9-modified biosynthetic pathways
- 3.2.11.2. Protein/Enzyme Engineering
- 3.2.11.3. Strain construction and optimization
- 3.2.11.4. Synthetic biology and metabolic engineering
- 3.2.11.5. Smart bioprocessing
- 3.2.11.6. Cell-free systems
- 3.2.11.7. Chassis organisms
- 3.2.11.8. Biomimetics
- 3.2.11.9. Sustainable materials
- 3.2.11.10. Robotics and automation
- 3.2.11.10.1. Robotic cloud laboratories
- 3.2.11.10.2. Automating organism design
- 3.2.11.10.3. Artificial intelligence and machine learning
- 3.2.11.11. Fermentation Processes
- 3.2.12. Generative Biology
- 3.2.12.1. Generative Adversarial Networks (GANs)
- 3.2.12.1.1. Variational Autoencoders (VAEs)
- 3.2.12.1.2. Normalizing Flows
- 3.2.12.1.3. Autoregressive Models
- 3.2.12.1.4. Evolutionary Generative Models
- 3.2.12.2. Design Optimization
- 3.2.12.2.1. Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)
- 3.2.12.2.1.1. Genetic Algorithms (GAs)
- 3.2.12.2.1.2. Evolutionary Strategies (ES)
- 3.2.12.2.2. Reinforcement Learning
- 3.2.12.2.3. Multi-Objective Optimization
- 3.2.12.2.4. Bayesian Optimization
- 3.2.12.3. Computational Biology
- 3.2.12.3.1. Molecular Dynamics Simulations
- 3.2.12.3.2. Quantum Mechanical Calculations
- 3.2.12.3.3. Systems Biology Modeling
- 3.2.12.3.4. Metabolic Engineering Modeling
- 3.2.12.4. Data-Driven Approaches
- 3.2.12.4.1. Machine Learning
- 3.2.12.4.2. Graph Neural Networks
- 3.2.12.4.3. Unsupervised Learning
- 3.2.12.4.4. Active Learning and Bayesian Optimization
- 3.2.12.5. Agent-Based Modeling
- 3.2.12.6. Hybrid Approaches
- 3.3. Market analysis
- 3.3.1. Key players and competitive landscape
- 3.3.2. Market Growth Drivers and Trends
- 3.3.3. Regulations
- 3.3.4. Value chain
- 3.3.5. Future outlook
- 3.3.6. Technology Readiness Level (TRL)
- 3.3.7. Addressable Market Size
- 3.3.8. Risks and Opportunities
- 3.3.9. Global revenues
- 3.3.9.1. By application market
- 3.3.9.2. By regional market
- 3.4. Company profiles (131 company profiles)
4. INDUSTRIAL ENZYMES (BIOCATALYSTS)
- 4.1. Overview
- 4.1.1. Bio-manufactured enzymes
- 4.2. Technology/materials analysis
- 4.2.1. Detergent Enzymes
- 4.2.2. Food Processing Enzymes
- 4.2.3. Textile Processing Enzymes
- 4.2.4. Paper and Pulp Processing Enzymes
- 4.2.5. Leather Processing Enzymes
- 4.2.6. Biofuel Production Enzymes
- 4.2.6.1. Enzymes for lignocellulosic derived bioethanol
- 4.2.6.2. Cellulases for lignocellulosic bioethanol
- 4.2.6.3. Hemicellulases and synergistic enzyme cocktails
- 4.2.6.4. Thermostable and extremophilic enzymes
- 4.2.6.5. Cost-performance metrics for thermostable enzymes
- 4.2.7. Animal Feed Enzymes
- 4.2.8. Pharmaceutical and Diagnostic Enzymes
- 4.2.9. Waste Management and Bioremediation Enzymes
- 4.2.9.1. Enzymes for plastics recycling
- 4.2.9.2. Enzymatic depolymerization
- 4.2.9.3. Challenges in enzymatic depolymerization
- 4.2.10. Agriculture and Crop Improvement Enzymes
- 4.2.11. Enzymes for Decarbonization and CO2 Utilization
- 4.2.11.1. Carbonic anhydrase in CO2 capture technologies
- 4.2.11.2. Formate dehydrogenase and CO2-to-chemicals pathways
- 4.2.11.3. Selected enzymatic approaches to CO2 capture and conversion
- 4.3. Market analysis
- 4.3.1. Key players and competitive landscape
- 4.3.2. Market Growth Drivers and Trends
- 4.3.3. Technology challenges and opportunities for industrial enzymes
- 4.3.4. Economic competitiveness of enzymatic processing
- 4.3.5. Regulations
- 4.3.6. Value chain
- 4.3.7. Future outlook
- 4.3.8. Technology Readiness Level (TRL)
- 4.3.9. Addressable Market Size
- 4.3.10. Risks and Opportunities
- 4.3.11. Global revenues
- 4.3.11.1. By application market
- 4.3.11.2. By regional market
- 4.4. Company profiles (63 company profiles)
5. BIOFUELS
- 5.1. Overview
- 5.2. Technology/materials analysis
- 5.2.1. Role in the circular economy
- 5.2.2. The global biofuels market
- 5.2.3. Feedstocks
- 5.2.3.1. First-generation (1-G)
- 5.2.3.2. Second-generation (2-G)
- 5.2.3.2.1. Lignocellulosic wastes and residues
- 5.2.3.2.2. Biorefinery lignin
- 5.2.3.3. Third-generation (3-G)
- 5.2.3.3.1. Algal biofuels
- 5.2.3.3.1.1. Properties
- 5.2.3.3.1.2. Advantages
- 5.2.3.4. Fourth-generation (4-G)
- 5.2.3.5. Advantages and disadvantages, by generation
- 5.2.4. Bioethanol
- 5.2.4.1. First-generation bioethanol (from sugars and starches)
- 5.2.4.2. Second-generation bioethanol (from lignocellulosic biomass)
- 5.2.4.3. Third-generation bioethanol (from algae)
- 5.2.5. Biodiesel
- 5.2.5.1. Biodiesel by generation
- 5.2.5.2. SWOT analysis
- 5.2.5.3. Production of biodiesel and other biofuels
- 5.2.5.3.1. Pyrolysis of biomass
- 5.2.5.3.2. Vegetable oil transesterification
- 5.2.5.3.3. Vegetable oil hydrogenation (HVO)
- 5.2.5.3.3.1. Production process
- 5.2.5.3.4. Biodiesel from tall oil
- 5.2.5.3.5. Fischer-Tropsch BioDiesel
- 5.2.5.3.6. Hydrothermal liquefaction of biomass
- 5.2.5.3.7. CO2 capture and Fischer-Tropsch (FT)
- 5.2.5.3.8. Dymethyl ether (DME)
- 5.2.5.4. Prices
- 5.2.5.5. Global production and consumption
- 5.2.6. Biogas
- 5.2.6.1. Feedstocks
- 5.2.6.2. Biomethane
- 5.2.6.2.1. Production pathways
- 5.2.6.2.1.1. Landfill gas recovery
- 5.2.6.2.1.2. Anaerobic digestion
- 5.2.6.2.1.3. Thermal gasification
- 5.2.6.3. SWOT analysis
- 5.2.6.4. Global production
- 5.2.6.5. Prices
- 5.2.6.5.1. Raw Biogas
- 5.2.6.5.2. Upgraded Biomethane
- 5.2.6.6. Bio-LNG
- 5.2.6.6.1. Markets
- 5.2.6.6.1.1. Trucks
- 5.2.6.6.1.2. Marine
- 5.2.6.6.2. Production
- 5.2.6.6.3. Plants
- 5.2.6.7. bio-CNG (compressed natural gas derived from biogas)
- 5.2.6.8. Carbon capture from biogas
- 5.2.6.9. Biosyngas
- 5.2.6.9.1. Production
- 5.2.6.9.2. Prices
- 5.2.7. Biobutanol
- 5.2.7.1. Production
- 5.2.7.2. Prices
- 5.2.8. Biohydrogen
- 5.2.8.1. Description
- 5.2.8.1.1. Dark fermentation
- 5.2.8.1.2. Photofermentation
- 5.2.8.1.3. Biophotolysis (direct and indirect)
- 5.2.8.1.3.1. Direct Biophotolysis:
- 5.2.8.1.3.2. Indirect Biophotolysis:
- 5.2.8.2. SWOT analysis
- 5.2.8.3. Production of biohydrogen from biomass
- 5.2.8.3.1. Biological Conversion Routes
- 5.2.8.3.1.1. Bio-photochemical Reaction
- 5.2.8.3.1.2. Fermentation and Anaerobic Digestion
- 5.2.8.3.2. Thermochemical conversion routes
- 5.2.8.3.2.1. Biomass Gasification
- 5.2.8.3.2.2. Biomass Pyrolysis
- 5.2.8.3.2.3. Biomethane Reforming
- 5.2.8.4. Applications
- 5.2.8.5. Prices
- 5.2.9. Biomethanol
- 5.2.9.1. Gasification-based biomethanol
- 5.2.9.2. Biosynthesis-based biomethanol
- 5.2.9.3. SWOT analysis
- 5.2.9.4. Methanol-to gasoline technology
- 5.2.9.4.1. Production processes
- 5.2.9.4.1.1. Anaerobic digestion
- 5.2.9.4.1.2. Biomass gasification
- 5.2.9.4.1.3. Power to Methane
- 5.2.10. Bio-oil and Biochar
- 5.2.10.1. Pyrolysis-based bio-oil
- 5.2.10.2. Hydrothermal liquefaction-based bio-oil
- 5.2.10.3. Biochar from pyrolysis and gasification processes
- 5.2.10.4. Advantages of bio-oils
- 5.2.10.5. Production
- 5.2.10.5.1. Fast Pyrolysis
- 5.2.10.5.2. Costs of production
- 5.2.10.5.3. Upgrading
- 5.2.10.6. SWOT analysis
- 5.2.10.7. Applications
- 5.2.10.8. Bio-oil producers
- 5.2.10.9. Prices
- 5.2.11. Renewable Diesel and Jet Fuel
- 5.2.11.1. Renewable diesel
- 5.2.11.1.1. Production
- 5.2.11.1.2. SWOT analysis
- 5.2.11.1.3. Global consumption
- 5.2.11.1.4. Prices
- 5.2.11.2. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
- 5.2.11.2.1. Description
- 5.2.11.2.2. SWOT analysis
- 5.2.11.2.3. Global production and consumption
- 5.2.11.2.4. Production pathways
- 5.2.11.2.5. Prices
- 5.2.11.2.6. Bio-aviation fuel production capacities
- 5.2.11.2.7. Challenges
- 5.2.11.2.8. Global consumption
- 5.2.12. Algal biofuels
- 5.2.12.1. Conversion pathways
- 5.2.12.2. SWOT analysis
- 5.2.12.3. Production
- 5.2.12.4. Market challenges
- 5.2.12.5. Prices
- 5.2.12.6. Producers
- 5.3. Market analysis
- 5.3.1. Key players and competitive landscape
- 5.3.2. Market Growth Drivers and Trends
- 5.3.3. Regulations
- 5.3.4. Value chain
- 5.3.5. Future outlook
- 5.3.6. Technology Readiness Level (TRL)
- 5.3.7. Addressable Market Size
- 5.3.8. Risks and Opportunities
- 5.3.9. Global revenues
- 5.3.9.1. By biofuel type
- 5.3.9.2. Applications Market
- 5.3.9.3. By regional market
- 5.4. Company profiles (233 company profiles)
6. BIOPLASTICS
- 6.1. Overview
- 6.2. Technology/materials analysis
- 6.2.1. Polylactic acid (PLA)
- 6.2.2. Polyhydroxyalkanoates (PHAs)
- 6.2.2.1. Types
- 6.2.2.2. Polyhydroxybutyrate (PHB)
- 6.2.2.3. Polyhydroxyvalerate (PHV)
- 6.2.3. Bio-based polyethylene (PE)
- 6.2.4. Bio-based polyethylene terephthalate (PET)
- 6.2.5. Bio-based polyurethanes (PUs)
- 6.2.6. Starch-based plastics
- 6.2.7. Cellulose-based plastics
- 6.3. Market analysis
- 6.3.1. Key players and competitive landscape
- 6.3.2. Market Growth Drivers and Trends
- 6.3.3. Regulations
- 6.3.4. Value chain
- 6.3.5. Future outlook
- 6.3.6. Technology Readiness Level (TRL)
- 6.3.7. Addressable Market Size
- 6.3.8. Risks and Opportunities
- 6.3.9. Global revenues
- 6.3.9.1. By type
- 6.3.9.2. By application market
- 6.3.9.3. By regional market
- 6.4. Company profiles (581 company profiles)
7. BIOCHEMICALS
- 7.1. Overview
- 7.2. Technology/materials analysis
- 7.2.1. Organic acids
- 7.2.1.1. Lactic acid
- 7.2.1.1.1. D-lactic acid
- 7.2.1.1.2. L-lactic acid
- 7.2.1.2. Succinic acid
- 7.2.1.3. Itaconic acid
- 7.2.1.4. Citric acid
- 7.2.1.5. Acetic acid
- 7.2.2. Amino acids
- 7.2.2.1. Glutamic acid
- 7.2.2.2. Lysine
- 7.2.2.3. Threonine
- 7.2.2.4. Methionine
- 7.2.2.5. Vitamins produced using biotechnology
- 7.2.2.5.1. Vitamin B2 (Riboflavin)
- 7.2.2.5.2. Vitamin B12 (Cobalamin)
- 7.2.2.5.3. Vitamin C (Ascorbic Acid)
- 7.2.2.5.4. Vitamin B7 (Biotin)
- 7.2.2.5.5. Vitamin B3 (Niacin / Nicotinic Acid)
- 7.2.2.5.6. Vitamin B9 (Folic Acid / Folate)
- 7.2.3. Alcohols
- 7.2.3.1. Ethanol
- 7.2.3.2. Butanol
- 7.2.3.3. Isobutanol
- 7.2.3.4. Propanediol
- 7.2.4. Surfactants
- 7.2.4.1. Biosurfactants (e.g., rhamnolipids, sophorolipids)
- 7.2.4.1.1. Rhamnolipids
- 7.2.4.1.2. Sophorolipids
- 7.2.4.1.3. Mannosylerythritol lipids (MELs)
- 7.2.4.1.4. Cellobiose lipids
- 7.2.4.1.5. Designer glycolipids and lipopeptides via synthetic biology
- 7.2.4.2. Alkyl polyglucosides (APGs)
- 7.2.5. Solvents
- 7.2.5.1. Ethyl lactate
- 7.2.5.2. Dimethyl carbonate
- 7.2.5.3. Glycerol
- 7.2.6. Flavours and fragrances
- 7.2.6.1. Vanillin
- 7.2.6.2. Nootkatone
- 7.2.6.3. Limonene
- 7.2.6.4. Bio-manufactured fragrances and aromatics
- 7.2.6.5. Biotech-derived fragrance precursors
- 7.2.6.6. Ambroxan
- 7.2.6.7. Flavour enhancers
- 7.2.6.8. Disodium Inosinate (IMP)
- 7.2.6.9. Disodium Guanylate (GMP)
- 7.2.6.10. Monatin
- 7.2.7. Bio-based monomers and intermediates
- 7.2.7.1. Succinic acid
- 7.2.7.2. 1,4-Butanediol (BDO)
- 7.2.7.3. Isoprene
- 7.2.7.4. Ethylene
- 7.2.7.5. Propylene
- 7.2.7.6. Adipic acid
- 7.2.7.7. Acrylic acid
- 7.2.7.8. Sebacic acid
- 7.2.8. Bio-based polymers
- 7.2.8.1. Polybutylene succinate (PBS)
- 7.2.8.2. Polyamides (nylons)
- 7.2.8.3. Polyethylene furanoate (PEF)
- 7.2.8.4. Polytrimethylene terephthalate (PTT)
- 7.2.8.5. Polyethylene isosorbide terephthalate (PEIT)
- 7.2.9. Bio-based composites and blends
- 7.2.9.1. Wood-plastic composites (WPCs)
- 7.2.9.2. Biofiller-reinforced plastics
- 7.2.9.3. Biofiber-reinforced plastics
- 7.2.9.4. Polymer blends with bio-based components
- 7.2.10. Beauty and Personal Care Chemicals
- 7.2.10.1. Hyaluronic acid production
- 7.2.10.2. Squalene and Squalane alternatives
- 7.2.10.3. Collagen
- 7.2.10.4. Bio-based UV filters and photoprotective compounds
- 7.2.10.5. Melanin
- 7.2.10.6. Emollients
- 7.2.11. Waste
- 7.2.11.1. Food waste
- 7.2.11.2. Agricultural waste
- 7.2.11.3. Forestry waste
- 7.2.11.4. Aquaculture/fishing waste
- 7.2.11.5. Municipal solid waste
- 7.2.11.6. Industrial waste
- 7.2.11.7. Waste oils
- 7.2.12. Microbial and mineral sources
- 7.2.12.1. Microalgae
- 7.2.12.2. Macroalgae
- 7.2.12.3. Cyanobacteria
- 7.2.12.4. Mineral sources
- 7.2.13. Other Bio-manufactured Products
- 7.2.13.1. Cement alternatives from biomanufacturing
- 7.2.13.2. Precision fermentation products
- 7.3. Market analysis
- 7.3.1. Key players and competitive landscape
- 7.3.1.1. Company landscape in specialty chemicals biotechnology
- 7.3.1.2. Bio-manufactured beauty ingredient production capacities
- 7.3.2. Market Growth Drivers and Trends
- 7.3.2.1. Trends and drivers in biotechnology
- 7.3.2.2. Government support of biotechnology
- 7.3.2.3. Carbon taxes
- 7.3.3. Regulations
- 7.3.4. Value chain
- 7.3.4.1. Economic viability factors
- 7.3.4.2. Effect of feedstock prices
- 7.3.4.3. Scale-up effects on cost
- 7.3.5. Future outlook
- 7.3.6. Technology Readiness Level (TRL)
- 7.3.7. Addressable Market Size
- 7.3.8. Risks and Opportunities
- 7.3.9. Major market challenges
- 7.3.10. Technical challenges
- 7.3.11. Global revenues
- 7.3.11.1. By type
- 7.3.11.2. By application market
- 7.3.11.3. By regional market
- 7.4. Company profiles (138 company profiles)
8. BIO-AGRITECH
- 8.1. Overview
- 8.2. Technology/materials analysis
- 8.2.1. Biopesticides
- 8.2.1.1. Semiochemical
- 8.2.1.2. Macrobial Biological Control Agents
- 8.2.1.3. Microbial pesticides
- 8.2.1.4. Biochemical pesticides
- 8.2.1.5. Plant-incorporated protectants (PIPs)
- 8.2.2. Biofertilizers
- 8.2.3. Biostimulants
- 8.2.3.1. Microbial biostimulants
- 8.2.3.1.1. Nitrogen Fixation
- 8.2.3.1.2. Formulation Challenges
- 8.2.3.2. Natural Product Biostimulants
- 8.2.3.3. Manipulating the Microbiome
- 8.2.3.4. Synthetic Biology
- 8.2.3.5. Non-microbial biostimulants
- 8.2.4. Agricultural Enzymes
- 8.2.4.1. Types of Agricultural Enzymes
- 8.3. Market analysis
- 8.3.1. Key players and competitive landscape
- 8.3.2. Market Growth Drivers and Trends
- 8.3.3. Regulations
- 8.3.4. Value chain
- 8.3.5. Future outlook
- 8.3.6. Addressable Market Size
- 8.3.7. Risks and Opportunities
- 8.3.8. Global revenues
- 8.3.8.1. By application market
- 8.3.8.2. By regional market
- 8.4. Company profiles (105 company profiles)
9. RESEARCH METHODOLOGY
10. REFERENCES