![]() |
市場調査レポート
商品コード
1714871
製造業における人工知能市場:タイプ、提供、技術、用途、産業別-2025-2030年の世界予測Artificial Intelligence in Manufacturing Market by Types, Offering, Technology, Application, Industry - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
製造業における人工知能市場:タイプ、提供、技術、用途、産業別-2025-2030年の世界予測 |
出版日: 2025年04月01日
発行: 360iResearch
ページ情報: 英文 195 Pages
納期: 即日から翌営業日
|
製造業における人工知能市場の2024年の市場規模は59億1,000万米ドルで、2025年には79億8,000万米ドル、CAGR36.28%で成長し、2030年には379億2,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年 2024 | 59億1,000万米ドル |
推定年 2025 | 79億8,000万米ドル |
予測年 2030 | 379億2,000万米ドル |
CAGR(%) | 36.28% |
人工知能は、生産性、精度、適応性の新たなレベルを解き放ち、製造業の状況を大きく変えています。近年、AI主導のソリューションは、実験的な実装から世界中の生産ラインに不可欠なコンポーネントへと移行しています。製造業者は、洗練されたアルゴリズムとデータ分析を活用して、パフォーマンスを最適化し、ダウンタイムを削減し、さらには将来の運用上の課題を予測しています。この革命は、組立ラインで複雑なタスクを実行するスマート・ロボットから、機器の故障を予見して未然に防ぐ予知保全システムまで広がっています。製造業は生産効率を高めるだけでなく、品質管理を確保し、オペレーション・コストを削減しながら世界に事業を拡大しています。
製造業におけるAIの統合は、テクノロジーとプロセスが調和する戦略的進化を意味します。意思決定者は自動化と人間の監視の融合を受け入れ、それによって革新的で弾力性のある環境を構築しています。工場がよりスマートになるにつれ、リアルタイムの分析とプロセス・インテリジェンスが機敏なビジネス戦略と市場への対応への道を開きます。このイントロダクションは、変革的なシフト、詳細なセグメンテーションの洞察、地域のダイナミクス、主要企業、そして業界リーダーのための実用的な提言の広範な検討のための土台を築くものです。本書は、製造業の近代化だけでなく、将来のイノベーションに向けた基盤整備においてもAIが果たす重要な役割を明らかにしています。
製造業の情勢を再定義する変革的シフト
製造業は、人工知能の急速な進歩に後押しされた変革的なシフトを目の当たりにしています。従来の生産モデルは、製造エコシステムのあらゆる側面へのAI技術の注入によって大きく変化しています。こうしたシフトは、従来のテクノロジーの限界を超えた、よりスマートで、より接続されたシステムへの動きとして現れています。製造現場へのAIの導入は、予測分析、自律システム、リアルタイムの意思決定機能の導入につながっています。このシフトにより、工場は無駄を大幅に削減し、資源配分を最適化し、より効果的に操業の継続性を維持できるようになっています。
さらに、AIイノベーションは、データ収集、分析、アクションのシームレスな統合を可能にすることで、デジタルと物理的な領域のギャップを埋めつつあります。この変革は単に技術的なものだけでなく文化的なものでもあり、継続的な改善と機敏な適応が規範となる環境を育んでいます。自動化の進展と高度な機械学習モデルは、生産異常の発生時にそれを発見するのに役立ち、その結果、長時間のダウンタイムをなくし、全体的なスループットを向上させる。このようなシフトはまた、生産計画、品質管理、プロセス最適化のための改善方法を業界が継続的に模索する、イノベーションの文化を育んでいます。このような変化は、競争の激しい世界市場において、信頼性が高く、コスト効率の高い製造方法に対するニーズがますます高まっていることに後押しされています。
市場力学を明らかにする広範なセグメンテーションの洞察
市場セグメンテーションを深く掘り下げると、製造業における人工知能を理解し、戦略的にアプローチするための複数の側面が見えてくる。タイプ別では、アシスト知能、拡張知能、自動化、自律知能の各分野で市場を分析し、それぞれ異なるレベルの人間と機械の相互作用とプロセス制御を提供します。並行して、ハードウェア、サービス、ソフトウェアの各分野におけるイノベーションも調査します。ハードウェア・セグメントでは、AI実装のバックボーンとして機能するフィールド・プログラマブル・ゲート・アレイ、グラフィックス・プロセッシング・ユニット、マイクロプロセッサー・ユニットなどの主要コンポーネントに特別な注意が払われています。サービス部門はさらに、展開と統合、サポートとメンテナンスに分かれ、技術導入が円滑かつ着実に維持されるようにしています。アナリティクス・ソフトウェアとプロセス・モニタリング・インターフェースを特徴とするソフトウェア・セグメントは、生産データのきめ細かな監視とインテリジェントな分析を容易にします。
さらに、技術に基づく区分では、認識コンピューティング、コンピューター・ビジョン、機械学習、自然言語処理における進歩の概要を示します。これらの技術は、膨大な量のデータを解釈するために必要なツールを提供し、より良い意思決定と生産に関する洞察の進化を可能にします。アプリケーションに基づくセグメンテーションは、在庫管理、予知保全、生産計画とスケジューリング、品質管理といった重要な分野をカバーしています。例えば、在庫管理には需要予測や倉庫の自動化などの技術が組み込まれ、予知保全では設備の故障予測や機械のリアルタイム監視に重点が置かれます。生産計画とスケジューリングは、リソース配分とワークフローの最適化によって強化され、品質管理は、欠陥検出と組み合わせた自動ビジョンシステムへの依存度が高まっています。最後に、産業別のセグメンテーションでは、自動車、エネルギー・電力、飲食品、金属・重機械、医薬品、半導体・エレクトロニクスなどのセクターにおける明確なアプローチが示されています。各セクターは、自動車の組立ライン自動化や医薬品の品質保証など、その戦略をさらに細分化し、さまざまな製造環境におけるAIの多面的な影響を示しています。
The Artificial Intelligence in Manufacturing Market was valued at USD 5.91 billion in 2024 and is projected to grow to USD 7.98 billion in 2025, with a CAGR of 36.28%, reaching USD 37.92 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 5.91 billion |
Estimated Year [2025] | USD 7.98 billion |
Forecast Year [2030] | USD 37.92 billion |
CAGR (%) | 36.28% |
Artificial Intelligence is profoundly reshaping the manufacturing landscape, unlocking new levels of productivity, precision, and adaptability. Over recent years, AI-driven solutions have moved from experimental implementations to integral components of production lines across the globe. Manufacturers are leveraging sophisticated algorithms and data analytics to optimize performance, reduce downtime, and even predict future operational challenges. This revolution extends from smart robotics that execute intricate tasks on assembly lines to predictive maintenance systems that foresee and forestall equipment failures. Manufacturers are not only increasing production efficiency but also ensuring quality control and scaling operations globally while reducing operational costs.
At its core, the integration of AI in manufacturing signifies a strategic evolution where technology and process come together in harmony. Decision makers are embracing the fusion of automation and human oversight, thereby crafting an environment that is both innovative and resilient. As factories become smarter, real-time analytics and process intelligence pave the way for agile business strategies and market responsiveness. This introduction lays the groundwork for an extensive examination of transformative shifts, detailed segmentation insights, regional dynamics, leading companies, and actionable recommendations designed for industry leaders. The narrative that unfolds illustrates the essential role of AI in not only modernizing manufacturing but also in setting foundations for future innovations.
Transformative Shifts Redefining Manufacturing Landscapes
The manufacturing industry is witnessing transformative shifts driven by rapid advances in artificial intelligence. Traditional production models are being overhauled by the infusion of AI technologies into every facet of the manufacturing ecosystem. These shifts manifest as a move towards smarter, more connected systems that transcend the limitations of previous technologies. The implementation of AI on the shop floor has led to the adoption of predictive analytics, autonomous systems, and real-time decision-making capabilities. This shift is enabling factories to substantially reduce waste, optimize resource allocation, and maintain operational continuity more effectively.
Moreover, AI innovations are bridging the gap between digital and physical realms by enabling a seamless integration of data collection, analysis, and action. The transformation is not merely technological but also cultural, fostering an environment where continuous improvement and agile adaptation are the norms. Increased automation and advanced machine learning models help in spotting production anomalies as they occur, which in turn eliminates lengthy downtimes and improves overall throughput. These shifts are also cultivating a culture of innovation, where industries continuously seek improved methods for production planning, quality control, and process optimization. Such changes are being propelled by the ever-growing need for reliable, cost-effective manufacturing methods in a competitive global market.
Extensive Segmentation Insights Revealing Market Dynamics
A deep dive into market segmentation reveals multiple dimensions through which artificial intelligence in manufacturing can be understood and strategically approached. In the realm of types, the market is analyzed across assisted intelligence, augmented intelligence, automation, and autonomous intelligence, each offering a different level of human-machine interaction and process control. A parallel segmentation based on offering examines innovations across hardware, services, and software. In the hardware segment, special attention is given to key components such as Field Programmable Gate Arrays, Graphics Processing Units, and Microprocessor Units, which act as the backbone of AI implementations. The services component further bifurcates into deployment and integration as well as support and maintenance, ensuring that technological adoptions are smooth and steadily maintained. The software segment, characterized by analytics software and process monitoring interfaces, facilitates granular oversight and intelligent analysis of production data.
In addition, the segmentation based on technology outlines advances in aware computing, computer vision, machine learning, and natural language processing. These technologies provide the necessary tools to interpret vast amounts of data, allowing for better decision-making and evolving production insights. Segmentation based on application covers crucial areas such as inventory management, predictive maintenance, production planning and scheduling, and quality control. For instance, inventory management incorporates techniques like demand forecasting and warehouse automation, while predictive maintenance focuses on equipment failure prediction and real-time monitoring of machinery. Production planning and scheduling are enhanced through resource allocation and workflow optimization, and quality control is increasingly relying on automated vision systems coupled with defect detection. Finally, segmentation by industry charts out distinct approaches in sectors such as automotive, energy and power, food and beverages, metals and heavy machinery, pharmaceuticals, and semiconductor and electronics. Each sector further subdivides its strategies, be it assembly line automation in automotive or quality assurance in pharmaceuticals, illustrating the multifaceted impact of AI across varied manufacturing environments.
Based on Types, market is studied across Assisted intelligence, Augmented intelligence, Automation, and Autonomous intelligence.
Based on Offering, market is studied across Hardware, Services, and Software. The Hardware is further studied across Field Programmable Gate Array (FPGA), Graphics Processing Units (GPUS), and Microprocessor Units (MPUS). The Services is further studied across Deployment & Integration and Support & Maintenance. The Software is further studied across Analytics Software and Process Monitoring Interfaces.
Based on Technology, market is studied across Aware Computing, Computer Vision, Machine Learning, and Natural Language Processing.
Based on Application, market is studied across Inventory Management, Predictive Maintenance, Production Planning & Scheduling, and Quality Control. The Inventory Management is further studied across Demand Forecasting and Warehouse Automation. The Predictive Maintenance is further studied across Equipment Failure Prediction and Real-Time Monitoring. The Production Planning & Scheduling is further studied across Resource Allocation and Workflow Optimization. The Quality Control is further studied across Automated Vision Systems and Defect Detection.
Based on Industry, market is studied across Automotive, Energy & Power, Food & Beverages, Metals & Heavy Machinery, Pharmaceuticals, and Semiconductor & Electronics. The Automotive is further studied across Assembly Line Automation and Performance Testing. The Food & Beverages is further studied across Food Safety Monitoring and Packaging Automation. The Pharmaceuticals is further studied across Drug Production Processes and Quality Assurance. The Semiconductor & Electronics is further studied across Component Assembly and Testing & Validation.
Key Regional Insights Shaping Global Markets
A closer look at regional dynamics underscores how various parts of the world are adapting to the AI evolution in manufacturing. In the Americas, robust industrial infrastructures and a strong focus on innovation have fostered an environment where AI is rapidly integrated into manufacturing processes. Businesses in this region are experiencing a shift toward smarter production lines supported by technological investments that emphasize both digital transformation and operational excellence.
Across Europe, the Middle East, and Africa, disruptive technologies are revolutionizing traditional manufacturing systems. Companies in these regions are increasingly adopting AI to streamline supply chain management, enhance predictive maintenance, and improve overall process efficiencies. Strategic collaborations and governmental initiatives are fueling the growth and trust in innovative technologies, making this bloc a key hub for transformation. Similarly, the Asia-Pacific region is not far behind. Rapid industrialization paired with significant investments in technology and infrastructure development makes it a fertile ground for AI-driven innovations. Here, manufacturers are not only focusing on enhancing operational efficiency but also positioning themselves as leaders in advancing manufacturing techniques that cater to both local and global demands.
Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.
Insights on Leading Companies Driving the AI Revolution
The competitive landscape of the AI-driven manufacturing market is characterized by a diverse array of influential companies that are setting benchmarks across various segments. Industry leaders such as ABB Ltd. and Advanced Micro Devices, Inc. have been at the forefront, integrating advanced AI capabilities into manufacturing solutions. Their efforts are paralleled by the innovative pursuits of AIBrain Inc. and Bright Machines, Inc., who are continuously pushing the limits of automation and process intelligence.
Global giants like Cisco Systems, Inc. and Cognex Corporation offer robust networking and vision systems that power smart factories. The enterprise software innovations from Dassault Systemes SE, Emerson Electric Co., and Fanuc Corporation are paving the way for advanced digital twin technologies and real-time data monitoring. ForwardX Technology Co., Ltd. and General Electric Company further illustrate the industry's commitment to fostering a seamless relationship between human operators and machine intelligence.
Reinforcing these advancements, companies such as General Vision Inc. and Google, LLC by Alphabet Inc. contribute cutting-edge insights into data analytics and machine learning. Graphcore Limited along with Hewlett Packard Enterprise Company provide the necessary computational power that underpins many AI applications. In tandem, other prominent players such as Hitachi, Ltd., Honeywell International Inc., and Intel Corporation are accelerating the adoption of AI in heavy machinery and critical infrastructure. This collective drive is further bolstered by the strategic initiatives of International Business Machines Corporation, Keyence Corporation, and Landing AI, ensuring that AI continues to deliver impactful, scalable solutions in manufacturing. Additional major contributors include Medtronic PLC, Micron Technology Inc., Microsoft Corporation, Mitsubishi Electric Corporation, Novartis International AG, Nvidia Corporation, Oracle Corporation, and several more who have firmly established their reputations as trailblazers in this dynamic space. Their combined efforts are not only reshaping how manufacturing operates but also catalyzing a global trend where innovation meets industrial expertise in unprecedented ways.
The report delves into recent significant developments in the Artificial Intelligence in Manufacturing Market, highlighting leading vendors and their innovative profiles. These include ABB Ltd., Advanced Micro Devices, Inc., AIBrain Inc., Bright Machines, Inc., Cisco Systems, Inc., Cognex Corporation, Dassault Systemes SE, Emerson Electric Co., Fanuc Corporation, ForwardX Technology Co., Ltd., General Electric Company, General Vision Inc., Google, LLC by Alphabet Inc., Graphcore Limited, Hewlett Packard Enterprise Company, Hitachi, Ltd., Honeywell International Inc., Intel Corporation, International Business Machines Corporation, Keyence Corporation, Landing AI, Medtronic PLC, Micron Technology Inc., Microsoft Corporation, Mitsubishi Electric Corporation, Novartis International AG, Nvidia Corporation, Oracle Corporation, Path Robotics, Progress Software Corporation, Rockwell Automation Inc., SAP SE, Siemens AG, SparkCognition, Inc., UBTECH Robotics, Inc., Uptake Technologies Inc., and Yaskawa Electric Corporation. Actionable Recommendations for Enhancing AI Adoption in Manufacturing
Industry leaders need to adopt a forward-thinking approach to fully capitalize on the transformative potential of artificial intelligence. First, it is essential to invest in robust infrastructure that supports the integration of AI solutions in legacy systems. Leaders should consider incremental modernization while focusing on scalable and future-ready technology. Collaborating with technology experts and academic institutions can also bring about innovative research and development that is crucial to digesting the nuances of specific manufacturing challenges.
Strategic partnerships and joint ventures with established tech companies provide a pathway to leverage state-of-the-art hardware, services, and software solutions seamlessly. Decision makers must adopt comprehensive training programs that empower employees to utilize new tools effectively. This transition not only reduces operational risks but also fosters a culture of continuous improvement. Furthermore, prioritizing data security and compliance in digital transformations is imperative in mitigating risks associated with large-scale AI adoption. These strategic actions are pivotal in ensuring that companies remain competitive and agile amidst the ongoing evolution within the sector.
Conclusion: Embracing the Future of AI in Manufacturing
In conclusion, the advanced integration of artificial intelligence in manufacturing is no longer a futuristic concept-it is a present reality that continues to revolutionize production operations globally. The comprehensive segmentation analysis, transformative regional insights, and the leadership demonstrated by key companies underscore the multifaceted nature of this evolution. While the transformational shifts have facilitated more efficient and predictive operations, industry players must stay agile and invest thoughtfully in AI capabilities to maintain competitive positioning.
The story of AI in manufacturing is one of continuous innovation, collaboration, and resilience. As technologies evolve, the early adopters and strategic investors in AI will shape the future of industrial manufacturing and set new benchmarks for operational excellence.