![]() |
市場調査レポート
商品コード
1569793
アドバンストバッテリー市場の2030年までの予測: タイプ別、電圧レベル別、用途別、地域別の世界分析Advanced Battery Market Forecasts to 2030 - Global Analysis By Type, Voltage Level (High Voltage, Low Voltage and Medium Voltage ), Application and By Geography |
||||||
カスタマイズ可能
|
アドバンストバッテリー市場の2030年までの予測: タイプ別、電圧レベル別、用途別、地域別の世界分析 |
出版日: 2024年10月10日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、世界のアドバンストバッテリー市場は2024年に1,069億4,000万米ドルを占め、2030年には1,915億2,000万米ドルに達すると予測され、予測期間中のCAGRは10.2%で成長する見込みです。
アドバンストバッテリーは、従来の電池に比べて優れた性能を発揮する次世代エネルギー貯蔵システムです。これらの電池は、重量、コスト、環境への影響を低減しながら、エネルギー密度、出力、充電速度、寿命を向上させるように設計されています。アドバンストバッテリーは、リチウムイオン、固体電解質、リチウム硫黄やナトリウムイオンなどの革新的な化学物質のような最先端の材料を組み込んでいることが多く、効率と安全性を向上させています。
電気自動車への需要の高まり
より多くの消費者が環境へのメリットと効率性を求めて電気自動車にシフトする中、メーカーはバッテリーの性能、容量、耐久性を強化する必要に迫られています。EVで最も一般的に使用されているリチウムイオン・バッテリーは、航続距離の延長、充電時間の短縮、エネルギー密度の向上を実現するために最適化が進められています。EVの急速な普及は、さらに高いエネルギー効率と安全性を約束する固体電池などの代替電池化学の技術革新も後押ししています。さらに、バッテリー・リサイクル技術への投資の増加は、環境問題に対処しながら、リチウム、コバルト、ニッケルなどの原材料への依存度を減らすことを目的としています。
原材料サプライチェーンの課題
アドバンストバッテリー産業は、リチウム、コバルト、ニッケルといった重要な原材料の不足により、サプライチェーン上の大きな課題に直面しています。これらの原材料は、電気自動車(EV)やエネルギー貯蔵システムに電力を供給するリチウムイオン電池の生産に不可欠です。世界のクリーンエネルギーへの移行に伴い、これらの鉱物の需要は急増しているが、採掘能力の限界、地政学的緊張、環境問題などによって供給が制約されています。例えばコバルトは、政情が不安定になりやすいコンゴ民主共和国から主に調達されており、供給リスクを生み出しています。
産業用途での採用増加
産業用アプリケーションにおけるアドバンストバッテリーの採用増加により、バッテリー技術の大幅な強化が推進されています。製造業、エネルギー貯蔵、電気輸送などの産業では、その効率性、ライフサイクルの長さ、環境への影響の低減により、エネルギー・ニーズを満たすためにこれらのバッテリーへの依存が高まっています。この需要の高まりは、エネルギー密度、充電速度、安全性を向上させる技術革新をメーカーに促しています。再生可能エネルギー貯蔵、電気自動車、グリッド安定化などのアプリケーションは、信頼性の高い高性能バッテリーを必要とするため、こうした進歩の恩恵を受けています。
規制と安全性への懸念
規制と安全性への懸念は、アドバンストバッテリーの開発と展開に大きな影響を与えます。電池技術の進化、特に固体電池やリチウム硫黄電池のような高エネルギー密度電池の出現に伴い、規制機関はこれらの技術革新が厳しい安全基準と性能基準を満たしていることを保証しなければなりません。先進的な電池には新しい材料や化学物質が使用されることが多く、熱暴走や環境危険などの新たなリスクが生じる可能性があります。このような懸念から、事故を防止し、長期的な信頼性を確保するために、厳格な試験と認証プロセスが必要となります。規制はこれらのリスクに対処するために設計されているが、大規模な検証や遵守手順を必要とするため、新技術のイントロダクションを遅らせる可能性もあります。
COVID-19の大流行はアドバンストバッテリーセクターに大きな影響を与え、サプライチェーンを混乱させ、生産を遅らせた。施錠や渡航制限により、電池製造に不可欠なリチウム、コバルト、ニッケルなどの主要原材料が不足しました。工場の閉鎖や労働力の減少により、高度な電池の生産と組み立てが妨げられました。パンデミックは研究開発活動にも支障をきたし、電池技術の革新と進歩を遅らせた。こうした課題にもかかわらず、この危機は、電気自動車や再生可能エネルギー貯蔵のような重要な用途向けの電池技術の進歩を加速させるだけでなく、より弾力性のある地域密着型のサプライチェーンを開発することの重要性を浮き彫りにしました。
予測期間中、ナトリウム硫黄電池分野が最大になる見込み
予測期間中、ナトリウム硫黄電池セグメントが最大となる見込み。ナトリウム硫黄(Na-S)電池は、従来のリチウムイオンシステムに比べて性能とコスト効率が向上し、エネルギー貯蔵の分野で大きな進歩を遂げています。これらの電池は高温で作動し、正極材料に硫黄、負極にナトリウムを使用するためエネルギー密度が高いです。ナトリウムと硫黄の化学反応によって大規模なエネルギー貯蔵ソリューションが可能になるため、安定性と費用対効果が重要なグリッドエネルギー貯蔵などの用途に最適です。大量のエネルギーを効率的に貯蔵・放出できることから、断続的な再生可能エネルギー源のバランスをとるための有望な選択肢となります。
予測期間中にCAGRが最も高くなると予想されるのはコンシューマーエレクトロニクス分野です。
様々な機器向けに、より長持ちし、より急速充電が可能で、より効率的な電源が求められていることから、予測期間中、民生用電子機器分野のCAGRが最も高くなると予想されます。ソリッド・ステート・バッテリーの使用など、バッテリー化学の革新は安全性とエネルギー密度を高め、より軽量でコンパクトな設計を可能にしています。リチウムイオン技術の向上も、寿命の延長と充電時間の短縮に貢献しています。エネルギー貯蔵ソリューションの強化は、ウェアラブル技術、スマートフォン、ノートパソコン、その他のポータブル電子機器の進化にとって極めて重要であり、ユーザーに使用時間の延長と充電頻度の低減を提供します。
欧州地域は、技術革新を促進し、生産能力を強化し、持続可能なエネルギー・ソリューションへの移行を加速させることで、推定期間中、市場で最大のシェアを占めました。欧州の企業や研究機関は、専門知識、資源、技術を共有するために提携を結んでおり、最先端の電池技術やより効率的な製造プロセスの開発につながっています。このような協力関係は、技術的課題を克服し、拡大する需要を満たすために生産規模を拡大する上で極めて重要です。知識と投資をプールすることで、パートナーは規模の経済を活用し、コストを削減し、地域全体の電気自動車と再生可能エネルギー貯蔵システムにおけるアドバンストバッテリーの展開を促進することができます。
欧州地域は、予測期間中に収益性の高い成長を遂げる見込みです。厳しい環境・安全基準を導入することで、欧州は電池技術の革新と投資を促進しています。これらの規制は、二酸化炭素排出量の削減、リサイクルプロセスの改善、電池生産が持続可能性の目標に沿うようにすることに重点を置いています。例えば、欧州連合(EU)の電池指令は、電池のリサイクルと有害物質の削減に関する野心的な目標を定めており、メーカーがより効率的で環境に優しいソリューションを開発するよう促しています。さらに、ホライゾン・欧州のようなプログラムによる多額の資金援助と支援により、先進的なバッテリー技術の研究開発が加速しています。
According to Stratistics MRC, the Global Advanced Battery Market is accounted for $106.94 billion in 2024 and is expected to reach $191.52 billion by 2030 growing at a CAGR of 10.2% during the forecast period. An advanced battery is a next-generation energy storage system that offers superior performance compared to traditional batteries. These batteries are designed to enhance energy density, power output, charging speed, and lifespan while reducing weight, cost, and environmental impact. Advanced batteries often incorporate cutting-edge materials like lithium-ion, solid-state electrolytes, and other innovative chemistries such as lithium-sulfur or sodium-ion, which improve efficiency and safety.
Increasing demand for electric vehicles
As more consumers shift to EVs for their environmental benefits and efficiency, manufacturers are under pressure to enhance battery performance, capacity, and durability. Lithium-ion batteries, the most common type used in EVs, are being optimized to offer longer ranges, faster charging times, and greater energy density. This surge in EV adoption is also pushing innovation in alternative battery chemistries, such as solid-state batteries, which promise even higher energy efficiency and safety. Moreover, increased investments in battery recycling technologies are aimed at reducing dependency on raw materials like lithium, cobalt, and nickel, while addressing environmental concerns.
Raw material supply chain challenges
The advanced battery industry is facing significant supply chain challenges due to the scarcity of critical raw materials, such as lithium, cobalt, and nickel. These materials are essential for the production of lithium-ion batteries, which power electric vehicles (EVs) and energy storage systems. The demand for these minerals has surged with the global transition to clean energy, but their supply is constrained by limited mining capacity, geopolitical tensions, and environmental concerns. Cobalt, for example, is largely sourced from the Democratic Republic of Congo, a region prone to political instability, creating supply risks.
Increasing adoption in industrial applications
The increasing adoption of advanced batteries in industrial applications is driving significant enhancements in battery technology. Industries such as manufacturing, energy storage, and electric transportation are increasingly relying on these batteries for their energy needs due to their efficiency, longer life cycles, and reduced environmental impact. This growing demand encourages manufacturers to innovate, improving energy density, charging speed, and safety. Applications like renewable energy storage, electric vehicles, and grid stabilization benefit from these advancements, as they require reliable, high-performance batteries.
Regulatory and safety concerns
Regulatory and safety concerns significantly impact the development and deployment of advanced batteries. As battery technology evolves, especially with the advent of high-energy-density batteries like solid-state and lithium-sulfur, regulatory bodies must ensure these innovations meet stringent safety and performance standards. Advanced batteries often involve new materials and chemistries, which can introduce novel risks, such as thermal runaway or environmental hazards. These concerns necessitate rigorous testing and certification processes to prevent accidents and ensure long-term reliability. Regulations are designed to address these risks, but they can also slow down the introduction of new technologies by requiring extensive validation and compliance procedures.
The COVID-19 pandemic had a significant impact on the advanced battery sector, disrupting supply chains and slowing production. Lockdowns and travel restrictions led to shortages of key raw materials, such as lithium, cobalt, and nickel, which are crucial for battery manufacturing. Factory closures and reduced workforce availability hampered the production and assembly of advanced batteries. The pandemic also disrupted research and development activities, delaying innovations and advancements in battery technology. Despite these challenges, the crisis underscored the importance of developing more resilient and localized supply chains, as well as accelerating advancements in battery technology for critical applications like electric vehicles and renewable energy storage.
The Sodium Sulfur Battery segment is expected to be the largest during the forecast period
Sodium Sulfur Battery segment is expected to be the largest during the forecast period. Sodium-sulfur (Na-S) batteries represent a significant advancement in the field of energy storage, offering enhanced performance and cost-efficiency compared to traditional lithium-ion systems. These batteries operate at high temperatures and feature a high energy density due to the use of sulfur as the cathode material and sodium as the anode. The sodium-sulfur chemistry allows for large-scale energy storage solutions, making them ideal for applications such as grid energy storage, where stability and cost-effectiveness are critical. Their ability to efficiently store and release large amounts of energy makes them a promising option for balancing intermittent renewable energy sources.
The Consumer Electronics segment is expected to have the highest CAGR during the forecast period
Consumer Electronics segment is expected to have the highest CAGR during the forecast period driven by the demand for longer-lasting, faster-charging, and more efficient power sources for a variety of devices. Innovations in battery chemistry, such as the use of solid-state batteries, are enhancing safety and energy density, allowing for lighter and more compact designs. Improvements in lithium-ion technology are also contributing to increased longevity and faster charging times. Enhanced energy storage solutions are pivotal for the evolution of wearable technology, smartphones, laptops, and other portable electronics, providing users with extended usage times and reducing the frequency of recharges.
Europe region commanded the largest share of the market over the extrapolated period by fostering innovation, enhancing production capabilities, and accelerating the transition to sustainable energy solutions. European companies and research institutions are forming alliances to share expertise, resources, and technology, leading to the development of cutting-edge battery technologies and more efficient manufacturing processes. These collaborations are crucial for overcoming technical challenges and scaling up production to meet growing demand. By pooling knowledge and investment, partners can leverage economies of scale, reduce costs, and expedite the deployment of advanced batteries in electric vehicles and renewable energy storage systems across the region.
Europe region is poised to witness profitable growth during the forecast period. By implementing stringent environmental and safety standards, Europe is driving innovation and investment in battery technologies. These regulations focus on reducing carbon emissions, improving recycling processes, and ensuring that battery production aligns with sustainability goals. For instance, the European Union's Battery Directive sets ambitious targets for recycling and reducing hazardous substances in batteries, which encourages manufacturers to develop more efficient and eco-friendly solutions. Additionally, substantial funding and support from programs like Horizon Europe are accelerating research and development in advanced battery technologies.
Key players in the market
Some of the key players in Advanced Battery market include Amperex Technology Limited, GS Yuasa Corporation, LG Energy Solution, Northvolt AB, Pathion Inc, PolyPlus Battery Company Inc, Samsung SDI, Sion Power Corporation and Tesla, Inc.
In August 2024, SAMSUNG SDI and General Motors Finalize Agreement to Establish Battery Joint Venture in the US - to invest approximately $3.5bn in an EV battery plant. The joint venture will be located in New Carlisle, Indiana, on a 680-acre site and is expected to more than 1,600 jobs supporting the local economy.
In May 2023, Honda Motor Co., Ltd. (Honda) and GS Yuasa International Ltd. (GS Yuasa) announced that they have signed a joint venture agreement toward the establishment of a new company. Honda and GS Yuasa Reach Basic Agreement Toward Collaboration for a High-capacity, High-output Lithium-ion Battery," the two companies have been discussing specifics for collaboration on high-capacity, high-output lithium-ion batteries, mainly for EVs.