市場調査レポート
商品コード
1286055

先進炭素材料の世界市場 (2023年~2033年)

The Global Market for Advanced Carbon Materials 2023-2033

出版日: | 発行: Future Markets, Inc. | ページ情報: 英文 1090 Pages, 142 Figures, 153 Tables | 納期: 即納可能 即納可能とは

価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=196.37円
先進炭素材料の世界市場 (2023年~2033年)
出版日: 2023年11月23日
発行: Future Markets, Inc.
ページ情報: 英文 1090 Pages, 142 Figures, 153 Tables
納期: 即納可能 即納可能とは
  • 全表示
  • 概要
  • 図表
  • 目次
概要

当レポートは、世界の各種の先進炭素材料 (炭素繊維、カーボンブラック、グラファイト、バイオ炭、グラフェン、ナノチューブ、ナノダイヤモンドなど) の市場と主要技術について包括的に分析・予測したものです。

先進炭素材料は、ユニークな機械的、電気的、生物学的、化学的特性を持ち、エレクトロニクス、エネルギー貯蔵、触媒、ろ過、センシングなど様々な用途に応用されています。当レポートでは、先進炭素材料の生産能力、稼働率、生産、取引、需要、用途、市場シェア、価格に関する広範な独自データを提供しています。

当レポートでカバーする先進炭素材料は以下の通りです:

  • 炭素繊維
  • カーボンブラック
  • グラファイト
  • グラフェン
  • バイオ炭
  • 多層カーボンナノチューブ
  • 単層カーボンナノチューブ
  • フラーレン
  • ナノダイヤモンド
  • グラフェン量子ドット
  • カーボンフォーム
  • ダイヤモンドライクカーボン (DLC) コーティング

当レポートでは、複数の炭素材料カテゴリーにわたる市場規模、需要動向、業界課題、競合情勢、価格動向、生産能力、主要企業、製造技術を評価しています。

レポートの内容は以下の通りです:

  • 市場の促進要因と動向
  • 特性と合成方法
  • 市場セグメンテーション:炭素回収・利用、複合材料、電気化学エネルギー貯蔵デバイス (バッテリー・スーパーキャパシタ)、センサー、熱管理、吸着、電磁シールド、触媒担体、センサーなどを含む。
  • 価格と価格促進要因
  • 先進炭素材料の市場消費量:種類別
  • 生産能力 (稼働中・計画中):材料別
  • 1,000社以上の企業プロファイル:BC Biocarbon、Cabot Corporation、Carba、Carbitex、Dark Black Carbon、GrafTech International、Gratomic、Graphenea、Haydale Graphene Industries、Hexcel Corporation、Huntsman Corporation、Ibiden Co.、Ltd.、JEIO、LG Chem、Leading Edge Materials、Li-S Energy、Mattershift、Mitsubishi Chemical Carbon Fiber and Composites、Inc.、Mersen、LLC、NextSource Materials、Nippon Techno-Carbon Co.、Ltd.、Teijin、UMATEX、Nanocyl SA、OCSiAl、Perpetual Next、Renergi、SEC Carbon、SGL Group、Showa Denko、Syrah Resources、Versarien、Zeon Corporationなど。

目次

第1章 先進炭素材料市場

  • 市場概要
  • グリーン転換における先進炭素材料の役割

第2章 炭素繊維

  • 炭素繊維の性質
    • 係数別の種類
    • 二次加工別の種類
  • 前駆体材料の種類
    • PAN:ポリアクリロニトリル
  • 炭素繊維強化ポリマー (CFRP)
    • 活用領域
  • 主要企業
  • 世界市場
    • 世界の炭素繊維の需要、業界別 (単位:MT、2016年~2033年)
    • 世界の炭素繊維の収益、産業別 (単位:10億米ドル 2016年~2033年)
    • 世界の炭素繊維の需要、地域別 (単位:MT、2016年~2033年)
  • 市場の促進要因と動向
  • 市場の課題
  • 今後の動向
  • 生産能力
    • 年間生産能力:メーカー別
    • 市場シェア:生産能力別
  • 企業プロファイル
    • 炭素繊維メーカー (全29社分のプロファイル)
    • 炭素繊維複合材料メーカー (全62社分のプロファイル)
    • 炭素繊維リサイクル業者 (全16社分のプロファイル)

第3章 カーボンブラック

  • 市販のカーボンブラック
  • 特性
  • 製造プロセス
  • 世界のカーボンブラック市場
    • 市場別 (単位:トン)
    • 市場別 (収益ベース)
    • 地域別 (単位:トン)
  • 伝統的な市場
  • 成長市場
  • 市場のサプライチェーン
  • 特殊カーボンブラック
    • 世界の特殊カーボンブラックの市場規模
  • 再生カーボンブラック (rCB)
    • 使用済みタイヤの熱分解 (ELT)
    • 不連続 (「バッチ」) 熱分解
    • 半連続熱分解
    • 連続熱分解
    • 主要企業
    • 世界の再生カーボンブラックの市場規模
  • 価格設定
    • 原料
    • 市販のカーボンブラック
  • 生産能力
  • 企業プロファイル (全36社分)

第4章 グラファイト

  • グラファイトの種類
    • 天然グラファイトと人造グラファイト
  • 天然グラファイト
    • 分類
    • 処理
    • 鱗片状
    • 土状 (アモルファス) グラファイト
    • 結晶質鱗状グラファイト
  • 人造グラファイト
    • 分類
    • 処理
    • 人造グラファイト製造の問題点
    • 等方性グラファイト
    • グラファイト電極
    • 押出グラファイト
    • 振動成型グラファイト
    • ダイモールドグラファイト
  • 新しい科学技術
  • グラファイト材料のリサイクル
  • グラファイトの用途
  • グラファイトの価格 (トン)
    • 価格設定 (2023年)
  • グラファイトの世界市場と生産
    • 世界の天然グラファイト鉱山の生産量と埋蔵量
    • 世界のグラファイトの生産量 (単位:トン、2016年~2022年)
    • 世界のグラファイトの推定生産量 (単位:トン、2023年~2033年)
    • 人造グラファイトの供給
    • 世界のグラファイトの市場需要:最終用途市場別 (単位:トン、2016~2033年)
    • グラファイトの需要:最終用途市場別 (2022年)
    • グラファイトの需要:最終用途市場別 (2033年)
    • 地域別の需要
    • 主要企業
    • 市場のサプライチェーン
  • 企業プロファイル (全95社分)

第5章 バイオ炭

  • バイオ炭とは何か?
  • 炭素の隔離
  • バイオ炭の性質
  • 市場とアプリケーション
  • バイオ炭の生産
  • 原料
  • 生産工程
    • 持続可能な生産
    • 熱分解
    • ガス化
    • 加熱蒸気式炭化 (HTC)
    • 焙焼
    • 装置メーカー
  • 価格設定
  • カーボンクレジット
  • バイオ炭の市場
    • 農業・畜産
    • 建設資材
    • 廃水処理
    • 濾過
    • 炭素回収
    • 化粧品
    • テキスタイル
    • 積層造形
    • インク
    • ポリマー
    • 包装
    • 鋼鉄・金属
    • エネルギー
  • 世界の市場需要
  • 企業プロファイル (全114社分)

第6章 グラフェン

  • グラフェンの種類
  • 性質
  • グラフェン市場の課題
  • グラフェンメーカー
    • 生産能力
  • 価格と価格促進要因
    • プリスティングラフェンフレークの価格/CVDグラフェン
    • 数層グラフェンの価格
    • グラフェンナノプレートレットの価格設定
    • 酸化グラフェン (GO) および還元型酸化グラフェン (rGO) の割引価格
    • 多層グラフェン (MLG) の価格
    • グラフェンインク
  • 世界需要 (単位:トン、2018年~2033年)
    • 世界需要:グラフェン材料別 (トン)
    • 世界需要:エンドユーザー市場別
    • グラフェン市場:地域別
    • 世界のグラフェン収益:市場別 (2018年~2034年)
  • 企業プロファイル (全360社分)

第7章 カーボンナノチューブ

  • 性質
    • CNTの特性比較
  • 多層カーボンナノチューブ (MWCNT)
    • 活用領域とTRL
    • メーカー
    • 価格と価格促進要因
    • 世界の市場需要
  • 企業プロファイル (全138社分)
  • 単層カーボンナノチューブ (SWCNT)
    • 性質
    • 活用領域
    • 価格
    • 生産能力
    • 世界の市場需要
  • 企業プロファイル (全16社分)
  • その他の種類
    • 二層カーボンナノチューブ (DWNT)
    • 垂直配列CNT (VACNT)
    • 数層カーボンナノチューブ (FWNT)
    • カーボンナノホーン (CNH)
    • カーボンオニオン
    • 窒化ホウ素ナノチューブ (BNNT)
    • 企業 (全6社分のプロファイル)

第8章 カーボンナノファイバー

  • 性質
  • 合成
    • 化学蒸着
    • エレクトロスピニング
    • テンプレートベース
    • バイオマス由来
  • 市場
    • 電池
    • スーパーキャパシタ
    • 燃料電池
    • CO2回収
  • 企業 (全10社分のプロファイル)

第9章 フラーレン

  • 性質
  • 製品
  • 市場と活用領域
  • 技術成熟度レベル (TRL)
  • 世界の市場需要
  • 価格
  • メーカー (全20社分のプロファイル)

第10章 ナノダイヤモンド

  • 種類
    • 蛍光ナノダイヤモンド (FND)
  • 活用領域
  • 価格と価格促進要因
  • 世界需要 (単位:トン、2018年~2033年)
  • 企業プロファイル (全30社分)

第11章 グラフェン量子ドット

  • 量子ドットとの比較
  • 性質
  • 合成
    • トップダウン方式
    • ボトムアップ方式
  • 活用領域
  • グラフェン量子ドットの価格設定
  • グラフェン量子ドットのメーカー (全9社分)

第12章 カーボンフォーム

  • 種類
    • カーボンエアロゲル
  • 性質
  • 活用領域
  • 企業プロファイル (全9社分)

第13章 ダイヤモンドライクカーボン (DLC) コーティング

  • 性質
  • 活用領域と市場
  • 世界の市場規模
  • 企業プロファイル (全9社分)

第14章 炭素回収による炭素材料とその活用

  • 発生源からのCO2回収
    • 交通機関
    • 世界の発生源でのCO2回収能力
    • 由来別
    • エンドポイント別
  • 主な二酸化炭素回収プロセス
    • 材料
    • 燃焼後
    • 酸素燃焼
    • 液体または超臨界 CO2:Allam-Fetvedtサイクル
    • 燃焼前
  • 炭素分離技術
    • 吸収回収
    • 吸着回収
    • 液体/超臨界 CO2 (極低温) 回収
    • ケミカルループベース回収
    • Calixの高度煆焼炉
    • その他の技術
    • 主な分離技術の比較
    • CO2の電気化学変換
  • DAC (直接空気回収)
    • 概要
  • 企業 (全4社のプロファイル)

第15章 調査手法

第16章 参考資料

図表

List of Tables

  • Table 1. The advanced carbon materials market
  • Table 2. Classification and types of the carbon fibers
  • Table 3. Summary of carbon fiber properties
  • Table 4. Modulus classifications of carbon fiber
  • Table 5. Comparison of main precursor fibers
  • Table 6. Summary of markets and applications for CFRPs
  • Table 7. Production capacities of carbon fiber producers, in metric tonnes, current and planned
  • Table 8. Market drivers and trends in carbon fibers
  • Table 9. Market challenges in the CF and CFRP market
  • Table 10. Production capacities of carbon fiber producers, in metric tonnes, current and planned
  • Table 11. Main Toray production sites and capacities
  • Table 12. Commercially available carbon black grades
  • Table 13. Properties of carbon black and influence on performance
  • Table 14. Carbon black compounds
  • Table 15. Carbon black manufacturing processes, advantages and disadvantages
  • Table 16. Global market for carbon black 2018-2033, by end user market (100,000 tons)
  • Table 17. Global market for carbon black 2018-2033, by end user market (billion USD)
  • Table 18. Global market for carbon black 2018-2033, by region (100,000 tons)
  • Table 19: Market drivers for carbon black in the tire industry
  • Table 20. Global market for carbon black in tires (Million metric tons), 2018 to 2033
  • Table 21. Carbon black non-tire applications
  • Table 22. Market supply chain for carbon black
  • Table 23. Specialty carbon black demand, 2018-2033 (000s Tons), by market
  • Table 24. Categories for recovered carbon black (rCB) based on key properties and intended applications
  • Table 25. rCB post-treatment technologies
  • Table 26. Recovered carbon black producers
  • Table 27. Recovered carbon black demand, 2018-2033 (000s Tons), by market
  • Table 28 Pricing of carbon black
  • Table 29: Carbon black capacities, by producer
  • Table 30. Comparison between Natural and Synthetic Graphite
  • Table 31. Classification of natural graphite with its characteristics
  • Table 32. Characteristics of synthetic graphite
  • Table 33: Main markets and applications of isostatic graphite
  • Table 34. Current or planned production capacities for isostatic graphite
  • Table 35. Main graphite electrode producers and capacities (MT/year)
  • Table 36. Markets and applications of graphite
  • Table 37. Classification, application and price of graphite as a function of size
  • Table 38. Estimated global mine Production of natural graphite 2020-2022, by country (tons)
  • Table 39. Global production of graphite 2016-2022 MT
  • Table 40. Estimated global graphite production in tonnes, 2023-2033
  • Table 41. Main natural graphite producers
  • Table 42. Main synthetic graphite producers
  • Table 43. Next Resources graphite flake products
  • Table 44. Summary of key properties of biochar
  • Table 45. Biochar physicochemical and morphological properties
  • Table 46. Markets and applications for biochar
  • Table 47. Biochar feedstocks-source, carbon content, and characteristics
  • Table 48. Biochar production technologies, description, advantages and disadvantages
  • Table 49. Comparison of slow and fast pyrolysis for biomass
  • Table 50. Comparison of thermochemical processes for biochar production
  • Table 51. Biochar production equipment manufacturers
  • Table 52. Biochar applications in agriculture and livestock farming
  • Table 53. Effect of biochar on different soil properties
  • Table 54. Fertilizer products and their associated N, P, and K content
  • Table 55. Application of biochar in construction
  • Table 56. Process and benefits of biochar as an amendment in cement
  • Table 57. Application of biochar in asphalt
  • Table 58. Biochar applications for wastewater treatment
  • Table 59. Biochar in carbon capture overview
  • Table 60. Biochar in cosmetic products
  • Table 61. Biochar in textiles
  • Table 62. Biochar in additive manufacturing
  • Table 63. Biochar in ink
  • Table 64. Biochar in packaging
  • Table 65. Companies using biochar in packaging
  • Table 66. Biochar in steel and metal
  • Table 67. Summary of applications of biochar in energy
  • Table 68. Global demand for biochar 2018-2033 (1,000 tons), by market
  • Table 69. Properties of graphene, properties of competing materials, applications thereof
  • Table 70. Graphene market challenges
  • Table 71. Main graphene producers by country, annual production capacities, types and main markets they sell into 2020
  • Table 72. Types of graphene and typical prices
  • Table 73. Pristine graphene flakes pricing by producer
  • Table 74. Few-layer graphene pricing by producer
  • Table 75. Graphene nanoplatelets pricing by producer
  • Table 76. Graphene oxide and reduced graphene oxide pricing, by producer
  • Table 77. Multi-layer graphene pricing by producer
  • Table 78. Graphene ink pricing by producer
  • Table 79. Global graphene demand by type of graphene material, 2018-2034 (tons)
  • Table 80. Global graphene demand, by region, 2018-2034 (tons)
  • Table 81. Performance criteria of energy storage devices
  • Table 82. Typical properties of SWCNT and MWCNT
  • Table 83. Properties of CNTs and comparable materials
  • Table 84. Applications of MWCNTs
  • Table 85. Annual production capacity of the key MWCNT producers in 2023 (MT)
  • Table 86. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer
  • Table 87. Properties of carbon nanotube paper
  • Table 88. Comparative properties of MWCNT and SWCNT
  • Table 89. Markets, benefits and applications of Single-Walled Carbon Nanotubes
  • Table 90. SWCNTs pricing
  • Table 91. Annual production capacity of SWCNT producers
  • Table 92. SWCNT market demand forecast (metric tons), 2018-2033
  • Table 93. Chasm SWCNT products
  • Table 94. Thomas Swan SWCNT production
  • Table 95. Applications of Double-walled carbon nanotubes
  • Table 96. Markets and applications for Vertically aligned CNTs (VACNTs)
  • Table 97. Markets and applications for few-walled carbon nanotubes (FWNTs)
  • Table 98. Markets and applications for carbon nanohorns
  • Table 99. Comparative properties of BNNTs and CNTs
  • Table 100. Applications of BNNTs
  • Table 101. Comparison of synthesis methods for carbon nanofibers
  • Table 102. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications
  • Table 103. Types of fullerenes and applications
  • Table 104. Products incorporating fullerenes
  • Table 105. Markets, benefits and applications of fullerenes
  • Table 106. Global market demand for fullerenes, 2018-2033 (tons)
  • Table 107. Example prices of fullerenes
  • Table 108. Properties of nanodiamonds
  • Table 109. Summary of types of NDS and production methods-advantages and disadvantages
  • Table 110. Markets, benefits and applications of nanodiamonds
  • Table 111. Pricing of nanodiamonds, by producer/distributor
  • Table 112. Demand for nanodiamonds (metric tonnes), 2018-2033
  • Table 113. Production methods, by main ND producers
  • Table 114. Adamas Nanotechnologies, Inc. nanodiamond product list
  • Table 115. Carbodeon Ltd. Oy nanodiamond product list
  • Table 116. Daicel nanodiamond product list
  • Table 117. FND Biotech Nanodiamond product list
  • Table 118. JSC Sinta nanodiamond product list
  • Table 119. Plasmachem product list and applications
  • Table 120. Ray-Techniques Ltd. nanodiamonds product list
  • Table 121. Comparison of ND produced by detonation and laser synthesis
  • Table 122. Comparison of graphene QDs and semiconductor QDs
  • Table 123. Advantages and disadvantages of methods for preparing GQDs
  • Table 124. Applications of graphene quantum dots
  • Table 125. Prices for graphene quantum dots
  • Table 126. Properties of carbon foam materials
  • Table 127. Applications of carbon foams
  • Table 128. Properties of Diamond-like carbon (DLC) coatings
  • Table 129. Applications and markets for Diamond-like carbon (DLC) coatings
  • Table 130. Global revenues for DLC coatings, 2018-2033 (Billion USD)
  • Table 131. Point source examples
  • Table 132. Assessment of carbon capture materials
  • Table 133. Chemical solvents used in post-combustion
  • Table 134. Commercially available physical solvents for pre-combustion carbon capture
  • Table 135. Main capture processes and their separation technologies
  • Table 136. Absorption methods for CO2 capture overview
  • Table 137. Commercially available physical solvents used in CO2 absorption
  • Table 138. Adsorption methods for CO2 capture overview
  • Table 139. Membrane-based methods for CO2 capture overview
  • Table 140. Comparison of main separation technologies
  • Table 141. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages
  • Table 142. Advantages and disadvantages of DAC

List of Figures

  • Figure 1. Manufacturing process of PAN type carbon fibers
  • Figure 2. Production processes for pitch-based carbon fibers
  • Figure 3. Global carbon fiber demand 2016-2033, by industry (MT)
  • Figure 4. Global carbon fiber revenues 2016-2033, by industry (MT)
  • Figure 5. Global carbon fiber revenues 2016-2033, by region (MT)
  • Figure 6. Carbon fiber manufacturing capacity in 2022, by company (metric tonnes)
  • Figure 7. Neustark modular plant
  • Figure 8. CR-9 carbon fiber wheel
  • Figure 9. The Continuous Kinetic Mixing system
  • Figure 10. Chemical decomposition process of polyurethane foam
  • Figure 11. Electron microscope image of carbon black
  • Figure 12. Different shades of black, depending on the surface of Carbon Black
  • Figure 13. Structure- Aggregate Size/Shape Distribution
  • Figure 14. Surface Chemistry - Surface Functionality Distribution
  • Figure 15. Sequence of structure development of Carbon Black
  • Figure 16. Carbon Black pigment in Acrylonitrile butadiene styrene (ABS) polymer
  • Figure 17. Global market for carbon black 2018-2033, by end user market (100,000 tons)
  • Figure 18. Global market for carbon black 2018-2033, by end user market (millions USD)
  • Figure 19. Global market for carbon black 2018-2033, by region (100,000 tons)
  • Figure 20 Break-down of raw materials (by weight) used in a tire
  • Figure 21. Applications of specialty carbon black
  • Figure 22. Specialty carbon black market volume, 2018-2033 (000s Tons), by market
  • Figure 23. Pyrolysis process: from ELT to rCB, oil, and syngas, and applications thereof
  • Figure 24. Recovered carbon black demand, 2018-2033 (000s Tons), by market
  • Figure 25. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG)
  • Figure 26. Overview of graphite production, processing and applications
  • Figure 27. Flake graphite
  • Figure 28. Applications of flake graphite
  • Figure 29. Amorphous graphite
  • Figure 30. Vein graphite
  • Figure 31: Isostatic pressed graphite
  • Figure 32. Global market for graphite EAFs, 2018-2033 (MT)
  • Figure 33. Extruded graphite rod
  • Figure 34. Vibration Molded Graphite
  • Figure 35. Die-molded graphite products
  • Figure 36. Price of fine flake graphite 2022-2023
  • Figure 37. Price of spherical graphite, 2022-2023
  • Figure 38. Global production of graphite 2016-2022 MT
  • Figure 39. Estimated global graphite production in tonnes, 2023-2033
  • Figure 40. Global market demand for natural graphite by end use market 2016-2033, tonnes
  • Figure 41. Global market demand for synthetic graphite by end use market 2016-2033, tonnes
  • Figure 42. Consumption of graphite by end use markets, 2022
  • Figure 43. Demand for graphite by end use markets, 2033
  • Figure 44. Global consumption of graphite by type and region, 2022
  • Figure 45. Graphite market supply chain (battery market)
  • Figure 46. Biochars from different sources, and by pyrolyzation at different temperatures
  • Figure 47. Compressed biochar
  • Figure 48. Biochar production diagram
  • Figure 49. Pyrolysis process and by-products in agriculture
  • Figure 50. Perennial ryegrass plants grown in clay soil with (Right) and without (Left) biochar
  • Figure 51. Biochar bricks
  • Figure 52. Capchar prototype pyrolysis kiln
  • Figure 53. Made of Air's HexChar panels
  • Figure 54. Takavator
  • Figure 55. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene
  • Figure 56. Global graphene demand by type of graphene material, 2018-2034 (tons)
  • Figure 57. Global graphene demand by market, 2018-2034 (tons)
  • Figure 58. Global graphene demand, by region, 2018-2034 (tons)
  • Figure 59. Global graphene revenues, by market, 2018-2034 (Millions USD)
  • Figure 60. Graphene heating films
  • Figure 61. Graphene flake products
  • Figure 62. AIKA Black-T
  • Figure 63. Printed graphene biosensors
  • Figure 64. Prototype of printed memory device
  • Figure 65. Brain Scientific electrode schematic
  • Figure 66. Graphene battery schematic
  • Figure 67. Dotz Nano GQD products
  • Figure 68. Graphene-based membrane dehumidification test cell
  • Figure 69. Proprietary atmospheric CVD production
  • Figure 70. Wearable sweat sensor
  • Figure 71. InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination
  • Figure 72. BioStamp nPoint
  • Figure 73. Nanotech Energy battery
  • Figure 74. Hybrid battery powered electrical motorbike concept
  • Figure 75. NAWAStitch integrated into carbon fiber composite
  • Figure 76. Schematic illustration of three-chamber system for SWCNH production
  • Figure 77. TEM images of carbon nanobrush
  • Figure 78. Test performance after 6 weeks ACT II according to Scania STD4445
  • Figure 79. Quantag GQDs and sensor
  • Figure 80. Thermal conductive graphene film
  • Figure 81. Talcoat graphene mixed with paint
  • Figure 82. T-FORCE CARDEA ZERO
  • Figure 83. Demand for MWCNT by application in 2022
  • Figure 84. Market demand for carbon nanotubes by market, 2018-2033 (metric tons)
  • Figure 85. AWN Nanotech water harvesting prototype
  • Figure 86. Large transparent heater for LiDAR
  • Figure 87. Carbonics, Inc.'s carbon nanotube technology
  • Figure 88. Fuji carbon nanotube products
  • Figure 89. Cup Stacked Type Carbon Nano Tubes schematic
  • Figure 90. CSCNT composite dispersion
  • Figure 91. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays
  • Figure 92. Koatsu Gas Kogyo Co. Ltd CNT product
  • Figure 93. NAWACap
  • Figure 94. NAWAStitch integrated into carbon fiber composite
  • Figure 95. Schematic illustration of three-chamber system for SWCNH production
  • Figure 96. TEM images of carbon nanobrush
  • Figure 97. CNT film
  • Figure 98. Shinko Carbon Nanotube TIM product
  • Figure 99. SWCNT market demand forecast (metric tons), 2018-2033
  • Figure 100. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process
  • Figure 101. Carbon nanotube paint product
  • Figure 102. MEIJO eDIPS product
  • Figure 103. HiPCO® Reactor
  • Figure 104. Smell iX16 multi-channel gas detector chip
  • Figure 105. The Smell Inspector
  • Figure 106. Toray CNF printed RFID
  • Figure 107. Double-walled carbon nanotube bundle cross-section micrograph and model
  • Figure 108. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment
  • Figure 109. TEM image of FWNTs
  • Figure 110. Schematic representation of carbon nanohorns
  • Figure 111. TEM image of carbon onion
  • Figure 112. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red
  • Figure 113. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM)
  • Figure 114. Carbon nanotube adhesive sheet
  • Figure 115. Technology Readiness Level (TRL) for fullerenes
  • Figure 116. Global market demand for fullerenes, 2018-2033 (tons)
  • Figure 117. Detonation Nanodiamond
  • Figure 118. DND primary particles and properties
  • Figure 119. Functional groups of Nanodiamonds
  • Figure 120. Demand for nanodiamonds (metric tonnes), 2018-2033
  • Figure 121. NBD battery
  • Figure 122. Neomond dispersions
  • Figure 123. Visual representation of graphene oxide sheets (black layers) embedded with nanodiamonds (bright white points)
  • Figure 124. Green-fluorescing graphene quantum dots
  • Figure 125. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1-4)
  • Figure 126. Graphene quantum dots
  • Figure 127. Top-down and bottom-up methods
  • Figure 128. Dotz Nano GQD products
  • Figure 129. InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination
  • Figure 130. Quantag GQDs and sensor
  • Figure 131. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell
  • Figure 132. Classification of DLC coatings
  • Figure 133. Global revenues for DLC coatings, 2018-2033 (Billion USD)
  • Figure 134. CO2 capture and separation technology
  • Figure 135. Global capacity of point-source carbon capture and storage facilities
  • Figure 136. Global carbon capture capacity by CO2 source, 2021
  • Figure 137. Global carbon capture capacity by CO2 source, 2030
  • Figure 138. Global carbon capture capacity by CO2 endpoint, 2021 and 2030
  • Figure 139. Post-combustion carbon capture process
  • Figure 140. Postcombustion CO2 Capture in a Coal-Fired Power Plant
  • Figure 141. Oxy-combustion carbon capture process
  • Figure 142. Liquid or supercritical CO2 carbon capture process
  • Figure 143. Pre-combustion carbon capture process
  • Figure 144. Amine-based absorption technology
  • Figure 145. Pressure swing absorption technology
  • Figure 146. Membrane separation technology
  • Figure 147. Liquid or supercritical CO2 (cryogenic) distillation
  • Figure 148. Process schematic of chemical looping
  • Figure 149. Calix advanced calcination reactor
  • Figure 150. Fuel Cell CO2 Capture diagram
  • Figure 151. Electrochemical CO2 reduction products
  • Figure 152. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse
  • Figure 153. Global CO2 capture from biomass and DAC in the Net Zero Scenario
目次

“The Global Market for Advanced Carbon Materials 2023-2033” is an essential resource for anyone involved in the materials industry. This in-depth 1,000+ page market research report provides a comprehensive analysis of the advanced carbon materials market and leading technologies including carbon fibers, carbon black, graphite, biochar, graphene, nanotubes, nanodiamonds and more.

Advanced Carbon Materials possess unique mechanical, electrical, biological and chemical properties that have led to a variety of applications in electronics, energy storage, catalysis, filtration and sensing. The report provides extensive proprietary data on advanced carbon materials capacity, capacity utilization, production, trade, demand, applications, market share, and pricing.

Advanced Carbon Materials covered in this report include:

  • Carbon fibers
  • Carbon black
  • Graphite
  • Graphene
  • Biochar
  • Multi-walled Carbon Nanotubes
  • Single-walled Carbon Nanotubes
  • Fullerenes
  • Nanodiamonds
  • Graphene quantum dots
  • Carbon Foam
  • Diamond-like carbon (DLC) coatings

“The Global Market for Advanced Carbon Materials 2023-2033” evaluates market size, demand forecasts, industry challenges, competitive landscape, pricing trends, production capacities, key players and manufacturing techniques across multiple carbon material categories.

Report contents include:

  • Market drivers and trends
  • Properties and synthesis methods
  • Market segment analysis. Markets covered include carbon capture & utilization, composites, electrochemical energy storage devices (batteries and supercapacitors), sensors, thermal management, adsorption, electromagnetic shielding, catalyst support, sensors and more.
  • Price and price drivers
  • Market consumption of advanced carbon materials, by type.
  • Production capacities, current and planned by material.
  • >1,000 company profiles. Companies profiled include BC Biocarbon, Cabot Corporation, Carba, Carbitex, Dark Black Carbon, GrafTech International, Gratomic, Graphenea, Haydale Graphene Industries, Hexcel Corporation, Huntsman Corporation, Ibiden Co., Ltd., JEIO, LG Chem, Leading Edge Materials, , Li-S Energy, Mattershift, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Mersen, LLC, NextSource Materials, Nippon Techno-Carbon Co., Ltd., Teijin, UMATEX, Nanocyl SA, OCSiAl, Perpetual Next, Renergi, SEC Carbon, SGL Group, Showa Denko, Syrah Resources, Versarien and Zeon Corporation.

TABLE OF CONTENTS

1. THE ADVANCED CARBON MATERIALS MARKET

  • 1.1. Market overview
  • 1.2. Role of advanced carbon materials in the green transition

2. CARBON FIBERS

  • 2.1. Properties of carbon fibers
    • 2.1.1. Types by modulus
    • 2.1.2. Types by the secondary processing
  • 2.2. Precursor material types
    • 2.2.1. PAN: Polyacrylonitrile
      • 2.2.1.1. Spinning
      • 2.2.1.2. Stabilizing
      • 2.2.1.3. Carbonizing
      • 2.2.1.4. Surface treatment
      • 2.2.1.5. Sizing
      • 2.2.1.6. Pitch-based carbon fibers
      • 2.2.1.7. Isotropic pitch
      • 2.2.1.8. Mesophase pitch
      • 2.2.1.9. Viscose (Rayon)-based carbon fibers
  • 2.3. Carbon fiber reinforced polymer (CFRP)
    • 2.3.1. Applications
  • 2.4. Key players
  • 2.5. Global markets
    • 2.5.1. Global carbon fiber demand 2016-2033, by industry (MT)
    • 2.5.2. Global carbon fiber revenues 2016-2033, by industry (billions USD)
    • 2.5.3. Global carbon fiber demand 2016-2033, by region (MT)
  • 2.6. Market drivers and trends
  • 2.7. Market challenges
  • 2.8. Future trends
  • 2.9. Production capacities
    • 2.9.1. Annual capacity, by producer
    • 2.9.2. Market share, by capacity
  • 2.10 company profiles
    • 2.10.1. Carbon fiber producers (29 company profiles)
    • 2.10.2. Carbon Fiber composite producers(62 company profiles)
    • 2.10.3. Carbon fiber recyclers (16 company profiles)

3. CARBON BLACK

  • 3.1. Commercially available carbon black
  • 3.2. Properties
    • 3.2.1. Particle size distribution
    • 3.2.2. Structure-Aggregate size
    • 3.2.3. Surface chemistry
    • 3.2.4. Agglomerates
    • 3.2.5. Colour properties
    • 3.2.6. Porosity
    • 3.2.7. Physical form
  • 3.3. Manufacturing processes
  • 3.4. Global market for carbon black
    • 3.4.1. By market (tons)
    • 3.4.2. By market (revenues)
    • 3.4.3. By region (Tons)
  • 3.5. Traditional markets
    • 3.5.1.1. Tires and automotive
    • 3.5.1.2. Non-Tire Rubber (Industrial rubber)
  • 3.6. Growth markets
  • 3.7. Market supply chain
  • 3.8. Specialty carbon black
    • 3.8.1. Global market size for specialty CB
  • 3.9. Recovered carbon black (rCB)
    • 3.9.1. Pyrolysis of End-of-Life Tires (ELT)
    • 3.9.2. Discontinuous ("batch") pyrolysis
    • 3.9.3. Semi-continuous pyrolysis
    • 3.9.4. Continuous pyrolysis
    • 3.9.5. Key players
    • 3.9.6. Global market size for Recovered Carbon Black
  • 3.10. Pricing
    • 3.10.1. Feedstock
    • 3.10.2. Commercial carbon black
  • 3.11. Production capacities
  • 3.12 company profiles (36 company profiles)

4. GRAPHITE

  • 4.1. Types of graphite
    • 4.1.1. Natural vs synthetic graphite
  • 4.2. Natural graphite
    • 4.2.1. Classification
    • 4.2.2. Processing
    • 4.2.3. Flake
      • 4.2.3.1. Grades
      • 4.2.3.2. Applications
      • 4.2.3.3. Spherical graphite
      • 4.2.3.4. Expandable graphite
    • 4.2.4. Amorphous graphite
      • 4.2.4.1. Applications
    • 4.2.5. Crystalline vein graphite
      • 4.2.5.1. Applications
  • 4.3. Synthetic graphite
    • 4.3.1. Classification
      • 4.3.1.1. Primary synthetic graphite
      • 4.3.1.2. Secondary synthetic graphite
    • 4.3.2. Processing
      • 4.3.2.1. Processing for battery anodes
    • 4.3.3. Issues with synthetic graphite production
    • 4.3.4. Isostatic Graphite
      • 4.3.4.1. Description
      • 4.3.4.2. Markets
      • 4.3.4.3. Producers and production capacities
    • 4.3.5. Graphite electrodes
    • 4.3.6. Extruded Graphite
    • 4.3.7. Vibration Molded Graphite
    • 4.3.8. Die-molded graphite
  • 4.4. New technologies
  • 4.5. Recycling of graphite materials
  • 4.6. Applications of graphite
  • 4.7. Graphite pricing (ton)
    • 4.7.1. Pricing in 2023
  • 4.8. Global market and production of graphite
    • 4.8.1. Global mine production and reserves of natural graphite
    • 4.8.2. Global graphite production in tonnes, 2016-2022
    • 4.8.3. Estimated global graphite production in tonnes, 2023-2033
    • 4.8.4. Synthetic graphite supply
    • 4.8.5. Global market demand for graphite by end use market 2016-2033, tonnes
      • 4.8.5.1. Natural graphite
      • 4.8.5.2. Synthetic graphite
    • 4.8.6. Demand for graphite by end use markets, 2022
    • 4.8.7. Demand for graphite by end use markets, 2033
    • 4.8.8. Demand by region
    • 4.8.9. Main market players
      • 4.8.9.1. Natural graphite
      • 4.8.9.2. Synthetic graphite
    • 4.8.10. Market supply chain
  • 4.9 company profiles (95 company profiles)

5. BIOCHAR

  • 5.1. What is biochar?
  • 5.2. Carbon sequestration
  • 5.3. Properties of biochar
  • 5.4. Markets and applications
  • 5.5. Biochar production
  • 5.6. Feedstocks
  • 5.7. Production processes
    • 5.7.1. Sustainable production
    • 5.7.2. Pyrolysis
      • 5.7.2.1. Slow pyrolysis
      • 5.7.2.2. Fast pyrolysis
    • 5.7.3. Gasification
    • 5.7.4. Hydrothermal carbonization (HTC)
    • 5.7.5. Torrefaction
    • 5.7.6. Equipment manufacturers
  • 5.8. Pricing
  • 5.9. Carbon credits
  • 5.10. Markets for biochar
    • 5.10.1. Agriculture & livestock farming
      • 5.10.1.1. Market drivers and trends
      • 5.10.1.2. Applications
    • 5.10.2. Construction materials
      • 5.10.2.1. Market drivers and trends
      • 5.10.2.2. Applications
    • 5.10.3. Wastewater treatment
      • 5.10.3.1. Market drivers and trends
      • 5.10.3.2. Applications
    • 5.10.4. Filtration
      • 5.10.4.1. Market drivers and trends
      • 5.10.4.2. Applications
    • 5.10.5. Carbon capture
      • 5.10.5.1. Market drivers and trends
      • 5.10.5.2. Applications
    • 5.10.6. Cosmetics
      • 5.10.6.1. Market drivers and trends
      • 5.10.6.2. Applications
    • 5.10.7. Textiles
      • 5.10.7.1. Market drivers and trends
      • 5.10.7.2. Applications
    • 5.10.8. Additive manufacturing
      • 5.10.8.1. Market drivers and trends
      • 5.10.8.2. Applications
    • 5.10.9. Ink
      • 5.10.9.1. Market drivers and trends
      • 5.10.9.2. Applications
    • 5.10.10. Polymers
      • 5.10.10.1. Market drivers and trends
      • 5.10.10.2. Applications
    • 5.10.11. Packaging
      • 5.10.11.1. Market drivers and trends
      • 5.10.11.2. Applications
    • 5.10.12. Steel and metal
      • 5.10.12.1. Market drivers and trends
      • 5.10.12.2. Applications
    • 5.10.13. Energy
      • 5.10.13.1. Market drivers and trends
      • 5.10.13.2. Applications
  • 5.11. Global market demand
  • 5.12 company profiles (114 company profiles)

6. GRAPHENE

  • 6.1. Types of graphene
  • 6.2. Properties
  • 6.3. Graphene market challenges
  • 6.4. Graphene producers
    • 6.4.1. Production capacities
  • 6.5. Price and price drivers
    • 6.5.1. Pristine graphene flakes pricing/CVD graphene
    • 6.5.2. Few-Layer graphene pricing
    • 6.5.3. Graphene nanoplatelets pricing
    • 6.5.4. Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing
    • 6.5.5. Multilayer graphene (MLG) pricing
    • 6.5.6. Graphene ink
  • 6.6. Global demand 2018-2033, tons
    • 6.6.1. Global demand by graphene material (tons)
    • 6.6.2. Global demand by end user market
    • 6.6.3. Graphene market, by region
    • 6.6.4. Global graphene revenues, by market, 2018-2034
  • 6.7 company profiles (360 company profiles)

7. CARBON NANOTUBES

  • 7.1. Properties
    • 7.1.1. Comparative properties of CNTs
  • 7.2. Multi-walled carbon nanotubes (MWCNTs)
    • 7.2.1. Applications and TRL
    • 7.2.2. Producers
      • 7.2.2.1. Production capacities
    • 7.2.3. Price and price drivers
    • 7.2.4. Global market demand
  • 7.2.5 company profiles (138 company profiles)
  • 7.3. Single-walled carbon nanotubes (SWCNTs)
    • 7.3.1. Properties
    • 7.3.2. Applications
    • 7.3.3. Prices
    • 7.3.4. Production capacities
    • 7.3.5. Global market demand
  • 7.3.6 company profiles (16 company profiles)
  • 7.4. Other types
    • 7.4.1. Double-walled carbon nanotubes (DWNTs)
      • 7.4.1.1. Properties
      • 7.4.1.2. Applications
    • 7.4.2. Vertically aligned CNTs (VACNTs)
      • 7.4.2.1. Properties
      • 7.4.2.2. Applications
    • 7.4.3. Few-walled carbon nanotubes (FWNTs)
      • 7.4.3.1. Properties
      • 7.4.3.2. Applications
    • 7.4.4. Carbon Nanohorns (CNHs)
      • 7.4.4.1. Properties
      • 7.4.4.2. Applications
    • 7.4.5. Carbon Onions
      • 7.4.5.1. Properties
      • 7.4.5.2. Applications
    • 7.4.6. Boron Nitride nanotubes (BNNTs)
      • 7.4.6.1. Properties
      • 7.4.6.2. Applications
      • 7.4.6.3. Production
    • 7.4.7. Companies(6 company profiles)

8. CARBON NANOFIBERS

  • 8.1. Properties
  • 8.2. Synthesis
    • 8.2.1. Chemical vapor deposition
    • 8.2.2. Electrospinning
    • 8.2.3. Template-based
    • 8.2.4. From biomass
  • 8.3. Markets
    • 8.3.1. Batteries
    • 8.3.2. Supercapacitors
    • 8.3.3. Fuel cells
    • 8.3.4. CO2 capture
  • 8.4. Companies (10 company profiles)

9. FULLERENES

  • 9.1. Properties
  • 9.2. Products
  • 9.3. Markets and applications
  • 9.4. Technology Readiness Level (TRL)
  • 9.5. Global market demand
  • 9.6. Prices
  • 9.7. Producers (20 company profiles)

10. NANODIAMONDS

  • 10.1. Types
    • 10.1.1. Fluorescent nanodiamonds (FNDs)
  • 10.2. Applications
  • 10.3. Price and price drivers
  • 10.4. Global demand 2018-2033, tonnes
  • 10.5 company profiles (30 company profiles)

11. GRAPHENE QUANTUM DOTS

  • 11.1. Comparison to quantum dots
  • 11.2. Properties
  • 11.3. Synthesis
    • 11.3.1. Top-down method
    • 11.3.2. Bottom-up method
  • 11.4. Applications
  • 11.5. Graphene quantum dots pricing
  • 11.6. Graphene quantum dot producers (9 company profiles)

12. CARBON FOAM

  • 12.1. Types
    • 12.1.1. Carbon aerogels
      • 12.1.1.1. Carbon-based aerogel composites
  • 12.2. Properties
  • 12.3. Applications
  • 12.4 company profiles (9 company profiles)

13. DIAMOND-LIKE CARBON (DLC) COATINGS

  • 13.1. Properties
  • 13.2. Applications and markets
  • 13.3. Global market size
  • 13.4 company profiles (9 company profiles)

14. CARBON MATERIALS FROM CARBON CAPTURE AND UTILIZATION

  • 14.1. CO2 capture from point sources
    • 14.1.1. Transportation
    • 14.1.2. Global point source CO2 capture capacities
    • 14.1.3. By source
    • 14.1.4. By endpoint
  • 14.2. Main carbon capture processes
    • 14.2.1. Materials
    • 14.2.2. Post-combustion
    • 14.2.3. Oxy-fuel combustion
    • 14.2.4. Liquid or supercritical CO2: Allam-Fetvedt Cycle
    • 14.2.5. Pre-combustion
  • 14.3. Carbon separation technologies
    • 14.3.1. Absorption capture
    • 14.3.2. Adsorption capture
    • 14.3.3. Membranes
    • 14.3.4. Liquid or supercritical CO2 (Cryogenic) capture
    • 14.3.5. Chemical Looping-Based Capture
    • 14.3.6. Calix Advanced Calciner
    • 14.3.7. Other technologies
      • 14.3.7.1. Solid Oxide Fuel Cells (SOFCs)
    • 14.3.8. Comparison of key separation technologies
    • 14.3.9. Electrochemical conversion of CO2
      • 14.3.9.1. Process overview
  • 14.4. Direct air capture (DAC)
    • 14.4.1. Description
  • 14.5. Companies (4 company profiles)

15. RESEARCH METHODOLOGY

16. REFERENCES