デフォルト表紙
市場調査レポート
商品コード
1500121

精密診断市場:世界の産業規模、シェア、動向、機会、予測、タイプ別、用途別、最終用途別、地域別、競合別、2019年~2029年

Precision Diagnostics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Application, By End-Use, By Region and Competition, 2019-2029F

出版日: | 発行: TechSci Research | ページ情報: 英文 184 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=149.25円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

精密診断市場:世界の産業規模、シェア、動向、機会、予測、タイプ別、用途別、最終用途別、地域別、競合別、2019年~2029年
出版日: 2024年06月21日
発行: TechSci Research
ページ情報: 英文 184 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

精密診断の世界市場規模は2023年に141億8,000万米ドルとなり、2029年までのCAGRは16.48%で、予測期間中に目覚ましい成長を遂げると予測されています。

市場概要
予測期間 2025-2029
市場規模:2023年 141億8,000万米ドル
市場規模:2029年 351億米ドル
CAGR:2024年~2029年 16.48%
急成長セグメント 臨床検査
最大市場 北米

精密診断世界市場は、テクノロジーの進歩と個別化ヘルスケアソリューションへの需要の高まりにより、力強い成長を遂げています。精密診断は、分子診断、遺伝子検査、その他の高度な技術を駆使して、個人レベルでの疾病の正確な検出と特徴づけを行うものです。米国国立衛生研究所の専門誌に掲載されたデータによると、遺伝子検査は過去20年間で大幅な成長を遂げました。この拡大により、米国では遺伝子検査と関連検査施設に関する透明性のある情報を提供することを目的とした遺伝子検査レジストリが設立されました。遺伝学的検査レジストリから一般にアクセス可能なデータを利用することで、2022年11月現在、米国では合計129,624件の遺伝学的検査が利用可能であり、既存の検査の更新版を含め、世界全体では197,779件の検査が利用可能であることが明らかになった。GTRに登録されたこれらの検査の90%以上は、調査目的ではなく臨床目的でした。このようなアプローチにより、オーダーメイドの治療計画が可能になり、患者の転帰が改善され、ヘルスケアコストが削減されます。市場拡大の主な要因には、早期発見と効果的な管理のために精密な診断ツールを必要とする、がんや糖尿病などの慢性疾患の増加などがあります。

診断プロセスにおける人工知能と機械学習の統合は、精度と効率を高め、ヘルスケアプロバイダーによる迅速な意思決定を促進します。市場は、特定の患者のニーズに対応する革新的な診断ソリューションの導入を目指した研究開発活動が活発であることを特徴としています。地域的には、強力なヘルスケアインフラ、技術進歩、高い医療費により北米が市場を独占しています。しかし、アジア太平洋地域は、ヘルスケア投資の増加、認知度の向上、ヘルスケアサービスへのアクセス拡大により、大きな成長が見込まれています。世界の精密診断市場の主なプレーヤーには、最先端の診断技術を開発するために協力している大手診断会社、バイオテクノロジー企業、学術研究機関が含まれます。

主要市場促進要因

分子診断技術の進歩

慢性疾患の増加

主な市場課題

規制と償還のハードル

データのプライバシーとセキュリティに関する懸念

個別化医療へのシフト

人工知能と機械学習の統合

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別(遺伝子検査、消費者向け検査、難解検査、その他)
    • 用途別(腫瘍学、呼吸器疾患、皮膚疾患、中枢神経系疾患、免疫学、遺伝性疾患、その他)
    • 最終用途別(病院、臨床検査室、その他)
    • 企業別(2023)
    • 地域別
  • 市場マップ

第6章 北米の精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 最終用途別
    • 国別
  • 北米:国別分析
    • 米国
    • メキシコ
    • カナダ

第7章 欧州の精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 最終用途別
    • 国別
  • 欧州:国別分析
    • フランス
    • ドイツ
    • 英国
    • イタリア
    • スペイン

第8章 アジア太平洋地域の精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 最終用途別
    • 国別
  • アジア太平洋地域:国別分析
    • 中国
    • インド
    • 韓国
    • 日本
    • オーストラリア

第9章 南米の精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 最終用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの精密診断市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 用途別
    • 最終用途別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦

第11章 市場力学

  • 促進要因
  • 課題

第12章 市場動向と発展

  • 合併および買収(該当する場合)
  • 製品の発売(ある場合)
  • 最近の動向

第13章 ポーターのファイブフォース分析

  • 業界内の競合
  • 新規参入の可能性
  • サプライヤーの力
  • 顧客の力
  • 代替品の脅威

第14章 競合情勢

  • Abbott Laboratories Inc.
  • F. Hoffmann-La Roche Ltd.
  • Siemens Healthineers AG
  • Thermo Fisher Scientific Inc.
  • bioMerieux SA
  • Becton, Dickinson and Company
  • Danaher Corporation
  • QIAGEN N.V.
  • Hologic Inc.
  • Agilent Technologies Inc.

第15章 戦略的提言

第16章 調査会社について・免責事項

目次
Product Code: 24133

Global Precision Diagnostics Market was valued at USD 14.18 Billion in 2023 and is anticipated to project impressive growth in the forecast period with a CAGR of 16.48% through 2029.

Market Overview
Forecast Period2025-2029
Market Size 2023USD 14.18 Billion
Market Size 2029USD 35.10 Billion
CAGR 2024-202916.48%
Fastest Growing SegmentClinical Laboratories
Largest MarketNorth America

The Global Precision Diagnostics Market is experiencing robust growth driven by advancements in technology and increasing demand for personalized healthcare solutions. Precision diagnostics involve the use of molecular diagnostics, genetic testing, and other advanced techniques to accurately detect and characterize diseases at an individual level. According to data published in a National Institutes of Health journal, genetic testing has experienced substantial growth over the past two decades. This expansion led to the establishment of the Genetic Testing Registry in the United States, aimed at providing transparent information about genetic tests and associated laboratories. Utilizing publicly accessible data from the Genetic Testing Registry, the data highlights that ,as of November 2022, a total of 129,624 genetic tests were available in the US, with a global count of 197,779 tests, including updated versions of existing tests. More than 90% of these tests registered with the GTR were intended for clinical rather than research purposes. This approach allows for tailored treatment plans, improving patient outcomes and reducing healthcare costs. Key drivers of market expansion include rising incidences of chronic diseases such as cancer and diabetes, which require precise diagnostic tools for early detection and effective management.

The integration of artificial intelligence and machine learning in diagnostic processes enhances accuracy and efficiency, facilitating faster decision-making by healthcare providers. The market is characterized by intense research and development activities aimed at introducing innovative diagnostic solutions that cater to specific patient needs. Geographically, North America dominates the market due to strong healthcare infrastructure, technological advancements, and high healthcare expenditure. However, the Asia-Pacific region is expected to witness significant growth owing to increasing healthcare investments, rising awareness, and expanding access to healthcare services. Key players in the global precision diagnostics market include major diagnostic companies, biotechnology firms, and academic research institutions collaborating to develop cutting-edge diagnostic technologies.

Key Market Drivers

Technological Advancements in Molecular Diagnostics

Technological advancements in molecular diagnostics have profoundly transformed the landscape of disease detection and monitoring in healthcare. Next-generation sequencing (NGS), a pivotal advancement, allows for rapid and comprehensive analysis of genomic sequences. It enables researchers and clinicians to identify genetic mutations, variations, and biomarkers associated with diseases such as cancer, genetic disorders, and infectious diseases. NGS's ability to sequence entire genomes or targeted regions with unprecedented speed and accuracy has revolutionized personalized medicine by enabling tailored treatment strategies based on an individual's genetic profile.

Polymerase chain reaction (PCR) remains another cornerstone in molecular diagnostics, enabling the amplification of specific DNA sequences. PCR's sensitivity and specificity make it invaluable for detecting infectious agents, genetic mutations, and monitoring disease progression. Advancements in PCR technology, such as real-time PCR and digital PCR, have further enhanced its utility in clinical diagnostics, offering faster and more precise results crucial for timely treatment decisions.

Microarray analysis complements these techniques by allowing simultaneous analysis of thousands of genetic variations or biomarkers in a single experiment. This high-throughput capability is particularly advantageous in research settings and clinical diagnostics where screening for multiple genetic markers can aid in disease risk assessment, diagnosis, and prognosis. Continuous investment in research and development (R&D) by companies and academic institutions is pivotal in advancing these diagnostic technologies. Efforts focus on enhancing the sensitivity, specificity, and speed of molecular diagnostics to meet the increasing demand for accurate and timely disease detection. Innovations such as miniaturization, automation, and integration with bioinformatics and AI are driving improvements in diagnostic efficiency and scalability.

As these technologies evolve, their application extends beyond traditional diagnostics to include predictive and preventive healthcare paradigms. They empower healthcare providers with tools to predict disease risks, tailor interventions, and monitor treatment responses at a molecular level. The ongoing convergence of molecular diagnostics with other disciplines such as digital health and precision medicine promises further innovations, underscoring their pivotal role in shaping the future of healthcare delivery.

Rising Incidences of Chronic Diseases

The rising incidence of chronic diseases worldwide, including cancer, cardiovascular disorders, and diabetes, presents a substantial challenge to global healthcare systems and underscores the critical need for advanced diagnostic solutions like precision diagnostics. Chronic diseases are characterized by their prolonged duration and the requirement for ongoing medical management, making accurate and timely diagnosis crucial for effective treatment outcomes. Cancer remains one of the leading causes of death globally, with a diverse array of types and genetic mutations contributing to its complexity. According to the World Health Organization (WHO)'s cancer agency, the International Agency for Research on Cancer (IARC), released the latest estimates of the global burden of cancer. In 2022, there were an estimated 20 million new cancer cases and 9.7 million deaths. The estimated number of people who were alive within 5 years following a cancer diagnosis was 53.5 million. About 1 in 5 people develop cancer in their lifetime, approximately 1 in 9 men and 1 in 12 women die from the disease. Precision diagnostics, leveraging techniques such as next-generation sequencing (NGS) and liquid biopsy, allow clinicians to identify specific genetic alterations and biomarkers that dictate tumor behavior and response to treatment. This molecular-level insight enables personalized therapeutic strategies, including targeted therapies and immunotherapies, tailored to individual patients for improved efficacy and reduced side effects.

Similarly, cardiovascular diseases, encompassing conditions like coronary artery disease, hypertension, and heart failure, benefit from precision diagnostics that assess genetic predispositions, biomarkers of inflammation, and lipid metabolism profiles. Early detection of risk factors and precise monitoring of disease progression help guide personalized interventions such as lifestyle modifications, medication management, and invasive procedures like stent placement or cardiac surgery.

Diabetes, another prevalent chronic condition, encompasses a spectrum of metabolic disorders characterized by elevated blood sugar levels. Precision diagnostics aid in identifying genetic predispositions, autoimmune markers, and individual responses to antidiabetic medications. This enables healthcare providers to optimize treatment plans, ranging from insulin therapy to novel medications targeting specific pathways, thus improving glycemic control and reducing long-term complications.

The increasing burden of chronic diseases not only impacts individual health but also strains healthcare systems globally due to escalating costs associated with disease management and complications. Precision diagnostics offer a promising solution by facilitating early intervention, reducing hospitalizations, and improving patient outcomes through targeted and personalized care approaches.

Key Market Challenges

Regulatory and Reimbursement Hurdles

One of the primary challenges facing the global precision diagnostics market is navigating complex regulatory landscapes and securing adequate reimbursement. Regulatory approval processes for diagnostic tests can be lengthy and stringent, varying significantly between countries and regions. Different regulatory requirements often necessitate separate approvals for each market, delaying the commercialization timeline for new diagnostic technologies.

Reimbursement policies for precision diagnostics can be inconsistent and unpredictable. Insurance coverage and reimbursement rates may vary based on factors such as test efficacy, clinical utility, and cost-effectiveness. The lack of standardized reimbursement guidelines for innovative diagnostic tests often poses financial barriers for healthcare providers and reduces incentives for investment in research and development. As a result, companies may face challenges in achieving widespread adoption of their precision diagnostics despite their clinical benefits, hindering market growth.

Data Privacy and Security Concerns

The rapid advancement and integration of digital health technologies in precision diagnostics bring forth critical concerns regarding the privacy and security of patient data. Precision diagnostics involve the analysis of highly sensitive information, including genomic data and biomarkers, which are pivotal for personalized healthcare decisions. This reliance on such data underscores the importance of adhering to stringent data protection regulations, such as HIPAA in the United States and GDPR in the European Union.

Compliance with these regulations is essential but presents challenges due to the complexity of data management in healthcare settings. Healthcare providers and diagnostic companies must implement robust measures such as data encryption, secure storage systems, stringent access controls, and secure transmission protocols to safeguard patient information from potential threats like cyberattacks or unauthorized access. These protective measures not only mitigate the risk of data breaches but also preserve patient confidentiality and trust. Failure to uphold data privacy standards can have severe consequences, including legal ramifications, financial penalties, and reputational damage to healthcare organizations and diagnostic companies. Breaches in data security can erode patient confidence in precision diagnostics, hindering their widespread adoption and acceptance in clinical practice.

Shift Towards Personalized Medicine

The shift towards personalized medicine marks a paradigmatic evolution in healthcare, moving beyond traditional one-size-fits-all approaches to treatments tailored to the unique genetic, molecular, and environmental profiles of individual patients. Central to this transformation are precision diagnostics, which harness advances in genomics, proteomics, and metabolomics to elucidate intricate biomarkers and molecular signatures crucial for therapeutic decision-making. Genomics plays a pivotal role by unraveling an individual's genetic blueprint, identifying genetic mutations, variations, and predispositions to diseases. This genetic information guides healthcare providers in predicting disease risks, selecting appropriate therapies, and optimizing treatment outcomes. For instance, in oncology, genomic profiling of tumors helps pinpoint specific mutations driving cancer growth, enabling the prescription of targeted therapies that block these aberrant pathways while sparing healthy tissues.

Proteomics and metabolomics complement genomics by offering insights into protein expression patterns and metabolic processes within cells. These disciplines enhance the understanding of disease mechanisms and drug responses, facilitating personalized treatment strategies. By analyzing proteins and metabolites in patient samples, clinicians can tailor interventions to maximize efficacy and minimize adverse effects based on individual biochemical profiles.

The integration of these advanced diagnostic technologies into clinical practice enhances healthcare delivery by promoting precision and efficacy in treatment. Patients benefit from optimized therapeutic regimens that not only address their medical conditions more effectively but also enhance their overall quality of life by reducing treatment-related complications.

The adoption of personalized medicine principles is accelerating globally as healthcare providers recognize its potential to revolutionize patient care. Patients, too, are increasingly embracing personalized approaches that promise treatments aligned with their unique genetic makeup and health characteristics. This growing demand for precision diagnostics underscores the need for continued innovation and investment in diagnostic technologies to expand their accessibility and applicability across diverse clinical settings.

Integration of Artificial Intelligence and Machine Learning

The integration of artificial intelligence (AI) and machine learning (ML) represents a transformative leap forward in precision diagnostics, offering unprecedented capabilities in data analysis and decision-making within the healthcare sector. AI algorithms, powered by ML models, have the capacity to process vast amounts of heterogeneous data, ranging from genomic sequences and medical images to electronic health records (EHRs) and real-time patient monitoring data. In genomic analysis, AI algorithms can sift through massive genomic datasets to identify subtle genetic variations associated with disease susceptibility, progression, and treatment response. By discerning patterns across these data points, AI enhances the accuracy of genetic profiling and enables healthcare providers to deliver personalized treatment plans tailored to individual genetic profiles. This capability is particularly impactful in oncology, where AI-driven genomic analysis aids in selecting targeted therapies that address specific mutations driving cancer growth while minimizing unnecessary treatments.

In medical imaging, AI algorithms excel in interpreting complex imaging data, such as MRI scans, CT scans, and pathology images. Through pattern recognition and deep learning techniques, AI can detect abnormalities, classify lesions, and predict disease progression with high accuracy. This facilitates early detection of diseases like cardiovascular disorders and cancers, enabling timely interventions and improved patient outcomes. AI-powered predictive analytics in clinical settings harness historical patient data from EHRs to forecast disease risks, predict patient outcomes, and optimize treatment strategies. ML models analyze patient demographics, medical history, and treatment responses to generate personalized recommendations for healthcare providers, fostering more informed decision-making and enhancing patient care quality.

The continuous advancement of AI technologies holds promise for further innovation in precision diagnostics, driving market expansion as healthcare systems worldwide seek to leverage these capabilities. Investment in AI and ML research and development is pivotal in refining algorithms, improving computational efficiency, and ensuring the ethical deployment of AI-driven diagnostics in clinical practice.

Segmental Insights

Type Insights

Based on the type, In 2023, in the global precision diagnostics market, genetic tests emerged as the dominant segment. Genetic tests have gained prominence due to their critical role in personalized medicine, offering insights into an individual's genetic makeup and predisposition to certain diseases. Advances in genomics have significantly enhanced the accuracy and affordability of genetic testing, making it more accessible to healthcare providers and patients alike. These tests enable clinicians to identify genetic variations associated with diseases such as cancer, cardiovascular disorders, and rare genetic conditions, thereby facilitating early detection, risk assessment, and personalized treatment strategies.

The growing awareness and acceptance of genetic testing among consumers have fueled market growth. Direct-to-consumer (DTC) genetic tests have gained popularity, allowing individuals to access genetic information related to ancestry, health traits, and disease risks directly from commercial providers. This direct accessibility has democratized genetic testing, empowering individuals to make informed decisions about their health and wellness based on their genetic predispositions.

End-Use Insights

Based on the End-Use, In the global precision diagnostics market, clinical laboratories are anticipated to witness significant growth over the forecast period. Clinical laboratories play a pivotal role in precision diagnostics by performing a wide range of tests, including molecular diagnostics, genetic testing, and specialized assays for various diseases and conditions. These laboratories are equipped with advanced diagnostic technologies and expertise necessary for accurate and reliable testing, which is essential for disease diagnosis, monitoring, and treatment selection.

The increasing demand for precise and timely diagnostic services, driven by the rising prevalence of chronic diseases and the growing emphasis on personalized medicine, is a major factor contributing to the growth of clinical laboratories. As healthcare systems worldwide strive to improve patient outcomes and optimize treatment pathways, there is a heightened need for comprehensive diagnostic testing capabilities offered by clinical laboratories. Technological advancements in diagnostic platforms, automation, and data analytics are enhancing the efficiency and accuracy of testing processes within clinical laboratories. These advancements enable faster turnaround times for test results, improve workflow management, and support the integration of complex diagnostic algorithms and interpretations.

Regional Insights

North America asserted its dominance in the Global Precision Diagnostics Market in 2023, primarily due to several key factors that have propelled the region to hold the largest market share in this rapidly evolving sector. North America benefits from a robust healthcare infrastructure characterized by advanced healthcare facilities, high adoption rates of innovative medical technologies, and substantial investments in research and development. These factors create a conducive environment for the development and commercialization of precision diagnostics, fostering a competitive edge in the global market.

The region boasts a strong regulatory framework that supports the introduction and approval of new diagnostic technologies. Regulatory agencies such as the Food and Drug Administration (FDA) in the United States provide clear pathways for market entry, ensuring rigorous evaluation of safety, efficacy, and clinical utility of precision diagnostics. This regulatory clarity enhances investor confidence and accelerates the commercialization timeline for new diagnostic products.

Key Market Players

Abbott Laboratories Inc.

F. Hoffmann-La Roche Ltd.

Siemens Healthineers AG

Thermo Fisher Scientific Inc.

bioMerieux SA

Becton, Dickinson and Company

Danaher Corporation

QIAGEN N.V.

Hologic Inc.

Agilent Technologies Inc

Report Scope:

In this report, the Global Precision Diagnostics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Precision Diagnostics Market, By Type:

    Genetic Tests Direct to Consumer Tests Esoteric Tests Others

Precision Diagnostics Market, By Application:

    Oncology Respiratory Diseases Skin Diseases CNS Disorders Immunology Genetic Diseases Others

Precision Diagnostics Market, By End-Use:

    Hospitals Clinical Laboratories Others

Precision Diagnostics Market, By Region:

    North America

United States

Canada

Mexico

    Europe

France

United Kingdom

Italy

Germany

Spain

    Asia-Pacific

China

India

Japan

Australia

South Korea

    South America

Brazil

Argentina

Colombia

    Middle East & Africa

South Africa

Saudi Arabia

UAE

Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Precision Diagnostics Market.

Available Customizations:

Global Precision Diagnostics market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Key Industry Partners
  • 2.4. Major Association and Secondary Sources
  • 2.5. Forecasting Methodology
  • 2.6. Data Triangulation & Validation
  • 2.7. Assumptions and Limitations

3. Executive Summary

  • 3.1. Overview of the Market
  • 3.2. Overview of Key Market Segmentations
  • 3.3. Overview of Key Market Players
  • 3.4. Overview of Key Regions/Countries
  • 3.5. Overview of Market Drivers, Challenges, and Trends

4. Voice of Customer

5. Global Precision Diagnostics Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Genetic Tests, Direct to Consumer Tests, Esoteric Tests, Others)
    • 5.2.2. By Application (Oncology, Respiratory Diseases, Skin Diseases, CNS Disorders, Immunology, Genetic Diseases, Others)
    • 5.2.3. By End-Use (Hospitals, Clinical Laboratories, Others)
    • 5.2.4. By Company (2023)
    • 5.2.5. By Region
  • 5.3. Market Map

6. North America Precision Diagnostics Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Application
    • 6.2.3. By End-Use
    • 6.2.4. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Precision Diagnostics Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Application
        • 6.3.1.2.3. By End-Use
    • 6.3.2. Mexico Precision Diagnostics Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Application
        • 6.3.2.2.3. By End-Use
    • 6.3.3. Canada Precision Diagnostics Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Application
        • 6.3.3.2.3. By End-Use

7. Europe Precision Diagnostics Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Application
    • 7.2.3. By End-Use
    • 7.2.4. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. France Precision Diagnostics Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Application
        • 7.3.1.2.3. By End-Use
    • 7.3.2. Germany Precision Diagnostics Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Application
        • 7.3.2.2.3. By End-Use
    • 7.3.3. United Kingdom Precision Diagnostics Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Application
        • 7.3.3.2.3. By End-Use
    • 7.3.4. Italy Precision Diagnostics Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Application
        • 7.3.4.2.3. By End-Use
    • 7.3.5. Spain Precision Diagnostics Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Application
        • 7.3.5.2.3. By End-Use

8. Asia-Pacific Precision Diagnostics Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Application
    • 8.2.3. By End-Use
    • 8.2.4. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Precision Diagnostics Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Application
        • 8.3.1.2.3. By End-Use
    • 8.3.2. India Precision Diagnostics Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Application
        • 8.3.2.2.3. By End-Use
    • 8.3.3. South Korea Precision Diagnostics Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Application
        • 8.3.3.2.3. By End-Use
    • 8.3.4. Japan Precision Diagnostics Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Application
        • 8.3.4.2.3. By End-Use
    • 8.3.5. Australia Precision Diagnostics Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Application
        • 8.3.5.2.3. By End-Use

9. South America Precision Diagnostics Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Application
    • 9.2.3. By End-Use
    • 9.2.4. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Precision Diagnostics Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Application
        • 9.3.1.2.3. By End-Use
    • 9.3.2. Argentina Precision Diagnostics Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Application
        • 9.3.2.2.3. By End-Use
    • 9.3.3. Colombia Precision Diagnostics Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Application
        • 9.3.3.2.3. By End-Use

10. Middle East and Africa Precision Diagnostics Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Application
    • 10.2.3. By End-Use
    • 10.2.4. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Precision Diagnostics Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Application
        • 10.3.1.2.3. By End-Use
    • 10.3.2. Saudi Arabia Precision Diagnostics Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Application
        • 10.3.2.2.3. By End-Use
    • 10.3.3. UAE Precision Diagnostics Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Application
        • 10.3.3.2.3. By End-Use

11. Market Dynamics

  • 11.1. Drivers
  • 11.2. Challenges

12. Market Trends & Developments

  • 12.1. Merger & Acquisition (If Any)
  • 12.2. Product Launches (If Any)
  • 12.3. Recent Developments

13. Porters Five Forces Analysis

  • 13.1. Competition in the Industry
  • 13.2. Potential of New Entrants
  • 13.3. Power of Suppliers
  • 13.4. Power of Customers
  • 13.5. Threat of Substitute Products

14. Competitive Landscape

  • 14.1. Abbott Laboratories Inc.
    • 14.1.1. Business Overview
    • 14.1.2. Company Snapshot
    • 14.1.3. Products & Services
    • 14.1.4. Financials (As Reported)
    • 14.1.5. Recent Developments
    • 14.1.6. Key Personnel Details
    • 14.1.7. SWOT Analysis
  • 14.2. F. Hoffmann-La Roche Ltd.
  • 14.3. Siemens Healthineers AG
  • 14.4. Thermo Fisher Scientific Inc.
  • 14.5. bioMerieux SA
  • 14.6. Becton, Dickinson and Company
  • 14.7. Danaher Corporation
  • 14.8. QIAGEN N.V.
  • 14.9. Hologic Inc.
  • 14.10. Agilent Technologies Inc.

15. Strategic Recommendations

16. About Us & Disclaimer