![]() |
市場調査レポート
商品コード
1807951
炭素回収・貯留市場:サービス、技術、最終用途産業、貯留形態別-2025-2030年世界予測Carbon Capture & Storage Market by Service, Technology, End-Use Industry, Storage Formation - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
炭素回収・貯留市場:サービス、技術、最終用途産業、貯留形態別-2025-2030年世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 192 Pages
納期: 即日から翌営業日
|
炭素回収・貯留市場は、2024年には70億9,000万米ドルとなり、2025年にはCAGR 9.67%で77億3,000万米ドルに成長し、2030年には123億4,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 70億9,000万米ドル |
推定年2025 | 77億3,000万米ドル |
予測年2030 | 123億4,000万米ドル |
CAGR(%) | 9.67% |
炭素回収・貯留の業界情勢は、重工業やエネルギーセクターの組織が、ますます厳しくなる脱炭素化の要請と進化する政策枠組みに直面する中で、変曲点に立っています。このエグゼクティブサマリーは、導入、技術経路、サービス要件、地域的な導入状況を形成する最も顕著な力学を統合しています。読者は、産業施設における運用の現実と、貯蔵サイトの特性、輸送ロジスティクス、そして実行可能なプロジェクトのパイプラインを支える新たな商業モデルを結びつける統合的な視点を見出すことができると思われます。
炭素回収・貯留における変革の次の波は、プロジェクトの経済性とリスク配分を再形成する、政策、技術、資本市場にまたがる収束的なシフトによってもたらされます。政策手段は、試験的なインセンティブから、回収サービスに対する需要と排出集約型商品の国境を越えた貿易の仕組みの両方に影響を与える持続的な規制枠組みへと移行しつつあります。同時に、回収効率の技術向上とモニタリング・検証ツールのコスト削減が商業展開の障壁を下げ、輸送ロジスティクスと貯蔵特性の革新が実現可能なプロジェクト設計を拡大しています。
2025年に実施された米国の関税措置は、捕獲機器、輸送部品、貯蔵関連サービスのサプライチェーンに影響を与える複雑な貿易政策を導入しました。輸入部品に対する関税は、特定の技術、特に特殊な材料や精密製造に依存する技術の取得コストを上昇させました。その結果、調達戦略は適応しつつあります。プロジェクト・スポンサーは、サプライヤーのポートフォリオを多様化し、可能であればニアショアリングを加速させ、関税の影響を受けやすいインプットにさらされる機会を減らす代替技術構成を模索しています。
セグメンテーションのダイナミクスを理解することは、ビジネスモデルを設計し、R&Dと商業努力の優先順位を決定するために不可欠です。サービス別に分析すると、捕捉、モニタリングと検証、運用と保守、貯蔵、輸送の各分野で、それぞれ独自の提供モデルと拡張可能な展開に必要なスキルセットを持つ、明確な価値プールが明らかになります。技術面では、オキシ燃料燃焼、燃焼後、燃焼前といった経路が、それぞれ異なる改修とグリーンフィールドの機会を提供し、燃焼後は、プラント統合の複雑さと溶剤再生の必要性が異なる溶剤ベースと吸着剤ベースのオプションによってさらに区別されます。
地域ダイナミックスは、投資の優先順位、規制の枠組み、商業的パートナーシップを形成し、パイロット段階を超えたプロジェクトの進展を決定します。アメリカ大陸では、確立されたエネルギー・インフラと政策インセンティブが、産業用回収プロジェクトと輸送ネットワークの組み合わせを支えています。欧州、中東・アフリカでは、野心的な気候変動目標や炭素価格メカニズムが捕捉技術への需要を加速している地域もあれば、政治的・インフラ的課題によって個別の展開アプローチが必要となる地域もあります。アジア太平洋は、産業排出量の急増と産業界の脱炭素化に対する強い関心を特徴としており、実現可能性調査や政府支援の実証プログラムが急増しています。
競争力学は、総合エネルギー企業、専門エンジニアリング会社やEPC会社、捕捉化学物質や吸着剤に焦点を当てた独立系技術開発者、モニタリングや検証の専門家、長期的な低炭素資産を求める機関投資家など、多様な参加者によって形成されています。コンソーシアムや官民パートナーシップによって、リスクの共有や技術的専門知識の共有が可能になるため、これらの関係者のタイプにまたがるコラボレーションは一般的です。技術ベンダーは、実証規模のプロジェクト、性能保証、技術供給と長期的な運転・保守能力を組み合わせたサービスバンドルによって差別化を図っています。
業界のリーダーは、政策の勢いと技術の進歩を、信頼できる投資可能なプロジェクト・パイプラインに転換するために、積極的な姿勢を採用しなければならないです。第一に、サプライヤーを多様化し、重要部品のニアショアリングを評価し、関税や規制リスクを管理するための柔軟な契約条項を取り入れることによって、弾力性のあるサプライチェーンを構築することを優先します。第二に、長期的なオペレーション、輸送ロジスティクス、貯蔵のコミットメントと捕獲配送を組み合わせた統合サービスモデルを追求し、産業界のオフテーカーにとってのインターフェースリスクを軽減します。
調査手法は、厳密性、透明性、意思決定者への妥当性を確保するために設計されたマルチソースアプローチを統合しています。1次調査では、エネルギー、産業、金融の各分野の経営幹部との構造的インタビューに加え、技術開発、サービスプロバイダー、規制当局との協議を行い、運用実態と政策解釈を把握しました。2次調査では、技術やサービスの評価に役立つ包括的なエビデンスベースをまとめるため、査読付き文献、政府刊行物、規制当局への届出、技術白書、業界団体を体系的に調査しました。
分析をまとめると、炭素回収・貯留のエコシステムは、より厳しい政策的期待、成熟しつつある技術、進化しつつある資本市場ソリューションに後押しされ、実験から計画的商業化へと移行しつつあります。サービスの専門化、技術の選択、最終用途業界の要件、貯蔵形成の特性などの相互作用は、プロジェクト・スポンサーにとって複雑な意思決定マトリックスを作り出します。成功のためには、技術的な選択を対象産業の運用実態に合致させ、持続的な収益メカニズムを確保し、信頼できるモニタリングと検証を通じて厳格な環境スチュワードシップを実証する組織が有利となります。
The Carbon Capture & Storage Market was valued at USD 7.09 billion in 2024 and is projected to grow to USD 7.73 billion in 2025, with a CAGR of 9.67%, reaching USD 12.34 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 7.09 billion |
Estimated Year [2025] | USD 7.73 billion |
Forecast Year [2030] | USD 12.34 billion |
CAGR (%) | 9.67% |
The carbon capture and storage landscape stands at an inflection point as organizations across heavy industry and energy sectors confront increasingly stringent decarbonization imperatives and evolving policy frameworks. This executive summary synthesizes the most salient dynamics shaping adoption, technology pathways, service requirements, and regional deployment conditions. Readers will find an integrated perspective that connects operational realities at industrial facilities with storage site characteristics, transport logistics, and the emergent commercial models that underpin viable project pipelines.
This introduction frames the discussion by linking technical progress-such as advances across oxy-fuel combustion, post-combustion approaches including solvent-based and sorbent-based systems, and pre-combustion options-to the practical service demands for capture, monitoring and verification, operations and maintenance, transport, and storage. It also situates end-use industry drivers, from cement and chemicals to iron and steel, within a broader context of capital allocation, regulatory signals, and public acceptance. The aim is to equip senior leaders with a concise, actionable orientation to the critical trade-offs and decision levers that will determine which projects move from concept to sustained operation.
Throughout the following sections, the analysis emphasizes where technological maturity converges with commercial readiness, how value chains must adapt to shifting policy landscapes, and where strategic investments will be necessary to scale capture, transport, and storage solutions responsibly and effectively.
The next wave of transformation in carbon capture and storage will be driven by converging shifts across policy, technology, and capital markets that reshape project economics and risk allocation. Policy instruments are transitioning from pilot incentives to durable regulatory frameworks that influence both demand for capture services and the architecture of cross-border trade in emissions-intensive goods. Concurrently, technology improvements in capture efficiency and cost reductions for monitoring and verification tools are lowering barriers to commercial deployment, while innovations in transport logistics and storage characterization are expanding feasible project designs.
Private capital and public financing mechanisms are adjusting to new risk profiles, favoring integrated project structures and long-term offtake arrangements that align capture capacity with storage commitments. At the same time, industrial adopters are reassessing operational practices to integrate capture into existing sites, prompting growth in specialized service offerings across operations and maintenance and long-term monitoring. Social license and stakeholder engagement are also becoming material considerations, pushing developers to embed community benefits and robust environmental safeguards into project planning. Taken together, these shifts are remapping competitive advantages: entities that can orchestrate multi-disciplinary execution, secure long-term revenue streams, and demonstrate credible environmental performance will lead the transition.
United States tariff actions implemented in 2025 have introduced a layer of trade policy complexity that affects supply chains for capture equipment, transport components, and storage-related services. Tariffs on imported components have increased acquisition costs for select technologies, particularly those reliant on specialized materials and precision manufacturing. As a consequence, procurement strategies are adapting: project sponsors are diversifying supplier portfolios, accelerating nearshoring where feasible, and exploring alternative technical configurations that reduce exposure to tariff-sensitive inputs.
The cumulative impact extends beyond direct equipment costs to influence timing and risk allocation for international joint ventures and cross-border storage arrangements. Developers and EPC contractors are revising contracts to include broader change-in-law clauses and re-evaluating logistical routes to optimize total landed costs. Additionally, tariff-driven inflation pressures have amplified the importance of value engineering and modular construction approaches that can mitigate schedule and cost risks. Policymakers and industry stakeholders are responding by exploring targeted incentives for domestic manufacturing of critical components and by engaging in dialogue on trade remedies that balance industrial policy objectives with the need to maintain access to global technology pools. In sum, tariffs have heightened the strategic salience of supply-chain resilience, contract flexibility, and local industrial capacity in project planning.
Understanding segmentation dynamics is essential for designing business models and prioritizing R&D and commercial efforts. Analysis by service reveals distinct value pools across capture, monitoring and verification, operations and maintenance, storage, and transport, each with unique delivery models and skill sets required for scalable deployment. On the technology front, pathways such as oxy-fuel combustion, post-combustion, and pre-combustion present different retrofit and greenfield opportunities, with post-combustion further distinguished by solvent-based and sorbent-based options that vary in plant integration complexity and solvent regeneration needs.
End-use industry segmentation highlights how decarbonization roadmaps diverge across cement, chemicals and petrochemicals, iron and steel, oil and gas, power generation, and refining, with each sector exhibiting different CO2 concentration profiles, operational cycles, and regulatory exposures that influence technology selection and service demand. Storage formation segmentation underscores the technical and commercial trade-offs between basalt and mineralization approaches, coal seam opportunities, depleted oil and gas reservoirs, and saline aquifers, which differ in injectivity characteristics, containment risk profiles, and monitoring requirements. Integrating these segmentation layers provides a granular lens for identifying where near-term deployments are most feasible, where technology innovation will unlock new opportunities, and how commercial models must be tailored to match sector- and formation-specific constraints.
Regional dynamics shape investment priorities, regulatory frameworks, and commercial partnerships that determine where projects progress beyond pilot stages. In the Americas, established energy infrastructure and policy incentives support a mix of industrial capture projects and transport networks, while public and private capital markets increasingly underwrite large-scale storage initiatives. Europe, Middle East & Africa present a heterogeneous landscape where ambitious climate targets and carbon pricing mechanisms in some jurisdictions accelerate demand for capture technologies, even as political and infrastructure challenges in other areas require tailored deployment approaches. Asia-Pacific is characterized by rapidly rising industrial emissions and strong interest in industrial decarbonization, prompting a surge in feasibility studies and government-backed demonstration programs.
These regional distinctions influence where companies concentrate manufacturing, where joint ventures and consortia form to de-risk projects, and how regulatory harmonization or divergence affects cross-border cooperation on transport and storage. Infrastructure endowments, land availability for storage, public acceptance, and the maturity of monitoring and verification regimes further modulate the speed and scale of adoption. Strategic actors will need to align their market entry and partnership strategies with regional policy signals and infrastructure realities to capture the most viable opportunities and avoid stranded investments.
Competitive dynamics are shaped by a diverse set of participants that include integrated energy companies, specialized engineering and EPC firms, independent technology developers focused on capture chemistries and sorbents, monitoring and verification specialists, and institutional investors seeking long-duration, low-carbon assets. Collaboration across these actor types is common, with consortia and public-private partnerships enabling risk sharing and pooling of technical expertise. Technology vendors are differentiating through demonstration-scale projects, performance guarantees, and service bundles that combine capture technology supply with long-term operations and maintenance capabilities.
Service providers that can deliver integrated offerings across capture, transport, storage characterization, and monitoring bring compelling value propositions to industrial clients who prefer single-source accountability. Meanwhile, niche suppliers that optimize for performance in specific industrial contexts-such as high-temperature cement kilns or low-pressure refining flue streams-remain strategically important for enabling targeted retrofits. Financial players and insurers are increasingly active in underwriting performance bonds and providing tailored risk-transfer instruments, which facilitates project bankability. The competitive landscape rewards entities that can prove repeatable delivery, secure robust offtake or revenue support mechanisms, and deploy adaptive business models that respond to localized regulatory and supply-chain conditions.
Industry leaders must adopt a proactive posture to convert policy momentum and technology progress into reliable, investable project pipelines. First, prioritize building resilient supply chains by diversifying suppliers, evaluating nearshoring for critical components, and incorporating flexible contract language to manage tariff and regulatory risk. Second, pursue integrated service models that combine capture delivery with long-term operations, transport logistics, and storage commitments to reduce interface risk for industrial offtakers.
Third, invest in demonstration projects that de-risk novel capture chemistries and monitoring technologies, while documenting performance outcomes that can be replicated across similar industrial sites. Fourth, engage early with regulators and local stakeholders to shape permitting timelines, establish clear monitoring and verification expectations, and secure social license through community benefit agreements. Fifth, structure financing with blended capital approaches that leverage public guarantees and concessional finance to lower the perceived technology and revenue risk for private investors. Finally, develop modular and standardized project components to shorten schedules and enable repeatable rollouts across multiple facilities and regions. These actions, taken together, will materially increase the probability that projects transition from pilot to scale in a fiscally prudent and socially responsible manner.
The research methodology integrates a multi-source approach designed to ensure rigor, transparency, and relevance to decision-makers. Primary research included structured interviews with senior executives across energy, industrial, and financial sectors, complemented by consultations with technology developers, service providers, and regulatory authorities to capture operational realities and policy interpretations. Secondary research involved a systematic review of peer-reviewed literature, government publications, regulatory filings, technical white papers, and trade associations to compile a comprehensive evidence base that informs technology and service assessments.
Analytical techniques employed include qualitative synthesis of policy and regulatory frameworks, technical benchmarking of capture and storage solutions, and scenario-based analysis of supply-chain and tariff implications. Triangulation across primary and secondary inputs was used to validate key findings and to surface divergent perspectives. Special attention was paid to data provenance, ensuring that assumptions and methodological choices are documented and auditable. Where possible, case-study validation exercises were conducted to ground high-level observations in real-world project experiences, and sensitivity checks were applied to identify points of greatest uncertainty that warrant continued monitoring by stakeholders.
Bringing the analysis together, the carbon capture and storage ecosystem is moving from experimentation toward structured commercialization, driven by tighter policy expectations, maturing technologies, and evolving capital-market solutions. The interplay of service specialization, technology selection, end-use industry requirements, and storage formation characteristics creates a complex decision matrix for project sponsors. Success will favor organizations that align technological choices with the operational realities of targeted industries, secure durable revenue mechanisms, and demonstrate rigorous environmental stewardship through credible monitoring and verification.
Risk factors remain substantive-ranging from supply-chain disruptions and tariff-induced cost volatility to permitting delays and public acceptance challenges-but the toolkit for addressing these risks is also expanding. Strategic partnerships, blended finance, and standardized project components all contribute to lowering execution risk. Ultimately, leaders who integrate cross-functional capabilities, maintain adaptive procurement and contracting approaches, and engage transparently with stakeholders will be best positioned to translate policy momentum and technological progress into sustained deployment outcomes.