デフォルト表紙
市場調査レポート
商品コード
1622662

分路リアクトル市場:タイプ別、電圧タイプ別、用途別、エンドユーザー別、地域別、2024年~2031年

Shunt Reactor Market By Type (Dry Type, Liquid Type), Voltage Type (Above 400 Kv, 200-400 Kv, Upto 200 Kv), Application (Fixed Reactor, Variable Reactor), End-User (Fixed Reactor, Variable Reactor), & Region for 2024-2031


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
分路リアクトル市場:タイプ別、電圧タイプ別、用途別、エンドユーザー別、地域別、2024年~2031年
出版日: 2024年11月01日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

分路リアクトル市場評価、2024年~2031年

分路リアクトルの需要が伸びているのは、送電システムの効率と信頼性を向上させる上で重要だからです。分路リアクトルは通常、高圧送電線の容量性無効電力を調整するために使用されます。電気は長距離、特に高圧送電線で輸送されるため、容量性リアクタンスによって電圧レベルが急上昇することがあります。電圧不安定性として知られるこの現象は、機器に損害を与え、電力供給の停止を引き起こす可能性があり、市場は2024年に30億5,000万米ドルの収益を超え、2031年までに約43億9,000万米ドルの評価額に達する可能性があります。

風力発電や太陽光発電などの再生可能エネルギーの需要が高まるにつれ、送電網の管理は難しくなっています。これらの電源は断続的に、また遠隔地で発電することが多いため、都市部や工業地帯に電力を供給するための大規模なトランスミッション・インフラが必要となります。分路リアクトルは、再生可能エネルギー源の出力変動による電圧変動を低減することで、送電網の安定性を維持するのに役立ち、2024年から2031年にかけてCAGR 4.68%で市場が成長することを可能にします。

分路リアクトル市場定義/概要

分路リアクトルは、電圧レベルを調整する電力系統の装置です。鉄などの磁性コアにワイヤを撚り合わせたコイルで形成されています。電力線に電気が流れると、距離や負荷需要によって電圧レベルが変動します。分路リアクトルは、トランスミッションの送電線に並列に接続され(シャント接続)、調整可能な電気負荷として機能します。

分路リアクトルは、電圧レベルを安定させ、送電網の効率を向上させる送電装置です。長い送電線によって生じる余剰無効電力を吸収することで、特に電力流量が少ない低需要期に作動します。この無効電力は、適切に管理されなければ、電圧不安定や非効率なエネルギー・トランスミッションの原因となります。過剰な無効電力を吸収することで、分路リアクトルは送電網全体で安定した電圧レベルを維持するのに役立ち、機器の損傷やサービスの中断を招くことなく電力を効率的に輸送することができます。

また、分路リアクトルは送電効率の向上にも大きく貢献します。電圧レベルを制御することで、トランスミッション中に浪費されるエネルギー量を制限します。これは、水道管システムの漏水を最小限に抑えることに似ています。この効率向上は、コスト削減と消費者への安定した電力供給につながります。

発電容量の増加は分路リアクトル市場を牽引するか?

発電容量の増加は、分路リアクトル市場の主な促進要因です。世界のエネルギー需要の増加に伴い、世界各国の政府はそれを満たすために発電インフラを拡張しています。この成長には、トランスミッション・システムにおいて電圧変動や無効電力障害を引き起こす可能性のある再生可能エネルギー源の導入も頻繁に含まれています。分路リアクトルは、電圧安定性を促進し、電力品質を改善することによって、これらの問題に対処する上で重要な役割を果たします。

国際エネルギー機関(IEA)は、世界の電力需要が2022年から2024年にかけて年率2.1%増加すると予測しており、送配電インフラへの多額の投資が必要となります。米国エネルギー情報局(EIA)の報告によると、米国だけでも2021年に電力会社規模の発電容量が約14.5ギガワット(GW)増加しました。

初期導入コストの高さは分路リアクトル市場の妨げになるか?

設置にかかる初期コストが高いため、特に財源が限られている地域や長期的なメリットがすぐには明らかでない地域では、分路リアクトル事業の成長が停滞する可能性があります。分路リアクトルは、電力網の電力品質とシステムの安定性を維持するために重要であるが、かなりの初期投資が必要となります。これはリアクターの費用だけでなく、敷地の準備、設置、既存のインフラとの接続にかかる費用も含まれます。これらの費用は、小規模の電力会社や新興諸国にとっては法外に高くつく可能性があり、そのため業界の進歩が制限されます。さらに、状況によっては、投資対効果が現れるまでに数年かかることもあり、意思決定者が費用を正当化するのは困難です。

高い設置コストの影響は、さまざまな要因によって最小限に抑えることができることに注意することが重要です。第一に、世界中の電力系統が拡大し、より多くの再生可能エネルギー源が組み込まれるにつれて、無効電力調整の必要性が高まる。このような需要の増加は、製造における技術革新と規模の経済を促し、最終的に長期的なコスト削減をもたらす可能性があります。第二に、系統安定性の向上、電力損失の低減、電圧制御の改善など、分路リアクトルの長期的なメリットは、運用コストの大幅な削減と信頼性の向上につながります。多くのユーティリティ企業や系統運用者は、こうした点を考慮すると、初期投資が無駄になることに気づくかもしれません。さらに、系統安定性の必要性に対する認識が高まるにつれ、このような技術への投資に対する政府の支援やインセンティブも高まる可能性があります。

目次

第1章 分路リアクトルの世界市場:イントロダクション

  • 市場概要
  • 調査範囲
  • 前提条件

第2章 エグゼクティブサマリー

第3章 VERIFIED MARKET RESEARCHの調査手法

  • データマイニング
  • バリデーション
  • 一次インタビュー
  • データソース一覧

第4章 分路リアクトルの世界市場展望

  • 概要
  • 市場力学
    • 促進要因
    • 抑制要因
    • 機会
  • ポーターのファイブフォースモデル
  • バリューチェーン分析

第5章 分路リアクトルの世界市場:タイプ別

  • 概要
  • 乾式
  • 液体タイプ

第6章 分路リアクトルの世界市場:電圧タイプ別

  • 概要
  • 400Kv以上
  • 200-400 Kv
  • 200Kv未満

第7章 分路リアクトルの世界市場:用途別

  • 概要
  • 可変リアクター
  • 固定リアクトル

第8章 分路リアクトルの世界市場:エンドユーザー別

  • 概要
  • 電気事業
  • 再生可能エネルギー
  • その他

第9章 分路リアクトルの世界市場:地域別

  • 概要
  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • 日本
    • インド
    • その他アジア太平洋地域
  • ラテンアメリカ
    • ブラジル
    • アルゼンチン
    • その他ラテンアメリカ
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • 南アフリカ
    • その他中東とアフリカ

第10章 分路リアクトルの世界市場:競合情勢

  • 概要
  • 各社の市場ランキング
  • 主な開発戦略
  • 企業の業界フットプリント
  • 企業の地域別フットプリント
  • エースマトリックス

第11章 企業プロファイル

  • Hitachi group
  • ABB
  • Siemens AG
  • General Electric
  • Zaporozhtransformator
  • Fuji Electric Co., Ltd.
  • Toshiba Energy Systems & Solutions Corporation
  • Mitsubishi Corporation
  • Nissin Electric Co., Ltd.
  • CG Power & Industrial Solutions Ltd.
  • GBE UK Ltd
  • HYOSUNG TNC
  • Shrihans Electricals Pvt. Ltd.

第12章 付録

  • 関連レポート
目次
Product Code: 20854

Shunt Reactor Market Valuation - 2024-2031

The growing demand for shunt reactors arises from their importance in improving the efficiency and reliability of electrical power transmission systems. Shunt reactors are typically used to adjust for capacitive reactive power in high-voltage power transmission lines. As electricity is transported over long distances, particularly in high-voltage lines, capacitive reactance can cause voltage levels to skyrocket. This phenomenon, known as voltage instability can harm equipment and cause power supply outages by enabling the market to surpass a revenue of USD 3.05 Billion valued in 2024 and reach a valuation of around USD 4.39 Billion by 2031.

Power grid management is becoming more difficult as the demand for renewable energy sources such as wind and solar power grows. These sources frequently generate power intermittently and in remote regions necessitating large transmission infrastructure to provide electricity to urban areas and industrial centers. Shunt reactors help to preserve grid stability by reducing voltage variations caused by renewable energy sources fluctuating output by enabling the market to grow at aCAGR of 4.68% from 2024 to 2031.

Shunt Reactor Market: Definition/ Overview

A shunt reactor is a device in electrical power systems that regulates voltage levels. It is formed out of a coil of wire twisted around a magnetic core such as iron. When electricity flows over power lines, voltage levels can vary depending on distance and load demand. A shunt reactor is linked in parallel (shunt connection) to the transmission lines and functions as an adjustable electrical load.

A shunt reactor is an electrical power transmission device that stabilizes voltage levels and improves grid efficiency. It operates by absorbing surplus reactive power created by long transmission lines, particularly during low-demand periods when power flow is low. This reactive power, if not managed appropriately, can cause voltage instability and inefficient energy transmission. By absorbing excess reactive power, shunt reactors help to maintain a steady voltage level throughout the grid allowing electricity to be transported effectively without causing equipment damage or service disruption.

Shunt reactors also contribute significantly to increased power transmission efficiency. By controlling voltage levels, they limit the amount of energy wasted during transmission which is analogous to minimizing leaks in a water pipe system. This efficiency gain results in cost savings and a more stable power supply for consumers.

What's inside a VMR industry report?

Our reports include actionable data and forward-looking analysis that help you craft pitches, create business plans, build presentations and write proposals.

Will the Increasing Power Generation Capacity Drive the Shunt Reactor Market?

The rising power generation capacity is a major driver of the shunt reactor market. As global energy demand grows, governments around the world are expanding their power-producing infrastructure to satisfy it. This growth frequently includes the incorporation of renewable energy sources which can cause voltage swings and reactive power difficulties in transmission systems. Shunt reactors play an important role in addressing these issues by promoting voltage stability and improving power quality.

The International Energy Agency (IEA) predicts that global electricity demand will increase by 2.1% per year from 2022 to 2024 necessitating significant investments in power transmission and distribution infrastructure. The U.S. Energy Information Administration (EIA) reports that utility-scale electricity generation capacity in the United States alone increased by approximately 14.5 gigawatts (GW) in 2021.

Will the High Initial Cost of Installation Hamper the Shunt Reactor Market?

The high initial cost of installation may standstill the growth of the shunt reactor business especially in regions with limited financial resources or where the long-term benefits are not immediately obvious. Shunt reactors while critical for preserving power quality and system stability in electrical grids can demand a considerable initial investment. This covers not just the reactor's cost but also expenses for site preparation, installation, and connection with existing infrastructure. These expenses can be prohibitively high for smaller utilities and developing countries, thus limiting industry progress. Furthermore, in certain circumstances, the return on investment may take several years to manifest making it difficult for decision-makers to justify the expense, especially when faced with competing priorities and restricted budgets.

It is crucial to note that the impact of high installation costs can be minimized by a variety of factors. First, as power systems throughout the world expand and incorporate more renewable energy sources, the requirement for reactive power adjustment grows. This increased demand may encourage innovation and economies of scale in manufacturing ultimately resulting in cost savings over time. Second, the long-term benefits of shunt reactors such as improved grid stability, lower power losses, and better voltage control can result in significant operational cost savings and increased reliability. Many utilities and grid operators may find that these considerations negate their initial investment. Furthermore, as awareness of the need for grid stability rises, there may be increased government support and incentives for investing in such technology.

Category-Wise Acumens

Will Higher Efficiency and Better Cooling Capabilities Drive Growth in the Type Segment?

Liquid-type shunt reactors are more prevalent due to their improved efficiency and superior cooling capabilities. They can withstand higher voltage levels and power capacity making them appropriate for large-scale power networks and heavy industrial applications. The liquid coolant effectively dissipates heat keeping the reactor's performance steady over time.

They effectively reduce power losses ensuring that the given electricity is used efficiently. This efficiency is critical for power networks which are being pushed to their limits by increased electrical demands from residential, commercial, and industrial sectors. Liquid-type shunt reactors contribute to lower operational costs and improved power grid performance by eliminating energy waste. Furthermore, the great efficiency of these reactors is consistent with worldwide trends toward energy saving and sustainability making them a popular choice in the market.

The increasing efficiency and cooling capacities of liquid-type shunt reactors are key elements driving their expansion in the type category. Their capacity to improve energy efficiency, lower operational costs, and ensure consistent performance makes them an appealing option for utility companies and enterprises around the world. As demand for stable and efficient power systems grows, the liquid-type shunt reactor market is predicted to rise rapidly owing to these important features.

Will the Widespread Use in Stabilizing Voltage Levels in Electrical Grids Drive the Application Segment?

Fixed reactors are widely employed in power systems for voltage regulation and stability making them an essential component of electrical grid management. These reactors are permanently connected to the grid and serve an important role in ensuring a constant voltage level minimizing fluctuations that could harm equipment or cause inefficiency. Their capacity to provide continuous voltage control without the need for regular modifications makes them extremely dependable and critical for guaranteeing the smooth running of power networks. This dependability and stability are crucial in areas with changing power demands making fixed reactors the favored choice for many utilities and grid operators.

Fixed reactors' dominance stems from their simplicity and robustness. They have fewer moving components and require less maintenance than variable reactors which results in cheaper long-term operational expenses. This cost-effectiveness is particularly advantageous for large-scale power transmission and distribution networks that demand steady performance with low downtime. Fixed reactor's lengthy service life and low maintenance requirements make them an appealing choice for grid operators wishing to invest in dependable infrastructure. Furthermore, their simple form facilitates integration into current systems reinforcing their commercial position.

Country/Region-wise Acumens

Will Rapid Industrialization Drive the Market in the Asia Pacific Region?

The Asia Pacific region is expected to be a major driver of growth in the shunt reactor market owing to fast industrialization and rising energy demand. According to the International Energy Agency (IEA), energy demand in Southeast Asia is expected to increase by an average of 4% per year until 2030 more than doubling the global average. This increase in demand is driven mostly by industrial expansion, urbanization, and growing living standards throughout the region. China and India, in particular, are likely to drive a significant share of this development.

Several reasons contribute to Asia Pacific's dominant position in the shunt reactor market. To begin, large expenditures in power infrastructure to support industrial expansion are driving increasing demand for power-quality equipment such as shunt reactors. The Asian Development Bank (ADB) forecasts that the area will need to invest $14.7 trillion in electrical infrastructure between 2016 and 2030 to sustain its current development rate. Second, the growing integration of renewable energy sources into the grid particularly wind and solar necessitates the employment of shunt reactors to control voltage swings. According to the International Renewable Energy Agency (IRENA), Asia accounted for 64% of global new renewable energy capacity additions in 2020.

Will the Increasing Electricity Consumption Across Residential Sectors Drive the Market in the North American Region?

The increasing consumption of power in the residential sector is expected to drive the shunt reactor market in North America. According to the United States Energy Information Administration (EIA), home electricity usage in the United States is expected to increase gradually in the future years. In 2020, the residential sector accounted for approximately 39% of total US electricity consumption, and this figure is likely to climb even more. According to the US Department of Energy, the average annual electricity use for a residential utility customer in 2020 was 10,715 kilowatt-hours (kWh). This figure has gradually risen over time owing to reasons such as population expansion, increased usage of electronic gadgets, and the introduction of electric vehicles.

Variable shunt reactors are expected to be the fastest-growing section of the North American shunt reactor market. This is primarily due to the increased integration of renewable energy sources into the power grid as well as the demand for more flexible and efficient power transmission systems. According to the International Energy Agency (IEA), renewable energy capacity in North America is predicted to increase by more than 440 GW between 2023 and 2027 accounting for about 75% of the region's capacity growth. Variable shunt reactors provide substantial advantages over fixed shunt reactors for controlling voltage changes induced by intermittent renewable energy sources.

Competitive Landscape

The shunt reactor market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.

Some of the prominent players operating in the shunt reactor market include:

Mitsubishi Corporation

Fuji Electric

Hd Hyundai Heavy Industries Co., Ltd.

Tbea

Hilkar

Toshiba Corporation

Siemens Ag

Ge Grid Solution

Latest Developments

In September 2022, ABB agreed to divest its 19.9% ownership in Hitachi ABB Power Grids, a joint venture created in 2020.

In March 2022, Siemens Energy sold its 35% investment in the joint venture Voith Hydro (previously Voith Siemens Hydro Power Generation). This purchase gives Voith Group complete ownership of the Voith Hydro Group Division.

TABLE OF CONTENTS

1 INTRODUCTION OF THE GLOBAL SHUNT REACTOR MARKET

  • 1.1 Overview of the Market
  • 1.2 Scope of Report
  • 1.3 Assumptions

2 EXECUTIVE SUMMARY

3 RESEARCH METHODOLOGY OF VERIFIED MARKET RESEARCH

  • 3.1 Data Mining
  • 3.2 Validation
  • 3.3 Primary Interviews
  • 3.4 List of Data Sources

4 GLOBAL SHUNT REACTOR MARKET OUTLOOK

  • 4.1 Overview
  • 4.2 Market Dynamics
    • 4.2.1 Drivers
    • 4.2.2 Restraints
    • 4.2.3 Opportunities
  • 4.3 Porters Five Force Model
  • 4.4 Value Chain Analysis

5 GLOBAL SHUNT REACTOR MARKET, BY TYPE

  • 5.1 Overview
  • 5.2 Dry Type
  • 5.3 Liquid Type

6 GLOBAL SHUNT REACTOR MARKET, BY VOLTAGE TYPE

  • 6.1 Overview
  • 6.2 Above 400 Kv
  • 6.3 200 - 400 Kv
  • 6.4 Upto 200 Kv

7 GLOBAL SHUNT REACTOR MARKET, BY APPLICATION

  • 7.1 Overview
  • 7.2 Variable Reactors
  • 7.3 Fixed Reactor

8 GLOBAL SHUNT REACTOR MARKET, BY END-USER

  • 8.1 Overview
  • 8.2 Electric Utilities
  • 8.3 Renewable Energy
  • 8.4 Others

9 GLOBAL SHUNT REACTOR MARKET, BY GEOGRAPHY

  • 9.1 Overview
  • 9.2 North America
    • 9.2.1 U.S.
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 U.K.
    • 9.3.3 France
    • 9.3.4 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 China
    • 9.4.2 Japan
    • 9.4.3 India
    • 9.4.4 Rest of Asia Pacific
  • 9.5 Latin America
    • 9.5.1 Brazil
    • 9.5.2 Argentina
    • 9.5.3 Rest of Latin America
  • 9.6 Middle East and Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 South Africa
    • 9.6.4 Rest of Middle East and Africa

10 GLOBAL SHUNT REACTOR MARKET COMPETITIVE LANDSCAPE

  • 10.1 Overview
  • 10.2 Company Market Ranking
  • 10.3 Key Development Strategies
  • 10.4 Company Industry Footprint
  • 10.5 Company Regional Footprint
  • 10.6 Ace Matrix

11 COMPANY PROFILES

  • 11.1 Hitachi group
    • 11.1.1 Overview
    • 11.1.2 Financial Performance
    • 11.1.3 Product Outlook
    • 11.1.4 Key Developments
  • 11.2 ABB
    • 11.2.1 Overview
    • 11.2.2 Financial Performance
    • 11.2.3 Product Outlook
    • 11.2.4 Key Developments
  • 11.3 Siemens AG
    • 11.3.1 Overview
    • 11.3.2 Financial Performance
    • 11.3.3 Product Outlook
    • 11.3.4 Key Developments
  • 11.4 General Electric
    • 11.4.1 Overview
    • 11.4.2 Financial Performance
    • 11.4.3 Product Outlook
    • 11.4.4 Key Developments
  • 11.5 Zaporozhtransformator
    • 11.5.1 Overview
    • 11.5.2 Financial Performance
    • 11.5.3 Product Outlook
    • 11.5.4 Key Developments
  • 11.6 Fuji Electric Co., Ltd.
    • 11.6.1 Overview
    • 11.6.2 Financial Performance
    • 11.6.3 Product Outlook
    • 11.6.4 Key Developments
  • 11.7 Toshiba Energy Systems & Solutions Corporation
    • 11.7.1 Overview
    • 11.7.2 Financial Performance
    • 11.7.3 Product Outlook
    • 11.7.4 Key Developments
  • 11.8 Mitsubishi Corporation
    • 11.8.1 Overview
    • 11.8.2 Financial Performance
    • 11.8.3 Product Outlook
    • 11.8.4 Key Developments
  • 11.9 Nissin Electric Co., Ltd.
    • 11.9.1 Overview
    • 11.9.2 Financial Performance
    • 11.9.3 Product Outlook
    • 11.9.4 Key Developments
  • 11.10 CG Power & Industrial Solutions Ltd.
    • 11.10.1 Overview
    • 11.10.2 Financial Performance
    • 11.10.3 Product Outlook
    • 11.10.4 Key Developments
  • 11.11 GBE UK Ltd
    • 11.11.1 Overview
    • 11.11.2 Financial Performance
    • 11.11.3 Product Outlook
    • 11.11.4 Key Developments
  • 11.12 HYOSUNG TNC
    • 11.12.1 Overview
    • 11.12.2 Financial Performance
    • 11.12.3 Product Outlook
    • 11.12.4 Key Developments
  • 11.13 Shrihans Electricals Pvt. Ltd.
    • 11.13.1 Overview
    • 11.13.2 Financial Performance
    • 11.13.3 Product Outlook
    • 11.13.4 Key Developments

12 Appendix

    • 12.1.1 Related Reports