The global carbon capture, utilization and storage (CCUS) market represents one of the most rapidly expanding sectors in the clean energy transition, driven by urgent climate commitments and technological advancement. The market's expansion is fundamentally driven by stringent emission criteria and regulations coupled with significant investments to achieve decarbonization. Corporate commitments are equally significant, with corporate net-zero commitments driving private sector investment and strengthening carbon pricing mechanisms creating additional revenue streams for CCUS projects.
Power generation represents the largest application segment, followed by oil and gas operations. The oil and gas industry utilizes CCUS technologies increasingly for enhanced oil recovery (EOR) projects. Industrial applications span cement, steel, chemicals, and petrochemicals, representing hard-to-abate sectors where CCUS provides the primary decarbonization pathway.
Despite promising growth trajectories, the CCUS market faces substantial challenges. High upfront costs and operational expenses pose significant threats to economic viability, especially in industries facing financial constraints. Uncertain regulatory landscapes with rapidly evolving frameworks create barriers to investment and stable market development. Revenue streams are not well established, making business cases challenging, as most projects currently rely on specific policy enablement. The CCUS market stands at an inflection point where technological maturity, regulatory support, and climate urgency are converging to create unprecedented growth opportunities across multiple industrial sectors globally.
"The Global Carbon Capture, Utilization and Storage (CCUS) Market 2026-2046" provides the definitive analysis of the CCUS industry. This comprehensive 750-page plus report features detailed market forecasts, technology assessments across direct air capture, post-combustion systems, and CO2 utilization pathways, plus strategic insights for energy executives, climate investors, and industrial decision-makers. Includes granular segmentation by application (power generation, oil & gas, cement, steel, chemicals), regional analysis covering North America, Europe, and Asia-Pacific markets, regulatory landscape evolution, carbon pricing mechanisms, and exclusive profiles of 370+ leading companies. Essential intelligence on project pipelines, investment opportunities, emerging technologies, and competitive positioning in the transformative CCUS sector driving global decarbonization through 2046.
Report contents include:
- Main sources of carbon dioxide emissions and global impact analysis
- CO2 as a commodity: market dynamics and value chain development
- Climate targets alignment and CCUS role in net-zero commitments
- Key market drivers, trends, and growth catalysts (2026-2046)
- Current market status and comprehensive future outlook projections
- Industry developments timeline and major milestones (2020-2025)
- Investment landscape analysis including venture capital funding trends
- Government initiatives and policy environment across key regions
- Commercial CCUS facilities mapping: operational and under development
- Economics of CCUS projects and cost-benefit analysis
- Value chain structure and key market barriers identification
- Carbon pricing mechanisms and business model frameworks
- Global market forecasts with capacity and revenue projections
- Carbon Dioxide Capture Technologies
- Comprehensive analysis of 90%+ and 99% capture rate technologies
- Point source capture from power plants, industrial facilities, and transportation
- Blue hydrogen production pathways and market integration
- Cement industry CCUS applications and sector-specific challenges
- Maritime carbon capture solutions and implementation strategies
- Post-combustion, oxy-fuel, and pre-combustion capture processes
- Advanced separation technologies: absorption, adsorption, and membranes
- Direct air capture (DAC) technologies, deployment scenarios, and cost analysis
- Hybrid capture systems and AI integration opportunities
- Mobile carbon capture solutions and retrofitting strategies
- Carbon Dioxide Removal (CDR) Methods
- Conventional land-based CDR: wetland restoration and agroforestry
- Technological CDR solutions and deployment strategies
- BECCS (Bioenergy with Carbon Capture and Storage) implementation
- Mineralization-based CDR including enhanced weathering
- Afforestation/reforestation programs and soil carbon sequestration
- Biochar production, applications, and carbon credit generation
- Ocean-based CDR methods and marine carbon management
- Monitoring, reporting, and verification (MRV) frameworks
- Carbon Dioxide Utilization Applications
- CO2 conversion to fuels: e-methanol, synthetic diesel, and aviation fuels
- Chemical production pathways and polymer manufacturing
- Construction materials: concrete carbonation and building applications
- Biological yield-boosting in greenhouses and algae cultivation
- Enhanced oil recovery (EOR) integration and optimization
- Digital solutions, IoT integration, and blockchain applications
- Novel applications: 3D printing materials and energy storage
- Storage & Transportation Infrastructure
- Geological storage site selection and capacity assessment
- Pipeline networks, shipping solutions, and multimodal transport
- Safety systems, monitoring technologies, and risk management
- Cost analysis across different transportation methods
- Smart infrastructure development and hub strategies
- Regional Market Analysis
- Company Profiles
- Detailed analysis of 370+ companies across the CCUS value chain
- Technology developers, equipment manufacturers, and service providers
- Financial performance, strategic partnerships, and competitive positioning
- Innovation pipelines, patent landscapes, and market strategies
This comprehensive report features detailed strategic analysis of over 370 leading companies spanning the entire CCUS ecosystem. The extensive company portfolio encompasses major industrial emitters and technology pioneers including 3R-BioPhosphate, Adaptavate, Again, Aeroborn B.V., Aether Diamonds, AirCapture LLC, Aircela Inc, Airco Process Technology, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algenol, Algiecel ApS, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Aymium, Axens SA, Azolla, Barton Blakeley Technologies Ltd., BASF Group, BC Biocarbon, BP PLC, Biochar Now, Bio-Logica Carbon Ltd., Biomacon GmbH, Biosorra, Blue Planet Systems Corporation, Blusink Ltd., Boomitra, Brineworks, BluSky Inc., Breathe Applied Sciences, Bright Renewables, Brilliant Planet Systems, bse Methanol GmbH, C-Capture, C4X Technologies Inc., C2CNT LLC, Calcin8 Technologies Limited, Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Captur Tower, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbofex Oy, Carbominer, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonFree, Carbonova, CarbonScape Ltd., Carbon8 Systems, Carbon Blade, Carbon Blue, CarbonBuilt, Carbon CANTONNE, Carbon Capture Inc., Carbon Capture Machine UK, Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, CarbonCure Technologies Inc., Carbon Geocapture Corp, Carbon Engineering Ltd., Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Recycling International, Carbon Re, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, CarbonStar Systems, Carbon Upcycling Technologies, Carbonfree Chemicals, CarbonMeta Research Ltd, CarbonOrO Products B.V., CarbonQuest, Carbon-Zero US LLC, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, Chiyoda Corporation, China Energy Investment Corporation, Citroniq Chemicals LLC, Clairity Technology, Climeworks, CNF Biofuel AS, CO2 Capsol, CO280, CO2Rail Company, CO2CirculAir B.V., Compact Carbon Capture AS, Concrete4Change, Cool Planet Energy Systems, CORMETECH, Coval Energy B.V., Covestro AG, C-Quester Inc., C-Questra, Cquestr8 Limited, CREW Carbon, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Drax, 8Rivers, Earth RepAIR, Ebb Carbon, Ecocera, ecoLocked GmbH, EDAC Labs, Eion Carbon, Econic Technologies Ltd, EcoClosure LLC, Electrochaea GmbH, Emerging Fuels Technology, Empower Materials Inc., Enerkem Inc., enaDyne GmbH, Entropy Inc., E-Quester, Equatic, Equinor ASA, Evonik Industries AG, Exomad Green, ExxonMobil, 44.01, Fairbrics, Fervo Energy, Fluor Corporation, Fortera Corporation, Framergy Inc., Freres Biochar, FuelCell Energy Inc., Funga, GE Gas Power, Giammarco Vetrocoke, GigaBlue, Giner Inc., Global Algae Innovations, Global Thermostat LLC, Graphyte, Grassroots Biochar AB, Graviky Labs, GreenCap Solutions AS, Greenlyte Carbon Technologies, Greeniron H2 AB, Green Sequest, Gulf Coast Sequestration, greenSand, Hago Energetics, Haldor Topsoe, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holcim Group, Holocene, Holy Grail Inc., Honeywell, Oy Hydrocell Ltd., Hyvegeo, 1point8, IHI Corporation, Immaterial Ltd, Ineratec GmbH, Infinitree LLC, Innovator Energy, InnoSepra LLC, Inplanet GmbH, InterEarth, ION Clean Energy Inc., Japan CCS Co. Ltd., Jupiter Oxygen Corporation, Kawasaki Heavy Industries Ltd., KC8 Capture Technologies, Krajete GmbH, LanzaJet Inc., Lanzatech, Lectrolyst LLC, Levidian Nanosystems, Limenet, The Linde Group, Liquid Wind AB, Lithos Carbon, Living Carbon, Loam Bio, Low Carbon Korea, Low Carbon Materials, Made of Air GmbH, Mango Materials Inc., Mantel Capture, Mars Materials, Mattershift, MCI Carbon, Mercurius Biorefining, Minera Systems, Mineral Carbonation International Carbon, Mission Zero Technologies, Mitsui Chemicals Inc., Mitsubishi Heavy Industries Ltd., MOFWORX, Molten Industries Inc., Mosaic Materials Inc., Mote, Myno Carbon, Nanyang Zhongju Tianguan Low Carbon Technology Company, NEG8 Carbon, NeoCarbon, Net Power LLC, NetZero, Neustark AG, Nevel AB, Newlight Technologies LLC, New Sky Energy, Njord Carbon, Norsk e-Fuel AS, Novocarbo GmbH, novoMOF AG and more.....
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. Main sources of carbon dioxide emissions
- 1.2. CO2 as a commodity
- 1.3. Meeting climate targets
- 1.4. Market drivers and trends
- 1.5. The current market and future outlook
- 1.6. CCUS Industry developments 2020-2025
- 1.7. CCUS investments
- 1.7.1. Venture Capital Funding
- 1.7.1.1. 2010-2024
- 1.7.1.2. CCUS VC deals 2022-2025
- 1.8. Government CCUS initiatives and policy environment
- 1.8.1. North America
- 1.8.2. Europe
- 1.8.3. Asia
- 1.8.3.1. Japan
- 1.8.3.2. Singapore
- 1.8.3.3. China
- 1.9. Market map
- 1.10. Commercial CCUS facilities and projects
- 1.10.1. Facilities
- 1.10.1.1. Operational
- 1.10.1.2. Under development/construction
- 1.11. Economics of CCUS projects
- 1.11.1. CAPEX Reduction Strategies
- 1.11.2. OPEX Reduction Approaches
- 1.11.3. Emerging Technology Solutions
- 1.12. CCUS Value Chain
- 1.13. Key market barriers for CCUS
- 1.14. CCUS and the energy trilemma
- 1.15. Growth markets for CUS
- 1.16. Carbon pricing
- 1.16.1. Compliance Carbon Pricing Mechanisms
- 1.16.2. Alternative to Carbon Pricing: 45Q Tax Credits
- 1.16.3. Business models
- 1.16.3.1. Full chain
- 1.16.3.2. Networks and hub model
- 1.16.3.3. Partial-chain
- 1.16.3.4. Carbon dioxide utilization business model
- 1.16.4. The European Union Emission Trading Scheme (EU ETS)
- 1.16.5. Carbon Pricing in the US
- 1.16.6. Carbon Pricing in China
- 1.16.7. Voluntary Carbon Markets
- 1.16.8. Challenges with Carbon Pricing
- 1.17. Global market forecasts
- 1.17.1. CCUS capture capacity forecast by end point
- 1.17.2. Capture capacity by region to 2046, Mtpa
- 1.17.3. Revenues
- 1.17.4. CCUS capacity forecast by capture type
- 1.17.5. Cost projections 2025-2046
2. INTRODUCTION
- 2.1. What is CCUS?
- 2.1.1. Carbon Capture
- 2.1.1.1. Source Characterization
- 2.1.1.2. Purification
- 2.1.1.3. CO2 capture technologies
- 2.1.2. Carbon Utilization
- 2.1.2.1. CO2 utilization pathways
- 2.1.3. Carbon storage
- 2.1.3.1. Passive storage
- 2.1.3.2. Enhanced oil recovery
- 2.2. Transporting CO2
- 2.2.1. Methods of CO2 transport
- 2.2.1.1. Pipeline
- 2.2.1.2. Ship
- 2.2.1.3. Road
- 2.2.1.4. Rail
- 2.2.2. Safety
- 2.3. Costs
- 2.3.1. Cost of CO2 transport
- 2.4. Carbon credits
- 2.5. Life Cycle Assessment (LCA) of CCUS Technologies
- 2.6. Environmental Impact Assessment
- 2.7. Social acceptance and public perception
- 2.8. Fate of CO2
3. CARBON DIOXIDE CAPTURE
- 3.1. Historical CO2 capture
- 3.2. CO2 capture technologies
- 3.3. Maturity of technologies
- 3.4. Technology selection
- 3.5. Capture Percentages
- 3.5.1. >90% capture rate
- 3.5.2. 99% capture rate
- 3.6. CO2 capture agent performance
- 3.7. Energy Consumption
- 3.8. TRL
- 3.9. Global Pipeline of Carbon Capture Facilities-Current and PLanned
- 3.10. CO2 capture from point sources
- 3.10.1. Energy Availability and Costs
- 3.10.2. Power plants with CCUS
- 3.10.3. Transportation
- 3.10.4. Global point source CO2 capture capacities
- 3.10.5. By source
- 3.10.6. Blue hydrogen
- 3.10.6.1. Steam-methane reforming (SMR)
- 3.10.6.2. Autothermal reforming (ATR)
- 3.10.6.3. Partial oxidation (POX)
- 3.10.6.4. Sorption Enhanced Steam Methane Reforming (SE-SMR)
- 3.10.6.5. Pre-Combustion vs. Post-Combustion carbon capture
- 3.10.6.6. Blue hydrogen projects
- 3.10.6.7. Costs
- 3.10.6.8. Market players
- 3.10.7. Carbon capture in cement
- 3.10.7.1. CCUS Projects
- 3.10.7.2. Carbon capture technologies
- 3.10.7.3. Costs
- 3.10.7.4. Challenges
- 3.10.8. Maritime carbon capture
- 3.11. Main carbon capture processes
- 3.11.1. Materials
- 3.11.2. Natural Gas Sweetening
- 3.11.3. Post-combustion
- 3.11.3.1. Chemicals/Solvents
- 3.11.3.2. Amine-based post-combustion CO2 absorption
- 3.11.3.3. Physical absorption solvents
- 3.11.3.4. Emerging Solvents for Carbon Capture
- 3.11.3.5. Chilled Ammonia Process (CAP)
- 3.11.3.6. Molten Borates
- 3.11.3.7. Costs
- 3.11.3.8. Alternatives to Solvent-Based Carbon Capture
- 3.11.4. Oxy-fuel combustion
- 3.11.4.1. Oxyfuel CCUS cement projects
- 3.11.4.2. Chemical Looping-Based Capture
- 3.11.5. Liquid or supercritical CO2: Allam-Fetvedt Cycle
- 3.11.6. Pre-combustion
- 3.12. Carbon separation technologies
- 3.12.1. Absorption capture
- 3.12.2. Adsorption capture
- 3.12.2.1. Solid sorbent-based CO2 separation
- 3.12.2.2. Metal organic framework (MOF) adsorbents
- 3.12.2.3. Zeolite-based adsorbents
- 3.12.2.4. Solid amine-based adsorbents
- 3.12.2.5. Carbon-based adsorbents
- 3.12.2.6. Polymer-based adsorbents
- 3.12.2.7. Solid sorbents in pre-combustion
- 3.12.2.8. Sorption Enhanced Water Gas Shift (SEWGS)
- 3.12.2.9. Solid sorbents in post-combustion
- 3.12.3. Membranes
- 3.12.3.1. Membrane-based CO2 separation
- 3.12.3.2. Gas Separation Membranes
- 3.12.3.3. Post-combustion CO2 capture
- 3.12.3.4. Facilitated transport membranes
- 3.12.3.5. Pre-combustion capture
- 3.12.3.6. Advanced membrane materials
- 3.12.3.6.1. Graphene-based membranes
- 3.12.3.6.2. Metal-organic framework (MOF) membranes
- 3.12.3.7. Membranes for Direct Air Capture
- 3.12.4. Liquid or supercritical CO2 (Cryogenic) capture
- 3.12.5. Calcium Looping
- 3.12.5.1. Calix Advanced Calciner
- 3.12.6. Other technologies
- 3.12.6.1. LEILAC process
- 3.12.6.2. CO2 capture with Solid Oxide Fuel Cells (SOFCs)
- 3.12.6.3. CO2 capture with Molten Carbonate Fuel Cells (MCFCs)
- 3.12.6.4. Microalgae Carbon Capture
- 3.12.7. Comparison of key separation technologies
- 3.12.8. Technology readiness level (TRL) of gas separation technologies
- 3.13. Opportunities and barriers
- 3.14. Costs of CO2 capture
- 3.15. CO2 capture capacity
- 3.16. Direct air capture (DAC)
- 3.16.1. Technology description
- 3.16.1.1. Sorbent-based CO2 Capture
- 3.16.1.2. Solvent-based CO2 Capture
- 3.16.1.3. DAC Solid Sorbent Swing Adsorption Processes
- 3.16.1.4. Electro-Swing Adsorption (ESA) of CO2 for DAC
- 3.16.1.5. Solid and liquid DAC
- 3.16.2. Advantages of DAC
- 3.16.3. Deployment
- 3.16.4. Point source carbon capture versus Direct Air Capture
- 3.16.5. Technologies
- 3.16.5.1. Solid sorbents
- 3.16.5.2. Liquid sorbents
- 3.16.5.3. Liquid solvents
- 3.16.5.4. Airflow equipment integration
- 3.16.5.5. Passive Direct Air Capture (PDAC)
- 3.16.5.6. Direct conversion
- 3.16.5.7. Co-product generation
- 3.16.5.8. Low Temperature DAC
- 3.16.5.9. Regeneration methods
- 3.16.6. Electricity and Heat Sources
- 3.16.7. Commercialization and plants
- 3.16.8. Metal-organic frameworks (MOFs) in DAC
- 3.16.9. DAC plants and projects-current and planned
- 3.16.10. Capacity forecasts
- 3.16.11. Costs
- 3.16.12. Market challenges for DAC
- 3.16.13. Market prospects for direct air capture
- 3.16.14. Players and production
- 3.16.15. Co2 utilization pathways
- 3.16.16. Markets for Direct Air Capture and Storage (DACCS)
- 3.16.16.1. Fuels
- 3.16.16.1.1. Overview
- 3.16.16.1.2. Production routes
- 3.16.16.1.3. Methanol
- 3.16.16.1.4. Algae based biofuels
- 3.16.16.1.5. CO2-fuels from solar
- 3.16.16.1.6. Companies
- 3.16.16.1.7. Challenges
- 3.16.16.2. Chemicals, plastics and polymers
- 3.16.16.2.1. Overview
- 3.16.16.2.2. Scalability
- 3.16.16.2.3. Plastics and polymers
- 3.16.16.2.3.1. CO2 utilization products
- 3.16.16.2.4. Urea production
- 3.16.16.2.5. Inert gas in semiconductor manufacturing
- 3.16.16.2.6. Carbon nanotubes
- 3.16.16.2.7. Companies
- 3.16.16.3. Construction materials
- 3.16.16.3.1. Overview
- 3.16.16.3.2. CCUS technologies
- 3.16.16.3.3. Carbonated aggregates
- 3.16.16.3.4. Additives during mixing
- 3.16.16.3.5. Concrete curing
- 3.16.16.3.6. Costs
- 3.16.16.3.7. Companies
- 3.16.16.3.8. Challenges
- 3.16.16.4. CO2 Utilization in Biological Yield-Boosting
- 3.16.16.4.1. Overview
- 3.16.16.4.2. Applications
- 3.16.16.4.2.1. Greenhouses
- 3.16.16.4.2.2. Algae cultivation
- 3.16.16.4.2.3. Microbial conversion
- 3.16.16.4.3. Companies
- 3.16.16.5. Food and feed production
- 3.16.16.6. CO2 Utilization in Enhanced Oil Recovery
- 3.16.16.6.1. Overview
- 3.16.16.6.1.1. Process
- 3.16.16.6.1.2. CO2 sources
- 3.16.16.6.2. CO2-EOR facilities and projects
- 3.17. Hybrid Capture Systems
- 3.18. Artificial Intelligence in Carbon Capture
- 3.19. Integration with Renewable Energy Systems
- 3.20. Mobile Carbon Capture Solutions
- 3.21. Carbon Capture Retrofitting
- 3.22. Carbon Capture in Industry
- 3.22.1. Cement
- 3.22.2. Iron and Steel
- 3.22.2.1. Post-combustion capture for BF-BOF processes
- 3.22.2.2. Pre-Combustion Carbon Capture for Ironmaking
- 3.22.2.3. Gas Recycling and Oxyfuel Combustion for Ironmaking
- 3.22.2.4. Direct reduced iron (DRI) production
- 3.22.3. Power Generation
- 3.22.3.1. Power plants with carbon capture systems
- 3.22.3.2. Coal Power Generation
- 3.22.3.3. Gas Power Generation
- 3.22.3.3.1. Gas Power CCS for Data Centers
- 3.22.3.4. Power sector CCUS cost
4. CARBON DIOXIDE REMOVAL
- 4.1. Conventional CDR on land
- 4.1.1. Wetland and peatland restoration
- 4.1.2. Cropland, grassland, and agroforestry
- 4.2. Technological CDR Solutions
- 4.3. Main CDR methods
- 4.4. Novel CDR methods
- 4.5. Value chain
- 4.6. Deployment of carbon dioxide removal technologies
- 4.7. Technology Readiness Level (TRL): Carbon Dioxide Removal Methods
- 4.8. Carbon Credits
- 4.8.1. Description
- 4.8.2. Carbon pricing
- 4.8.3. Carbon Removal vs Carbon Avoidance Offsetting
- 4.8.4. Carbon credit certification
- 4.8.5. Carbon registries
- 4.8.6. Carbon credit quality
- 4.8.7. Voluntary Carbon Credits
- 4.8.7.1. Definition
- 4.8.7.2. Purchasing
- 4.8.7.3. Key Market Players and Projects
- 4.8.7.4. Pricing
- 4.8.8. Compliance Carbon Credits
- 4.8.8.1. Definition
- 4.8.8.2. Market players
- 4.8.8.3. Pricing
- 4.8.9. Durable carbon dioxide removal (CDR) credits
- 4.8.10. Corporate commitments
- 4.8.11. Increasing government support and regulations
- 4.8.12. Advancements in carbon offset project verification and monitoring
- 4.8.13. Potential for blockchain technology in carbon credit trading
- 4.8.14. Buying and Selling Carbon Credits
- 4.8.14.1. Carbon credit exchanges and trading platforms
- 4.8.14.2. Over-the-counter (OTC) transactions
- 4.8.14.3. Pricing mechanisms and factors affecting carbon credit prices
- 4.8.15. Certification
- 4.8.16. Challenges and risks
- 4.9. Monitoring, reporting, and verification
- 4.10. Government policies
- 4.11. Bioenergy with Carbon Removal and Storage (BiCRS)
- 4.11.1. Feedstocks
- 4.11.2. BiCRS Conversion Pathways
- 4.12. BECCS
- 4.12.1. Technology overview
- 4.12.1.1. Point Source Capture Technologies for BECCS
- 4.12.1.2. Energy efficiency
- 4.12.1.3. Heat generation
- 4.12.1.4. Waste-to-Energy
- 4.12.1.5. Blue Hydrogen Production
- 4.12.2. Biomass conversion
- 4.12.3. CO2 capture technologies
- 4.12.4. BECCS facilities
- 4.12.5. Cost analysis
- 4.12.6. BECCS carbon credits
- 4.12.7. Sustainability
- 4.12.8. Challenges
- 4.13. Mineralization-based CDR
- 4.13.1. Overview
- 4.13.2. Storage in CO2-Derived Concrete
- 4.13.3. Oxide Looping
- 4.13.4. Enhanced Weathering
- 4.13.4.1. Overview
- 4.13.4.2. Benefits
- 4.13.4.3. Monitoring, Reporting, and Verification (MRV)
- 4.13.4.4. Applications
- 4.13.4.5. Commercial activity and companies
- 4.13.4.6. Challenges and Risks
- 4.13.5. Cost analysis
- 4.13.6. SWOT analysis
- 4.14. Afforestation/Reforestation
- 4.14.1. Overview
- 4.14.2. Carbon dioxide removal methods
- 4.14.2.1. Nature-based CDR
- 4.14.2.2. Land-based CDR
- 4.14.3. Technologies
- 4.14.3.1. Remote Sensing
- 4.14.3.2. Drone technology and robotics
- 4.14.3.3. Automated forest fire detection systems
- 4.14.3.4. AI/ML
- 4.14.3.5. Genetics
- 4.14.4. Trends and Opportunities
- 4.14.5. Challenges and Risks
- 4.14.5.1. SWOT analysis
- 4.14.5.2. Soil carbon sequestration (SCS)
- 4.14.5.2.1. Overview
- 4.14.5.2.2. Practices
- 4.14.5.2.3. Measuring and Verifying
- 4.14.5.2.4. Trends and Opportunities
- 4.14.5.2.5. Carbon credits
- 4.14.5.2.6. Challenges and Risks
- 4.14.5.2.7. SWOT analysis
- 4.14.5.3. Biochar
- 4.14.5.3.1. What is biochar?
- 4.14.5.3.2. Carbon sequestration
- 4.14.5.3.3. Properties of biochar
- 4.14.5.3.4. Feedstocks
- 4.14.5.3.5. Production processes
- 4.14.5.3.5.1. Sustainable production
- 4.14.5.3.5.2. Pyrolysis
- 4.14.5.3.5.2.1. Slow pyrolysis
- 4.14.5.3.5.2.2. Fast pyrolysis
- 4.14.5.3.5.3. Gasification
- 4.14.5.3.5.4. Hydrothermal carbonization (HTC)
- 4.14.5.3.5.5. Torrefaction
- 4.14.5.3.5.6. Equipment manufacturers
- 4.14.5.3.6. Biochar pricing
- 4.14.5.3.7. Biochar carbon credits
- 4.14.5.3.7.1. Overview
- 4.14.5.3.7.2. Removal and reduction credits
- 4.14.5.3.7.3. The advantage of biochar
- 4.14.5.3.7.4. Prices
- 4.14.5.3.7.5. Buyers of biochar credits
- 4.14.5.3.7.6. Competitive materials and technologies
- 4.14.5.3.8. Bio-oil based CDR
- 4.14.5.3.9. Biomass burial for CO2 removal
- 4.14.5.3.10. Bio-based construction materials for CDR
- 4.14.5.3.11. SWOT analysis
- 4.15. Ocean-based CDR
- 4.15.1. Overview
- 4.15.2. CO2 capture from seawater
- 4.15.3. Ocean fertilisation
- 4.15.3.1. Biotic Methods
- 4.15.3.2. Coastal blue carbon ecosystems
- 4.15.3.3. Algal Cultivation
- 4.15.3.4. Artificial Upwelling
- 4.15.4. Ocean alkalinisation
- 4.15.4.1. Electrochemical ocean alkalinity enhancement
- 4.15.4.2. Direct Ocean Capture
- 4.15.4.3. Artificial Downwelling
- 4.15.5. Monitoring, Reporting, and Verification (MRV)
- 4.15.6. Ocean-based CDR Carbon Credits
- 4.15.7. Trends and Opportunities
- 4.15.8. Ocean-based carbon credits
- 4.15.9. Cost analysis
- 4.15.10. Challenges and Risks
- 4.15.11. SWOT analysis
- 4.15.12. Companies
5. CARBON DIOXIDE UTILIZATION
- 5.1. Overview
- 5.1.1. Current market status
- 5.2. Competition with other low carbon technologies
- 5.3. Carbon utilization business models
- 5.3.1. Benefits of carbon utilization
- 5.3.2. Market challenges
- 5.4. Co2 utilization pathways
- 5.5. Conversion processes
- 5.5.1. Thermochemical
- 5.5.1.1. Process overview
- 5.5.1.2. Plasma-assisted CO2 conversion
- 5.5.2. Electrochemical conversion of CO2
- 5.5.2.1. Process overview
- 5.5.3. Photocatalytic and photothermal catalytic conversion of CO2
- 5.5.4. Catalytic conversion of CO2
- 5.5.5. Biological conversion of CO2
- 5.5.6. Copolymerization of CO2
- 5.5.7. Mineral carbonation
- 5.6. CO2-Utilization in Fuels
- 5.6.1. Overview
- 5.6.2. Production routes
- 5.6.3. CO2 -fuels in road vehicles
- 5.6.4. CO2 -fuels in shipping
- 5.6.5. CO2 -fuels in aviation
- 5.6.6. Costs of e-fuel
- 5.6.7. Power-to-methane
- 5.6.7.1. Thermocatalytic pathway to e-methane
- 5.6.7.2. Biological fermentation
- 5.6.7.3. Costs
- 5.6.8. Algae based biofuels
- 5.6.9. DAC for e-fuels
- 5.6.10. Syngas Production Options
- 5.6.11. CO2-fuels from solar
- 5.6.12. Companies
- 5.6.13. Challenges
- 5.6.14. Global market forecasts 2025-2046
- 5.7. CO2-Utilization in Chemicals
- 5.7.1. Overview
- 5.7.2. Carbon nanostructures
- 5.7.3. Scalability
- 5.7.4. Pathways
- 5.7.4.1. Thermochemical
- 5.7.4.2. Electrochemical
- 5.7.4.2.1. Low-Temperature Electrochemical CO2 Reduction
- 5.7.4.2.2. High-Temperature Solid Oxide Electrolyzers
- 5.7.4.2.3. Coupling H2 and Electrochemical CO2 Reduction
- 5.7.4.3. Microbial conversion
- 5.7.4.4. Other
- 5.7.4.4.1. Photocatalytic
- 5.7.4.4.2. Plasma technology
- 5.7.5. Applications
- 5.7.5.1. Urea production
- 5.7.5.2. CO2-derived polymers
- 5.7.5.2.1. Pathways
- 5.7.5.2.2. Polycarbonate from CO2
- 5.7.5.2.3. Methanol to olefins (polypropylene production)
- 5.7.5.2.4. Ethanol to polymers
- 5.7.5.3. Inert gas in semiconductor manufacturing
- 5.7.6. Companies
- 5.7.7. Global market forecasts 2025-2046
- 5.8. CO2-Utilization in Construction and Building Materials
- 5.8.1. Overview
- 5.8.2. Market drivers
- 5.8.3. Key CO2 utilization technologies in construction
- 5.8.4. Carbonated aggregates
- 5.8.5. Additives during mixing
- 5.8.6. Concrete curing
- 5.8.7. Costs
- 5.8.8. Market trends and business models
- 5.8.9. Carbon credits
- 5.8.10. Companies
- 5.8.11. Challenges
- 5.8.12. Global market forecasts
- 5.9. CO2-Utilization in Biological Yield-Boosting
- 5.9.1. Overview
- 5.9.2. CO2 utilization in biological processes
- 5.9.3. Applications
- 5.9.3.1. Greenhouses
- 5.9.3.1.1. CO2 enrichment
- 5.9.3.2. Algae cultivation
- 5.9.3.2.1. CO2-enhanced algae cultivation: open systems
- 5.9.3.2.2. CO2-enhanced algae cultivation: closed systems
- 5.9.3.3. Microbial conversion
- 5.9.3.4. Food and feed production
- 5.9.4. Companies
- 5.9.5. Global market forecasts 2025-2046
- 5.10. CO2 Utilization in Enhanced Oil Recovery
- 5.10.1. Overview
- 5.10.1.1. Process
- 5.10.1.2. CO2 sources
- 5.10.2. CO2-EOR facilities and projects
- 5.10.3. Challenges
- 5.10.4. Global market forecasts 2025-2046
- 5.11. Enhanced mineralization
- 5.11.1. Advantages
- 5.11.2. In situ and ex-situ mineralization
- 5.11.3. Enhanced mineralization pathways
- 5.11.4. Challenges
- 5.12. Digital Solutions and IoT in Carbon Utilization
- 5.13. Blockchain Applications in Carbon Trading
- 5.14. Carbon Utilization in Data Centers
- 5.15. Integration with Smart City Infrastructure
- 5.16. Novel Applications
- 5.16.1. 3D Printing with CO2-derived Materials
- 5.16.2. CO2 in Energy Storage
- 5.16.3. CO2 in Electronics Manufacturing
6. CARBON DIOXIDE STORAGE
- 6.1. Introduction
- 6.2. CO2 storage sites
- 6.2.1. Storage types for geologic CO2 storage
- 6.2.2. Oil and gas fields
- 6.2.3. Saline formations
- 6.2.4. Coal seams and shale
- 6.2.5. Basalts and ultra-mafic rocks
- 6.3. CO2 leakage
- 6.4. Global CO2 storage capacity
- 6.5. CO2 Storage Projects
- 6.6. CO2 -EOR
- 6.6.1. Description
- 6.6.2. Injected CO2
- 6.6.3. CO2 capture with CO2 -EOR facilities
- 6.6.4. Companies
- 6.6.5. Economics
- 6.7. Costs
- 6.8. Challenges
- 6.9. Storage Monitoring Technologies
- 6.10. Underground Hydrogen Storage Synergies
- 6.11. Advanced Modelling and Simulation
- 6.12. Storage Site Selection Criteria
- 6.13. Risk Assessment and Management
7. CARBON DIOXIDE TRANSPORTATION
- 7.1. Introduction
- 7.2. CO2 transportation methods and conditions
- 7.3. CO2 transportation by pipeline
- 7.4. CO2 transportation by ship
- 7.5. CO2 transportation by rail and truck
- 7.6. Cost analysis of different methods
- 7.7. Smart Pipeline Networks
- 7.8. Transportation Hubs and Infrastructure
- 7.9. Safety Systems and Monitoring
- 7.10. Future Transportation Technologies
- 7.11. Companies
8. COMPANY PROFILES (374 company profiles)
9. APPENDICES
- 9.1. Abbreviations
- 9.2. Research Methodology
- 9.3. Definition of Carbon Capture, Utilisation and Storage (CCUS)
- 9.4. Technology Readiness Level (TRL)
10. REFERENCES