デフォルト表紙
市場調査レポート
商品コード
1797889

再生型システムによる持続可能な水産養殖の2032年までの市場予測:製品タイプ別、成分別、種別、環境別、地域別の世界分析

Sustainable Aquaculture In Regenerative Systems Market Forecasts to 2032 - Global Analysis By Product Type (New Production Methods, Sustainable and Alternative Feeds and Fish Health Products & Services), Ingredient, Species, Environment and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=148.34円
再生型システムによる持続可能な水産養殖の2032年までの市場予測:製品タイプ別、成分別、種別、環境別、地域別の世界分析
出版日: 2025年08月07日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、再生型システムにおける持続可能な水産養殖の世界市場は、2025年に9億239万米ドルを占め、予測期間中に12.8%のCAGRで成長し、2032年までに20億9,682万米ドルに達すると予想されています。

再生型システムにおける持続可能な水産養殖は、環境への害を減らしながら生態系の健全性を積極的に改善する先進的な手法です。再生型システムは、汚染や生息地の劣化を助長する可能性のある従来の養殖とは対照的に、生物多様性を回復し、土壌や水質を向上させるために、水の再循環、多養殖、栄養分のリサイクルといった概念を取り入れています。このようなシステムは、アクアポニックスのように養殖と農業を統合することが多く、魚の排泄物を植物の成長に利用することで、廃棄物ゼロのクローズドループモデルを構築しています。さらに、再生型システムにおける持続可能な水産養殖は、食糧生産と生態系のバランスを調整することで、環境回復と気候変動への耐性を促進しながら、世界の水産物需要を満たす強固な方法を提供します。

世界自然保護基金(WWF)によると、海藻の養殖は再生型水産養殖の重要な一部であり、耕作地・淡水・肥料を使わずに、1ヘクタールあたり100~200トンのバイオマスを生産することができます。海藻は成長する過程で、過剰な炭素や栄養塩を吸収し、富栄養化を抑制するとともに、海洋の生物多様性を高める効果があります。

世界中で高まるタンパク質需要

2050年までに世界人口が97億人を突破すると予想される中、持続可能で手頃な価格のタンパク質源に対するニーズは劇的に高まると思われます。FAOによれば、世界の動物性タンパク質摂取量の約17%はすでに水産物、特に魚介類から摂取されています。多くの地域では、伝統的な捕獲漁業は持続可能な限界に達しているか、それを超えているため、養殖が将来の成長源となる必要があります。さらに、魚類は牛や家禽よりも飼料要求率(FCR)が高いため、先進国でも発展途上国でも、養殖は食料安全保障を促進する有効な手段となります。

熟練労働者と技術的専門知識の不在

再生水産養殖システムは技術的に複雑であるため、工学、栄養循環、水化学、微生物学、多品種養殖などの分野での専門知識が必要となります。多くの場所、特に開発途上国では、教育を受けた専門家や教育プログラムへのアクセスは限られています。このような技術的能力の欠如は、新規参入者が再生型システムをうまく導入し、管理することを困難にし、運営上の失敗のリスクを高めます。さらに、水産養殖に携わる人々の多くは、単一養殖や伝統的な方法に慣れているため、このような統合的で科学的なアプローチを受け入れることに消極的であったり、準備ができていなかったりします。

垂直・都市型アクアポニックスシステムの成長

地元での食料生産への関心の高まりは都市化によって後押しされており、アクアポニックスのような再生可能な養殖システムは都市環境に最適です。屋上や地下室、あるいは垂直農場内で稼働させることができるこれらの水効率のよい積み重ね式システムは、魚と野菜の同時養殖を可能にします。都市型アクアポニックスシステムは、スマートテクノロジーやモノのインターネットソリューションの普及により、自動化、遠隔監視、微気候に合わせたカスタマイズが可能になりました。さらにこれは、開発業者、自治体、起業家にとって、食品生産を企業の持続可能性イニシアティブ、都市再生プロジェクト、またはスマートシティの設計に組み込む大きな機会となります。

工業的養殖や従来の養殖との競合

人々の持続可能性への意識が高まっているとはいえ、伝統的な養殖システム、とりわけティラピア、サケ、エビの集約的単一養殖は、その確立されたインフラ、規模の経済、短期的な生産コストの低さから、引き続き市場を独占しています。これらのシステムは、生態学的価値よりも量を優先するサプライチェーンの中で機能することが多く、多額の補助金を受けています。しかし、再生型養殖は、通常、当初は生産量が少なく、水質の改善や生物多様性の回復といった利点がまだ十分に収益化されていません。このため、再生型養殖業者は、特に持続可能性プレミアムが存在しないか非常に低い地域において、価格設定と市場アクセスの面で激しい競争に取り組まなければなりません。

COVID-19の影響

再生型システムにおける持続可能な水産養殖市場は、COVID-19の大流行によって大きな影響を受けました。また、養殖業、特に新鮮な短期販売に依存する中小企業は、労働力不足、世界的なサプライチェーンの混乱、市場アクセスの制限により悪影響を受けました。ロックダウン期間中、多くの再生型養殖業者は、飼料や稚魚などの投入資材の調達、物資の輸送、システムの稼働維持が困難となりました。しかし、パンデミックは世界の食糧システムの弱点に注意を向けさせ、地元で生産され、弾力性があり、持続可能な食糧に対する消費者の関心を高め、統合システムやアクアポニックスのような再生養殖モデルに対する認識と需要を高めました。

予測期間中、アミノ酸セグメントが最大となる見込み

予測期間中、アミノ酸セグメントが最大の市場シェアを占めると予想されます。水産養殖種は、健康的な成長、筋肉の開発、免疫学的機能のために、タンパク質の必要な構成要素であるアミノ酸に依存しています。再生型システムにおいては、飼料配合が植物ベースで持続可能な選択肢へと移行する中、リジン、メチオニン、スレオニンなどの合成または結晶アミノ酸の使用が栄養不足を補うために不可欠です。これらの添加物は、窒素排泄量を低下させ、飼料要求率を高めるなど、抗生物質を必要とせずに動物の健康をサポートします。さらに、生物学的な必要性、低魚粉飼料への適応性、広く使用されていることから、現代の持続可能な水産養殖において最も広く使用されている機能性飼料添加物です。

予測期間中、海藻・藻類セグメントが最も高いCAGRとなる見込み

予測期間中、海藻・藻類セグメントが最も高い成長率を示すと予測されます。海藻養殖は、植物性タンパク質、機能性食品、バイオ燃料、天然添加物に対する世界の需要の高まりにより急速に拡大しています。海藻養殖は、動物性養殖のように飼料、肥料、淡水を必要としないため、最も環境に優しく再生可能な養殖のひとつです。二酸化炭素や余分な栄養分を吸収し、水質を改善し、海洋の生物多様性を高めることで、再生生態系の目的を直接サポートします。食品、化粧品、農業、医薬品など、さまざまな分野への適応性により、この市場は再生型水産養殖システムにおける経済的利点と環境的利点の両方を促進する持続可能な原動力となっています。

最大のシェアを占める地域

予測期間中、アジア太平洋地域は、その豊富な海岸線、良好な気候、世界の養殖生産における優位性、持続可能な食糧システムへの重点の高まりによって、最大の市場シェアを占めると予想されます。世界の生産量の半分以上は中国からのもので、海藻養殖、再循環養殖システム、総合多栄養養殖(IMTA)のような重要な再生技術がますます普及しています。さらに、この地域のリーダーシップは、政府の援助、低い人件費、技術の進歩、持続的に生産される水産物の国内消費の増加によってさらに強化されています。

CAGRが最も高い地域

予測期間中、北米地域が最も高いCAGRを示すと予測されます。最先端の水産養殖技術に対する官民の旺盛な投資、持続可能な方法で調達された水産物に対する消費者の需要の高まり、アクアポニックスや再循環型水産養殖システム(RAS)のような陸上ベースのシステムの迅速な普及が、すべてこの成長の要因となっています。天然漁業への負担を軽減しつつ、食糧安全保障と環境スチュワードシップを向上させるための主導的な取り組みは、米国とカナダによって行われています。さらに、気候変動に強い食糧システムを支援する政策や、総合多栄養養殖(IMTA)のような低負荷で再生可能な手法への移行によっても、市場の拡大が加速しています。

無料カスタマイズサービス

本レポートをご購読の顧客には、以下の無料カスタマイズオプションのいずれかをご利用いただけます。

  • 企業プロファイル
    • 追加市場プレーヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査資料
    • 一次調査資料
    • 二次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 製品分析
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の再生型システムにおける持続可能な水産養殖市場:製品タイプ別

  • 新しい生産方法
    • 陸上システム
    • 閉鎖循環式養殖システム
    • 沖合および海洋養殖技術
    • 統合多栄養段階養殖
    • 精密養殖技術
  • 持続可能な代替飼料
    • 藻類ベース飼料
    • 昆虫タンパク質飼料
    • 単細胞タンパク質飼料
    • 植物由来/新規原料飼料
    • 機能性添加剤
  • 魚の健康に関する製品・サービス
    • 疾病管理
    • 健康監視・診断
    • 水質管理ソリューション

第6章 世界の再生型システムにおける持続可能な水産養殖市場:成分別

  • アミノ酸
  • リン酸塩
  • ビタミン
  • 酸化剤
  • カロテノイド
  • 酵素
  • マイコトキシン解毒剤
  • プロバイオティクス
  • ミネラル
  • 抗酸化物質
  • GRAS(一般的に安全と認められる)物質
  • 非抗生物質免疫刺激剤

第7章 世界の再生型システムにおける持続可能な水産養殖市場:種別

  • サーモン・マス
  • ティラピア
  • ナマズ
  • 甲殻類
  • 軟体動物
  • 海藻・藻類
  • その他

第8章 世界の再生型システムにおける持続可能な水産養殖市場:環境別

  • 淡水
  • 海洋(海水)
  • 汽水

第9章 世界の再生型システムにおける持続可能な水産養殖市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第10章 主な発展

  • 契約、パートナーシップ、コラボレーション、ジョイントベンチャー
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第11章 企業プロファイリング

  • Aquaculture Technologies Asia Limited
  • Triton Anchor
  • Ynsect
  • Aquapulse Inc
  • Manjeera Aqua Technologies Pvt Ltd
  • Leroy Seafood Group ASA
  • NovoNutrients Inc
  • Cooke Aquaculture
  • InnovaFeed
  • Alpha Group
  • Nippon Suisan Kaisha Ltd.
  • Cermaq Group AS
  • Ace Aquatec Inc
  • Marine Harvest ASA
  • Kampachi Farms
図表

List of Tables

  • Table 1 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Product Type (2024-2032) ($MN)
  • Table 3 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By New Production Methods (2024-2032) ($MN)
  • Table 4 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Land-based Systems (2024-2032) ($MN)
  • Table 5 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Closed Recirculating Aquaculture Systems (2024-2032) ($MN)
  • Table 6 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Offshore and Marine Aquaculture Technologies (2024-2032) ($MN)
  • Table 7 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Integrated Multi-trophic Aquaculture (2024-2032) ($MN)
  • Table 8 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Precision Aquaculture Technologies (2024-2032) ($MN)
  • Table 9 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Sustainable and Alternative Feeds (2024-2032) ($MN)
  • Table 10 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Algae-based Feeds (2024-2032) ($MN)
  • Table 11 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Insect protein Feeds (2024-2032) ($MN)
  • Table 12 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Single-cell protein Feeds (2024-2032) ($MN)
  • Table 13 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Plant-based/novel Ingredient Feeds (2024-2032) ($MN)
  • Table 14 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Functional Additives (2024-2032) ($MN)
  • Table 15 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Fish Health Products & Services (2024-2032) ($MN)
  • Table 16 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Disease Control (2024-2032) ($MN)
  • Table 17 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Health Monitoring and Diagnostics (2024-2032) ($MN)
  • Table 18 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Water Quality Management Solutions (2024-2032) ($MN)
  • Table 19 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Ingredient (2024-2032) ($MN)
  • Table 20 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Amino Acids (2024-2032) ($MN)
  • Table 21 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Phosphates (2024-2032) ($MN)
  • Table 22 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Vitamins (2024-2032) ($MN)
  • Table 23 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Acidifiers (2024-2032) ($MN)
  • Table 24 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Carotenoids (2024-2032) ($MN)
  • Table 25 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Enzymes (2024-2032) ($MN)
  • Table 26 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Mycotoxin Detoxifiers (2024-2032) ($MN)
  • Table 27 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Probiotics (2024-2032) ($MN)
  • Table 28 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Minerals (2024-2032) ($MN)
  • Table 29 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Antioxidants (2024-2032) ($MN)
  • Table 30 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By GRAS (Generally Recognized As Safe) Substances (2024-2032) ($MN)
  • Table 31 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Non-antibiotic Immunostimulants (2024-2032) ($MN)
  • Table 32 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Species (2024-2032) ($MN)
  • Table 33 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Salmon and Trout (2024-2032) ($MN)
  • Table 34 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Tilapia (2024-2032) ($MN)
  • Table 35 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Carp (2024-2032) ($MN)
  • Table 36 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Catfish (2024-2032) ($MN)
  • Table 37 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Crustaceans (2024-2032) ($MN)
  • Table 38 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Mollusks (2024-2032) ($MN)
  • Table 39 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Seaweed & Algae (2024-2032) ($MN)
  • Table 40 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Other Species (2024-2032) ($MN)
  • Table 41 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Environment (2024-2032) ($MN)
  • Table 42 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Freshwater (2024-2032) ($MN)
  • Table 43 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Marine (Saltwater) (2024-2032) ($MN)
  • Table 44 Global Sustainable Aquaculture In Regenerative Systems Market Outlook, By Brackish Water (2024-2032) ($MN)

Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

目次
Product Code: SMRC30259

According to Stratistics MRC, the Global Sustainable Aquaculture in Regenerative Systems Market is accounted for $902.39 million in 2025 and is expected to reach $2096.82 million by 2032 growing at a CAGR of 12.8% during the forecast period. Sustainable aquaculture in regenerative systems is a progressive method that actively improves ecosystem health while reducing environmental harm. Regenerative systems incorporate concepts like water recirculation, polyculture, and nutrient recycling to restore biodiversity and enhance soil and water quality, in contrast to traditional aquaculture, which can contribute to pollution and habitat degradation. These systems frequently integrate aquaculture and agriculture, as in aquaponics, which creates a closed-loop, zero-waste model by using fish waste to support plant growth. Moreover, sustainable aquaculture in regenerative systems provides a robust way to satisfy the world's demand for seafood while promoting environmental restoration and climate resilience by coordinating food production with ecological balance.

According to the World Wildlife Fund (WWF), seaweed farming-an integral part of regenerative aquaculture-can produce 100-200 tons of biomass per hectare without using arable land, freshwater, or fertilizers; as it grows, it absorbs excess carbon and nutrients, reduces eutrophication, and enhances marine biodiversity.

Market Dynamics:

Driver:

Growing protein demand worldwide

The need for sustainable and reasonably priced protein sources will rise dramatically as the world's population is expected to surpass 9.7 billion people by 2050. Approximately 17% of the world's animal protein intake already comes from aquatic foods, especially fish and seafood, according to the FAO. In many areas, traditional capture fisheries have reached or surpassed sustainable limits, so aquaculture will need to be the source of future growth. Additionally, fish also have a higher feed conversion ratio (FCR) than cattle or poultry, which makes aquaculture a viable way to promote food security in both developed and developing countries.

Restraint:

Absence of skilled workers and technical expertise

The technical complexity of regenerative aquaculture systems necessitates specific expertise in fields like engineering, nutrient cycling, water chemistry, microbiology, and multispecies farming. There is limited access to educated professionals and educational programs in many places, particularly in developing nations. This lack of technical capability raises the risk of operational failures by making it challenging for newcomers to successfully adopt and manage regenerative systems. Furthermore, many aquaculture workers may be reluctant or unprepared to embrace these more integrated and scientifically driven approaches because they are used to monoculture or traditional methods.

Opportunity:

Growth of vertical and urban aquaponics systems

Growing interest in local food production is being fueled by urbanization, and regenerative aquaculture systems, like aquaponics, are perfect for urban settings. These water-efficient, stacked systems, which can be run on rooftops, in basements, or inside vertical farms, enable the simultaneous cultivation of fish and vegetables. Urban aquaponics systems can now be automated, remotely monitored, and customized for microclimates owing to the growing availability of smart technologies and Internet of Things solutions. Moreover, this presents a significant chance for developers, municipalities, and entrepreneurs to incorporate food production into corporate sustainability initiatives, urban renewal projects, or smart city designs.

Threat:

Competition from industrial and conventional aquaculture

Even though people are becoming more conscious of sustainability, traditional aquaculture systems-particularly intensive monocultures of tilapia, salmon, and shrimp-continue to rule the market because of their established infrastructure, economies of scale, and lower short-term production costs. These systems frequently function in supply chains that prioritize volume over ecological value and are heavily subsidized. However, regenerative aquaculture usually produces smaller volumes in the beginning and has not yet fully monetized its advantages, such as improving water quality or restoring biodiversity. Because of this, regenerative producers have to contend with fierce competition in terms of pricing and market access, especially in areas where sustainability premiums are absent or very low.

Covid-19 Impact:

The market for sustainable aquaculture in regenerative systems was significantly impacted by the COVID-19 pandemic, albeit in a mixed way. On the one hand, aquaculture operations, especially small and medium-sized businesses that depend on fresh, short-cycle sales, were negatively impacted by labor shortages, global supply chain disruptions, and restricted market access. During lockdowns, many regenerative aquaculture producers encountered difficulties sourcing inputs such as feed and fingerlings, transporting goods, and keeping their systems operating. However, the pandemic brought attention to weaknesses in the world's food systems and heightened consumer interest in locally produced, resilient, and sustainable food, which raised awareness of and demand for regenerative aquaculture models like integrated systems and aquaponics.

The amino acids segment is expected to be the largest during the forecast period

The amino acids segment is expected to account for the largest market share during the forecast period. Aquatic farmed species depend on amino acids, which are necessary building blocks of protein, for healthy growth, muscle development, and immunological function. In regenerative systems, the use of synthetic or crystalline amino acids such as lysine, methionine, and threonine is essential to make up for nutrient deficiencies as feed formulations move toward plant-based and sustainable options. These additives support animal health without the need for antibiotics by lowering nitrogen excretion, increasing feed conversion ratios, and more. Moreover, they are the most widely used functional feed additives in modern sustainable aquaculture due to their biological necessity, adaptability to low-fishmeal diets, and widespread use.

The seaweed & algae segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the seaweed & algae segment is predicted to witness the highest growth rate. Seaweed farming is expanding quickly due to the rising demand for plant-based protein, functional foods, biofuels, and natural additives worldwide. Seaweed farming is one of the most environmentally friendly and regenerative types of aquaculture because it doesn't require feed, fertilizer, or freshwater like animal aquaculture does. It directly supports the objectives of regenerative ecosystems by absorbing carbon dioxide and excess nutrients, improving water quality, and boosting marine biodiversity. Its adaptability to a variety of sectors, including food, cosmetics, agriculture, and pharmaceuticals, makes this market a sustainable powerhouse that promotes both financial and environmental advantages in regenerative aquaculture systems.

Region with largest share:

During the forecast period, the Asia-Pacific region is expected to hold the largest market share, driven by its abundance of coastline, favorable climate, dominance in the world's aquaculture production, and growing emphasis on sustainable food systems. More than half of the world's production comes from China alone, where important regenerative techniques like seaweed farming, recirculating aquaculture systems, and integrated multi-trophic aquaculture (IMTA) are becoming more and more popular. Additionally, the region's leadership is further reinforced by government assistance, low labor costs, technological advancements, and growing domestic consumption of sustainably produced seafood.

Region with highest CAGR:

Over the forecast period, the North America region is anticipated to exhibit the highest CAGR. Strong public and private investments in cutting-edge aquaculture technologies, rising consumer demand for seafood sourced sustainably, and the quick uptake of land-based systems like aquaponics and recirculating aquaculture systems (RAS) are all contributing factors to this growth. Leading initiatives to improve food security and environmental stewardship while lessening the strain on wild fisheries are being undertaken by the United States and Canada. Furthermore, market expansion is also being accelerated by policies that support climate-resilient food systems and a move toward low-impact, regenerative practices like integrated multi-trophic aquaculture (IMTA).

Key players in the market

Some of the key players in Sustainable Aquaculture In Regenerative Systems Market include Aquaculture Technologies Asia Limited, Triton Anchor, Ynsect, Aquapulse Inc, Manjeera Aqua Technologies Pvt Ltd, Leroy Seafood Group ASA, NovoNutrients Inc, Cooke Aquaculture, InnovaFeed, Alpha Group, Nippon Suisan Kaisha Ltd., Cermaq Group AS, Ace Aquatec Inc, Marine Harvest ASA and Kampachi Farms.

Key Developments:

In March 2025, Cooke Aquaculture has agreed to buy the Canadian subsidiary of former land-based salmon producer AquaBounty. The CAD 3 million deal, worth approximately CAD 1.58 million to AquaBounty after its debts to Cooke subsidiary Kelly Cove Salmon are taken into account, includes AquaBounty Canada's physical property and a transfer to KCS of all of AQB's Corporate registered intellectual property.

In January 2025, Innovafeed and Agryco have entered into a commercial partnership to distribute Hilucia(TM) Frass. This agreement enables Innovafeed to expand access to its organic fertilizer, while Agryco integrates Hilucia(TM) Frass into its agricultural product offerings. This partnership with Agryco reflects our commitment to delivering practical and sustainable solutions to the agricultural sector.

In April 2023, NovoNutrients has signed a Technology Development Agreement (TDA) with global energy major Woodside Energy under which Woodside will fund up to USD 3 million, contingent on NovoNutrients meeting key development milestones. The funding supports the design and operation of a larger pilot-scale system, advancing the transition from lab-scale trials to commercial-grade plant infrastructure.

Product Types Covered:

  • New Production Methods
  • Sustainable and Alternative Feeds
  • Fish Health Products & Services

Ingredients Covered:

  • Amino Acids
  • Phosphates
  • Vitamins
  • Acidifiers
  • Carotenoids
  • Enzymes
  • Mycotoxin Detoxifiers
  • Probiotics
  • Minerals
  • Antioxidants
  • GRAS (Generally Recognized As Safe) Substances
  • Non-antibiotic Immunostimulants

Species Covered:

  • Salmon and Trout
  • Tilapia
  • Carp
  • Catfish
  • Crustaceans
  • Mollusks
  • Seaweed & Algae
  • Other Species

Environments Covered:

  • Freshwater
  • Marine (Saltwater)
  • Brackish Water

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Product Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Sustainable Aquaculture In Regenerative Systems Market, By Product Type

  • 5.1 Introduction
  • 5.2 New Production Methods
    • 5.2.1 Land-based Systems
    • 5.2.2 Closed Recirculating Aquaculture Systems
    • 5.2.3 Offshore and Marine Aquaculture Technologies
    • 5.2.4 Integrated Multi-trophic Aquaculture
    • 5.2.5 Precision Aquaculture Technologies
  • 5.3 Sustainable and Alternative Feeds
    • 5.3.1 Algae-based Feeds
    • 5.3.2 Insect protein Feeds
    • 5.3.3 Single-cell protein Feeds
    • 5.3.4 Plant-based/novel Ingredient Feeds
    • 5.3.5 Functional Additives
  • 5.4 Fish Health Products & Services
    • 5.4.1 Disease Control
    • 5.4.2 Health Monitoring and Diagnostics
    • 5.4.3 Water Quality Management Solutions

6 Global Sustainable Aquaculture In Regenerative Systems Market, By Ingredient

  • 6.1 Introduction
  • 6.2 Amino Acids
  • 6.3 Phosphates
  • 6.4 Vitamins
  • 6.5 Acidifiers
  • 6.6 Carotenoids
  • 6.7 Enzymes
  • 6.8 Mycotoxin Detoxifiers
  • 6.9 Probiotics
  • 6.10 Minerals
  • 6.11 Antioxidants
  • 6.12 GRAS (Generally Recognized As Safe) Substances
  • 6.13 Non-antibiotic Immunostimulants

7 Global Sustainable Aquaculture In Regenerative Systems Market, By Species

  • 7.1 Introduction
  • 7.2 Salmon and Trout
  • 7.3 Tilapia
  • 7.4 Carp
  • 7.5 Catfish
  • 7.6 Crustaceans
  • 7.7 Mollusks
  • 7.8 Seaweed & Algae
  • 7.9 Other Species

8 Global Sustainable Aquaculture In Regenerative Systems Market, By Environment

  • 8.1 Introduction
  • 8.2 Freshwater
  • 8.3 Marine (Saltwater)
  • 8.4 Brackish Water

9 Global Sustainable Aquaculture In Regenerative Systems Market, By Geography

  • 9.1 Introduction
  • 9.2 North America
    • 9.2.1 US
    • 9.2.2 Canada
    • 9.2.3 Mexico
  • 9.3 Europe
    • 9.3.1 Germany
    • 9.3.2 UK
    • 9.3.3 Italy
    • 9.3.4 France
    • 9.3.5 Spain
    • 9.3.6 Rest of Europe
  • 9.4 Asia Pacific
    • 9.4.1 Japan
    • 9.4.2 China
    • 9.4.3 India
    • 9.4.4 Australia
    • 9.4.5 New Zealand
    • 9.4.6 South Korea
    • 9.4.7 Rest of Asia Pacific
  • 9.5 South America
    • 9.5.1 Argentina
    • 9.5.2 Brazil
    • 9.5.3 Chile
    • 9.5.4 Rest of South America
  • 9.6 Middle East & Africa
    • 9.6.1 Saudi Arabia
    • 9.6.2 UAE
    • 9.6.3 Qatar
    • 9.6.4 South Africa
    • 9.6.5 Rest of Middle East & Africa

10 Key Developments

  • 10.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 10.2 Acquisitions & Mergers
  • 10.3 New Product Launch
  • 10.4 Expansions
  • 10.5 Other Key Strategies

11 Company Profiling

  • 11.1 Aquaculture Technologies Asia Limited
  • 11.2 Triton Anchor
  • 11.3 Ynsect
  • 11.4 Aquapulse Inc
  • 11.5 Manjeera Aqua Technologies Pvt Ltd
  • 11.6 Leroy Seafood Group ASA
  • 11.7 NovoNutrients Inc
  • 11.8 Cooke Aquaculture
  • 11.9 InnovaFeed
  • 11.10 Alpha Group
  • 11.11 Nippon Suisan Kaisha Ltd.
  • 11.12 Cermaq Group AS
  • 11.13 Ace Aquatec Inc
  • 11.14 Marine Harvest ASA
  • 11.15 Kampachi Farms