表紙:耐放射線性エレクトロニクスの世界市場:市場規模、市場シェア、動向分析、機会、予測:製品タイプ別、コンポーネント別、製造技術別、材料別、用途別、地域別(2018年~2028年)
市場調査レポート
商品コード
1147255

耐放射線性エレクトロニクスの世界市場:市場規模、市場シェア、動向分析、機会、予測:製品タイプ別、コンポーネント別、製造技術別、材料別、用途別、地域別(2018年~2028年)

Radiation Hardened Electronics Market - Global Size, Share, Trend Analysis, Opportunity and Forecast Report, 2018-2028, Segmented By Product Type, By Component, By Manufacturing Technique, By Material, By Application, By Region

出版日: | 発行: Blueweave Consulting | ページ情報: 英文 114 Pages | 納期: 2~3営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
耐放射線性エレクトロニクスの世界市場:市場規模、市場シェア、動向分析、機会、予測:製品タイプ別、コンポーネント別、製造技術別、材料別、用途別、地域別(2018年~2028年)
出版日: 2022年10月01日
発行: Blueweave Consulting
ページ情報: 英文 114 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

世界の耐放射線性エレクトロニクスの市場規模は、2021年の17億8,000万米ドルから2028年には約25億3,000万米ドルに達し、予測期間中に5.3%のCAGRで成長すると予測されています。 半導体分野の拡大、宇宙用部品の需要増、情報・監視・偵察(ISR)活動用の通信衛星の需要の高まりは、市場拡大の原動力となっています。さらに、電源管理の製造に広く製品が採用されていることも市場に好影響を与えています。

当レポートでは、世界の耐放射線性エレクトロニクス市場について調査しており、市場概要、市場分析、企業プロファイルなど、包括的な情報を提供しています。

目次

第1章 調査の枠組み

第2章 エグゼクティブサマリー

第3章 世界の耐放射線性エレクトロニクス市場の洞察

  • 用途バリューチェーン分析
  • DROC分析
    • 促進要因
      • 商用衛星の需要増加
      • 情報・監視・偵察(ISR)作戦の台頭
      • 半導体部門の拡大
    • 抑制要因
      • 実際のテスト環境を作る難しさ
      • 開発と設計の高コスト
    • 機会
      • 宇宙ミッションの世界な増加
      • 人工衛星用の市販コンポーネントに対する需要の高まり
      • 軍用用途の台頭
    • 課題
      • ハイエンドの消費者からのカスタマイズされた要件
  • 技術の進歩/最近の開発
  • 規制の枠組み
  • ポーターのファイブフォース分析
    • 供給企業の交渉力
    • 買い手の交渉力
    • 新規参入業者の脅威
    • 代替品の脅威
    • 競争の激しさ

第4章 世界の耐放射線性エレクトロニクス市場概要

  • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
      • 市販品
      • カスタム品
    • コンポーネント別
      • 混合信号IC
      • プロセッサとコントローラ
      • メモリー
      • 電源管理
    • 製造技術別
      • 設計による耐放射線(RHBD)
      • プロセスによる耐放射線(RHBP)
    • 材料別
      • ケイ素
      • 水素化アモルファスシリコン
      • 炭化ケイ素
      • 窒化ガリウム
      • ガリウム砒素
      • その他
    • 用途別
      • 宇宙
      • 航空宇宙と防衛
      • 原子力発電所
      • 医学
      • その他
    • 地域別
      • 北米
      • 欧州
      • アジア太平洋
      • ラテンアメリカ
      • 中東とアフリカ

第5章 北米の耐放射線性エレクトロニクス市場

    • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
    • コンポーネント別
    • 製造技術別
    • 材料別
    • 用途別
    • 国別
      • 米国
      • カナダ

第6章 欧州の耐放射線性エレクトロニクス市場

  • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
    • コンポーネント別
    • 製造技術別
    • 材料別
    • 用途別
    • 国別
      • ドイツ
      • 英国
      • イタリア
      • フランス
      • スペイン
      • オランダ
      • ベルギー
      • 北欧諸国
      • その他欧州
    • アジア太平洋の耐放射線性エレクトロニクス市場
  • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
    • コンポーネント別
    • 製造技術別
    • 材料別
    • 用途別
    • 国別
      • 中国
      • インド
      • 日本
      • 韓国
      • オーストラリアとニュージーランド
      • インドネシア
      • マレーシア
      • シンガポール
      • フィリピン
      • ベトナム
      • その他アジア太平洋

第7章 ラテンアメリカの耐放射線電子機器市場

  • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
    • コンポーネント別
    • 製造技術別
    • 材料別
    • 用途別
    • 国別
      • ブラジル
      • メキシコ
      • アルゼンチン
      • ペルー
      • コロンビア
      • その他ラテンアメリカ

第8章 中東およびアフリカの耐放射線性エレクトロニクス市場

  • 市場規模と予測:金額別(2018年~2028年)
    • 金額別(10億米ドル)
  • 市場シェアと予測
    • 製品タイプ別
    • コンポーネント別
    • 製造技術別
    • 材料別
    • 用途別
    • 国別
      • サウジアラビア
      • アラブ首長国連邦
      • カタール
      • クウェート
      • イラン
      • 南アフリカ
      • ナイジェリア
      • ケニア
      • エジプト
      • モロッコ
      • アルジェリア
      • その他中東

第9章 競合情勢

  • 主要企業とその製品のリスト
  • 世界の耐放射線性エレクトロニクス企業の市場シェア分析(2021年)
  • 競合ベンチマーキング:操作パラメータ別
  • 主要な戦略的展開(合併、買収、パートナーシップなど)

第10章 COVID-19が世界の耐放射線性エレクトロニクス市場に与える影響

第11章 企業プロファイル(企業概要、財務マトリックス、競合情勢、主要な人材、主要な競合、連絡先、SWOT、戦略的展望)

  • Microchip Technology Inc.
  • BAE Systems
  • Renesas Electronics Corporation
  • Infineon Technologies AG
  • STMicroelectronics
  • Xilinx, Inc.
  • Texas Instruments Incorporated
  • Honeywell International Inc.
  • Teledyne Technologies Inc.
  • TTM Technologies, Inc.
  • Cobham Limited
  • Analog Devices, Inc
  • Data Devices Corporation
  • 3D Plus(France), Mercury Systems, Inc.
  • PCB Piezotronics, Inc
  • Vorago(US), Micropac Industries, Inc
  • GSI technology, Inc
  • Everspin Technologies Inc
  • Semiconductor Components Industries, LLC
  • その他

第12章 主要な戦略的推奨事項

第13章 調査手法

目次
Product Code: BWC22405

Global Radiation Hardened Electronics Market to Grow at a CAGR of 5.3%, during Forecast Period

Global Radiation Hardened Electronics Market is flourishing owing to the expanding semiconductor sector and rising demand for commercial-off-the-shelf space components.

A recent study conducted by the strategic consulting and market research firm, BlueWeave Consulting, revealed that the Global Radiation Hardened Electronics Market was worth USD 1.78 billion in the year 2021. The market is projected to grow at a CAGR of 5.3%, earning revenues of around USD 2.53 billion by the end of 2028. The Global Radiation Hardened Electronics Market is booming because of the growing number of space missions and exploratory activities. In line with this, the rising demand for communication satellites for intelligence, surveillance, and reconnaissance (ISR) operations is driving market expansion. Radiation-hardened electronics are critical for preventing physical damage and failure caused by harmful radiation in space. Furthermore, widespread product adoption for power management device manufacturing is having a positive impact on the market. These electronics are also used in the production of diodes, transistors, and metal-oxide-semiconductor field-effect transistors (MOSFETs) for a variety of defense and military applications. The low production and high maintenance costs for radiation-hardened electronics, however, are anticipated to impede market revenue growth over the forecast period.

Growing Market for Commercial Satellites

The need for low-cost satellite communication for a range of uses, including agriculture surveillance, television content and cell phone connectivity, and military surveillance and monitoring, is driving up demand for small satellites. These commercial satellites have a lifespan of 15-20 years and are frequently launched into geosynchronous orbits for the best coverage. As more communication satellites orbit the earth, the demand for radiation-hardened electronics systems has grown. The New Space entrepreneurs, including OneWeb, SpaceX, Amazon, and Telesat, intend to launch a mega constellation of thousands of low-earth orbit satellites in the upcoming years to enhance the global connectivity network.

Challenge: Customised Demands from Affluent Customers

Custom radiation-hardened products with high integration, efficiency, and compact features are preferred by space agencies. The businesses are embracing several innovations, which involve investing a sizable amount of time, money, and R&D. Additionally, the need to adapt the design process based on the specific requirements of the end user causes long development cycles for radiation-hardened components. Further, it is anticipated that a lack of lab time will impact the supply of customized product lines for the certification of radiation-hardened chipsets.

Segmental Coverage

Global Radiation Hardened Electronics Market - By Material

Based on material, the Global Radiation Hardened Electronics Market is segmented into Silicon, Hydrogenated amorphous silicon, Silicon carbide, Gallium nitride, Gallium arsenide, and others. Among these, Silicon is expected to grow significantly during the forecast period. Silicon-based electronic components are chosen for innovative solutions that aid both strategic and space missions, resulting in significant market growth. The segment is growing due to manufacturers' increased interest in developing critical microelectronic equipment, such as microprocessors, that are more reliable in hostile environments, such as space and military field deployments. All these factors boost the growth of the Global Radiation Hardened Electronics Market during the forecast period (2022-2028).

Impact of COVID-19 on Global Radiation Hardened Electronics Market

COVID-19 has had a sizable impact on the value chain as well as the demand for radiation-hardened electronics in various end-use industries. The use of radiation-hardened electronic components in satellite construction has been significantly influenced by COVID-19. This market is characterized by low production volumes, high levels of specialization, and few suppliers. Furthermore, COVID-19 has resulted in supply chain interruptions, extended lead times for raw material and component shipments, postponed contract execution, and lockdowns in several countries, particularly in the European region, where the third phase of the lockdown took place in the first quarter of 2021. The industry also relies on outside silicon foundries and back-end subcontractors for some of its manufacturing tasks.

Competitive Landscape

The leading market players in the Global Radiation Hardened Electronics Market are Microchip Technology Inc., BAE Systems, Renesas Electronics Corporation, Infineon Technologies AG, STMicroelectronics, Xilinx, Inc., Texas Instruments Incorporated, Honeywell International Inc., Teledyne Technologies Inc., TTM Technologies, Inc., Cobham Limited, Analog Devices, Inc, Data Devices Corporation, 3D Plus (France), Mercury Systems, Inc., PCB Piezotronics, Inc, Vorago (US), Micropac Industries, Inc, GSI Technology, Inc, Everspin Technologies Inc, Semiconductor Components Industries, LLC, and other prominent players. The Global Radiation Hardened Electronics Market is highly fragmented with the presence of several manufacturing companies in the country. The market leaders retain their supremacy by spending on research and development, incorporating cutting-edge technology into their goods, and releasing upgraded items for customers. Various tactics, including strategic alliances, agreements, mergers, and partnerships, are used.

The in-depth analysis of the report provides information about growth potential, upcoming trends, and statistics of the Global Radiation Hardened Electronics Market. It also highlights the factors driving forecasts of total market size. The report promises to provide recent technology trends in the Global Radiation Hardened Electronics Market and industry insights to help decision-makers make sound strategic decisions. Furthermore, the report also analyzes the growth drivers, challenges, and competitive dynamics of the market.

Table of Contents

1. Research Framework

  • 1.1. Research Objective
  • 1.2. Type Overview
  • 1.3. Market Segmentation

2. Executive Summary

3. Global Radiation Hardened Electronics Market Insights

  • 3.1. Application Value Chain Analysis
  • 3.2. DROC Analysis
    • 3.2.1. Growth Drivers
      • 3.2.1.1. Increasing Demand in Commercial Satellites
      • 3.2.1.2. Rise in the intelligence, surveillance, and reconnaissance (ISR) operations
      • 3.2.1.3. Expanding semiconductor sector
    • 3.2.2. Restraints
      • 3.2.2.1. Difficulties in creating real testing environment
      • 3.2.2.2. High costs of development and designing
    • 3.2.3. Opportunities
      • 3.2.3.1. Increasing space missions globally
      • 3.2.3.2. Rising Demand for Commercial-Off-The-Shelf Components in Space Satellites
      • 3.2.3.3. Rising Military Applications
    • 3.2.4. Challenge
      • 3.2.4.1. Customized requirements from high-end consumers
  • 3.3. Technological Advancements/Recent Developments
  • 3.4. Regulatory Framework
  • 3.5. Porter's Five Forces Analysis
    • 3.5.1. Bargaining Power of Suppliers
    • 3.5.2. Bargaining Power of Buyers
    • 3.5.3. Threat of New Entrants
    • 3.5.4. Threat of Substitutes
    • 3.5.5. Intensity of Rivalry

4. Global Radiation Hardened Electronics Market Overview

  • 4.1. Market Size & Forecast by Value, 2018-2028
    • 4.1.1. By Value (USD Billion)
  • 4.2. Market Share & Forecast
    • 4.2.1. By Product Type
      • 4.2.1.1. Commercial-off-the-Shelf (COTS)
      • 4.2.1.2. Custom Made
    • 4.2.2. By Component
      • 4.2.2.1. Mixed Signal ICs
      • 4.2.2.2. Processors & Controllers
      • 4.2.2.3. Memory
      • 4.2.2.4. Power Management
    • 4.2.3. By Manufacturing Technique
      • 4.2.3.1. Radiation-Hardening by Design (RHBD)
      • 4.2.3.2. Radiation-Hardening by Process (RHBP)
    • 4.2.4. By Material
      • 4.2.4.1. Silicon
      • 4.2.4.2. Hydrogenated amorphous silicon
      • 4.2.4.3. Silicon carbide
      • 4.2.4.4. Gallium nitride
      • 4.2.4.5. Gallium arsenide
      • 4.2.4.6. Others
    • 4.2.5. By Application
      • 4.2.5.1. Space
      • 4.2.5.2. Aerospace & Defense
      • 4.2.5.3. Nuclear Power Plant
      • 4.2.5.4. Medical
      • 4.2.5.5. Others
    • 4.2.6. By Region
      • 4.2.6.1. North America
      • 4.2.6.2. Europe
      • 4.2.6.3. Asia Pacific
      • 4.2.6.4. Latin America
      • 4.2.6.5. Middle East and Africa

5. North America Radiation Hardened Electronics Market

    • 5.1.1. Market Size & Forecast by Value, 2018-2028
    • 5.1.2. By Value (USD Billion)
  • 5.2. Market Share & Forecast
    • 5.2.1. By Product Type
    • 5.2.2. By Component
    • 5.2.3. By Manufacturing Technique
    • 5.2.4. By Material
    • 5.2.5. By Application
    • 5.2.6. By Country
      • 5.2.6.1. US
      • 5.2.6.1.1. By Product Type
      • 5.2.6.1.2. By Component
      • 5.2.6.1.3. By Manufacturing Technique
      • 5.2.6.1.4. By Material
      • 5.2.6.1.5. By Application
      • 5.2.6.2. Canada
      • 5.2.6.2.1. By Product Type
      • 5.2.6.2.2. By Component
      • 5.2.6.2.3. By Manufacturing Technique
      • 5.2.6.2.4. By Material
      • 5.2.6.2.5. By Application

6. Europe Radiation Hardened Electronics Market

  • 6.1. Market Size & Forecast by Value, 2018-2028
    • 6.1.1. By Value (USD Billion)
  • 6.2. Market Share & Forecast
    • 6.2.1. By Product Type
    • 6.2.2. By Component
    • 6.2.3. By Manufacturing Technique
    • 6.2.4. By Material
    • 6.2.5. By Application
    • 6.2.6. By Country
      • 6.2.6.1. Germany
      • 6.2.6.1.1. By Product Type
      • 6.2.6.1.2. By Component
      • 6.2.6.1.3. By Manufacturing Technique
      • 6.2.6.1.4. By Material
      • 6.2.6.1.5. By Application
      • 6.2.6.2. UK
      • 6.2.6.2.1. By Product Type
      • 6.2.6.2.2. By Component
      • 6.2.6.2.3. By Manufacturing Technique
      • 6.2.6.2.4. By Material
      • 6.2.6.2.5. By Application
      • 6.2.6.2.6.
      • 6.2.6.3. Italy
      • 6.2.6.3.1. By Product Type
      • 6.2.6.3.2. By Component
      • 6.2.6.3.3. By Manufacturing Technique
      • 6.2.6.3.4. By Material
      • 6.2.6.3.5. By Application
      • 6.2.6.4. France
      • 6.2.6.4.1. By Product Type
      • 6.2.6.4.2. By Component
      • 6.2.6.4.3. By Manufacturing Technique
      • 6.2.6.4.4. By Material
      • 6.2.6.4.5. By Application
      • 6.2.6.5. Spain
      • 6.2.6.5.1. By Product Type
      • 6.2.6.5.2. By Component
      • 6.2.6.5.3. By Manufacturing Technique
      • 6.2.6.5.4. By Material
      • 6.2.6.5.5. By Application
      • 6.2.6.6. The Netherlands
      • 6.2.6.6.1. By Product Type
      • 6.2.6.6.2. By Component
      • 6.2.6.6.3. By Manufacturing Technique
      • 6.2.6.6.4. By Material
      • 6.2.6.6.5. By Application
      • 6.2.6.7. Belgium
      • 6.2.6.7.1. By Product Type
      • 6.2.6.7.2. By Component
      • 6.2.6.7.3. By Manufacturing Technique
      • 6.2.6.7.4. By Material
      • 6.2.6.7.5. By Application
      • 6.2.6.8. NORDIC Countries
      • 6.2.6.8.1. By Product Type
      • 6.2.6.8.2. By Component
      • 6.2.6.8.3. By Manufacturing Technique
      • 6.2.6.8.4. By Material
      • 6.2.6.8.5. By Application
      • 6.2.6.9. Rest of Europe
      • 6.2.6.9.1. By Product Type
      • 6.2.6.9.2. By Component
      • 6.2.6.9.3. By Manufacturing Technique
      • 6.2.6.9.4. By Material
      • 6.2.6.9.5. By Application
    • 6.2.7. Asia Pacific Radiation Hardened Electronics Market
  • 6.3. Market Size & Forecast by Value, 2018-2028
    • 6.3.1. By Value (USD Billion)
  • 6.4. Market Share & Forecast
    • 6.4.1. By Product Type
    • 6.4.2. By Component
    • 6.4.3. By Manufacturing Technique
    • 6.4.4. By Material
    • 6.4.5. By Application
    • 6.4.6. By Country
      • 6.4.6.1. China
      • 6.4.6.1.1. By Product Type
      • 6.4.6.1.2. By Component
      • 6.4.6.1.3. By Manufacturing Technique
      • 6.4.6.1.4. By Material
      • 6.4.6.1.5. By Application
      • 6.4.6.2. India
      • 6.4.6.2.1. By Product Type
      • 6.4.6.2.2. By Component
      • 6.4.6.2.3. By Manufacturing Technique
      • 6.4.6.2.4. By Material
      • 6.4.6.2.5. By Application
      • 6.4.6.2.6.
      • 6.4.6.3. Japan
      • 6.4.6.3.1. By Product Type
      • 6.4.6.3.2. By Component
      • 6.4.6.3.3. By Manufacturing Technique
      • 6.4.6.3.4. By Material
      • 6.4.6.3.5. By Application
      • 6.4.6.4. South Korea
      • 6.4.6.4.1. By Product Type
      • 6.4.6.4.2. By Component
      • 6.4.6.4.3. By Manufacturing Technique
      • 6.4.6.4.4. By Material
      • 6.4.6.4.5. By Application
      • 6.4.6.5. Australia & New Zealand
      • 6.4.6.5.1. By Product Type
      • 6.4.6.5.2. By Component
      • 6.4.6.5.3. By Manufacturing Technique
      • 6.4.6.5.4. By Material
      • 6.4.6.5.5. By Application
      • 6.4.6.6. Indonesia
      • 6.4.6.6.1. By Product Type
      • 6.4.6.6.2. By Component
      • 6.4.6.6.3. By Manufacturing Technique
      • 6.4.6.6.4. By Material
      • 6.4.6.6.5. By Application
      • 6.4.6.7. Malaysia
      • 6.4.6.7.1. By Product Type
      • 6.4.6.7.2. By Component
      • 6.4.6.7.3. By Manufacturing Technique
      • 6.4.6.7.4. By Material
      • 6.4.6.7.5. By Application
      • 6.4.6.8. Singapore
      • 6.4.6.8.1. By Product Type
      • 6.4.6.8.2. By Component
      • 6.4.6.8.3. By Manufacturing Technique
      • 6.4.6.8.4. By Material
      • 6.4.6.8.5. By Application
      • 6.4.6.9. Philippines
      • 6.4.6.9.1. By Product Type
      • 6.4.6.9.2. By Component
      • 6.4.6.9.3. By Manufacturing Technique
      • 6.4.6.9.4. By Material
      • 6.4.6.9.5. By Application
      • 6.4.6.10. Vietnam
      • 6.4.6.10.1. By Product Type
      • 6.4.6.10.2. By Component
      • 6.4.6.10.3. By Manufacturing Technique
      • 6.4.6.10.4. By Material
      • 6.4.6.10.5. By Application
      • 6.4.6.11. Rest of Asia Pacific
      • 6.4.6.11.1. By Product Type
      • 6.4.6.11.2. By Component
      • 6.4.6.11.3. By Manufacturing Technique
      • 6.4.6.11.4. By Material
      • 6.4.6.11.5. By Application

7. Latin America Radiation Hardened Electronics Market

  • 7.1. Market Size & Forecast by Value, 2018-2028
    • 7.1.1. By Value (USD Billion)
  • 7.2. Market Share & Forecast
    • 7.2.1. By Product Type
    • 7.2.2. By Component
    • 7.2.3. By Manufacturing Technique
    • 7.2.4. By Material
    • 7.2.5. By Application
    • 7.2.6. By Country
      • 7.2.6.1. Brazil
      • 7.2.6.1.1. By Product Type
      • 7.2.6.1.2. By Component
      • 7.2.6.1.3. By Manufacturing Technique
      • 7.2.6.1.4. By Material
      • 7.2.6.1.5. By Application
      • 7.2.6.2. Mexico
      • 7.2.6.2.1. By Product Type
      • 7.2.6.2.2. By Component
      • 7.2.6.2.3. By Manufacturing Technique
      • 7.2.6.2.4. By Material
      • 7.2.6.2.5. By Application
      • 7.2.6.3. Argentina
      • 7.2.6.3.1. By Product Type
      • 7.2.6.3.2. By Component
      • 7.2.6.3.3. By Manufacturing Technique
      • 7.2.6.3.4. By Material
      • 7.2.6.3.5. By Application
      • 7.2.6.3.6.
      • 7.2.6.4. Peru
      • 7.2.6.4.1. By Product Type
      • 7.2.6.4.2. By Component
      • 7.2.6.4.3. By Manufacturing Technique
      • 7.2.6.4.4. By Material
      • 7.2.6.4.5. By Application
      • 7.2.6.5. Colombia
      • 7.2.6.5.1. By Product Type
      • 7.2.6.5.2. By Component
      • 7.2.6.5.3. By Manufacturing Technique
      • 7.2.6.5.4. By Material
      • 7.2.6.5.5. By Application
      • 7.2.6.6. Rest of Latin America
      • 7.2.6.6.1. By Product Type
      • 7.2.6.6.2. By Component
      • 7.2.6.6.3. By Manufacturing Technique
      • 7.2.6.6.4. By Material
      • 7.2.6.6.5. By Application

8. Middle East & Africa Radiation Hardened Electronics Market

  • 8.1. Market Size & Forecast by Value, 2018-2028
    • 8.1.1. By Value (USD Billion)
  • 8.2. Market Share & Forecast
    • 8.2.1. By Product Type
    • 8.2.2. By Component
    • 8.2.3. By Manufacturing Technique
    • 8.2.4. By Material
    • 8.2.5. By Application
    • 8.2.6. By Country
      • 8.2.6.1. Saudi Arabia
      • 8.2.6.1.1. By Product Type
      • 8.2.6.1.2. By Component
      • 8.2.6.1.3. By Manufacturing Technique
      • 8.2.6.1.4. By Material
      • 8.2.6.1.5. By Application
      • 8.2.6.2. UAE
      • 8.2.6.2.1. By Product Type
      • 8.2.6.2.2. By Component
      • 8.2.6.2.3. By Manufacturing Technique
      • 8.2.6.2.4. By Material
      • 8.2.6.2.5. By Application
      • 8.2.6.3. Qatar
      • 8.2.6.3.1. By Product Type
      • 8.2.6.3.2. By Component
      • 8.2.6.3.3. By Manufacturing Technique
      • 8.2.6.3.4. By Material
      • 8.2.6.3.5. By Application
      • 8.2.6.4. Kuwait
      • 8.2.6.4.1. By Product Type
      • 8.2.6.4.2. By Component
      • 8.2.6.4.3. By Manufacturing Technique
      • 8.2.6.4.4. By Material
      • 8.2.6.4.5. By Application
      • 8.2.6.4.6.
      • 8.2.6.5. Iran
      • 8.2.6.5.1. By Product Type
      • 8.2.6.5.2. By Component
      • 8.2.6.5.3. By Manufacturing Technique
      • 8.2.6.5.4. By Material
      • 8.2.6.5.5. By Application
      • 8.2.6.6. South Africa
      • 8.2.6.6.1. By Product Type
      • 8.2.6.6.2. By Component
      • 8.2.6.6.3. By Manufacturing Technique
      • 8.2.6.6.4. By Material
      • 8.2.6.6.5. By Application
      • 8.2.6.6.6.
      • 8.2.6.7. Nigeria
      • 8.2.6.7.1. By Product Type
      • 8.2.6.7.2. By Component
      • 8.2.6.7.3. By Manufacturing Technique
      • 8.2.6.7.4. By Material
      • 8.2.6.7.5. By Application
      • 8.2.6.7.6.
      • 8.2.6.8. Kenya
      • 8.2.6.8.1. By Product Type
      • 8.2.6.8.2. By Component
      • 8.2.6.8.3. By Manufacturing Technique
      • 8.2.6.8.4. By Material
      • 8.2.6.8.5. By Application
      • 8.2.6.9. Egypt
      • 8.2.6.9.1. By Product Type
      • 8.2.6.9.2. By Component
      • 8.2.6.9.3. By Manufacturing Technique
      • 8.2.6.9.4. By Material
      • 8.2.6.9.5. By Application
      • 8.2.6.10. Morocco
      • 8.2.6.10.1. By Product Type
      • 8.2.6.10.2. By Component
      • 8.2.6.10.3. By Manufacturing Technique
      • 8.2.6.10.4. By Material
      • 8.2.6.10.5. By Application
      • 8.2.6.11. Algeria
      • 8.2.6.11.1. By Product Type
      • 8.2.6.11.2. By Component
      • 8.2.6.11.3. By Manufacturing Technique
      • 8.2.6.11.4. By Material
      • 8.2.6.11.5. By Application
      • 8.2.6.12. Rest of Middle East & Africa
      • 8.2.6.12.1. By Product Type
      • 8.2.6.12.2. By Component
      • 8.2.6.12.3. By Manufacturing Technique
      • 8.2.6.12.4. By Material
      • 8.2.6.12.5. By Application

9. Competitive Landscape

  • 9.1. List of Key Players and Their Offerings
  • 9.2. Global Radiation Hardened Electronics Company Market Share Analysis, 2021
  • 9.3. Competitive Benchmarking, By Operating Parameters
  • 9.4. Key Strategic Developments (Mergers, Acquisitions, Partnerships, etc.)

10. Impact of Covid-19 on Global Radiation Hardened Electronics Market

11. Company Profile (Company Overview, Financial Matrix, Competitive Landscape, Key Personnel, Key Competitors, Contact Address, SWOT, and Strategic Outlook)

  • 11.1. Microchip Technology Inc.
  • 11.2. BAE Systems
  • 11.3. Renesas Electronics Corporation
  • 11.4. Infineon Technologies AG
  • 11.5. STMicroelectronics
  • 11.6. Xilinx, Inc.
  • 11.7. Texas Instruments Incorporated
  • 11.8. Honeywell International Inc.
  • 11.9. Teledyne Technologies Inc.
  • 11.10. TTM Technologies, Inc.
  • 11.11. Cobham Limited
  • 11.12. Analog Devices, Inc
  • 11.13. Data Devices Corporation
  • 11.14. 3D Plus (France), Mercury Systems, Inc.
  • 11.15. PCB Piezotronics, Inc
  • 11.16. Vorago (US), Micropac Industries, Inc
  • 11.17. GSI technology, Inc
  • 11.18. Everspin Technologies Inc
  • 11.19. Semiconductor Components Industries, LLC
  • 11.20. Other Prominent Players

12. Key Strategic Recommendations

13. Research Methodology

  • 13.1. Qualitative Research
    • 13.1.1. Primary & Secondary Research
  • 13.2. Quantitative Research
  • 13.3. Market Breakdown & Data Triangulation
    • 13.3.1. Secondary Research
    • 13.3.2. Primary Research
  • 13.4. Breakdown of Primary Research Respondents, By Region
  • 13.5. Assumptions & Limitations