デフォルト表紙
市場調査レポート
商品コード
1804256

炭素繊維の世界市場:前駆体タイプ・トウサイズ (1-12 k・24-48 k・48 k超)・弾性率・エンドユーザー・地域別 - 市場規模・産業力学・機会分析・予測 (2025~2035年)

Global Carbon Fiber Market: By Precursor Type, Tow Size (1-12 k, 24-48 k, >48 k), Modulus, End Users, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2035


出版日
ページ情報
英文 392 Pages
納期
即日から翌営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=148.52円
炭素繊維の世界市場:前駆体タイプ・トウサイズ (1-12 k・24-48 k・48 k超)・弾性率・エンドユーザー・地域別 - 市場規模・産業力学・機会分析・予測 (2025~2035年)
出版日: 2025年07月18日
発行: Astute Analytica
ページ情報: 英文 392 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

炭素繊維は、炭素原子から作られた極めて細く、非常に強靭な結晶性フィラメントから構成される高度先進材料です。世界の炭素繊維市場は、航空宇宙、自動車、建設、再生可能エネルギーなど幅広い分野における軽量かつ高性能な素材需要の高まりに支えられ、力強い成長を遂げています。2024年の市場規模は約34億7,000万米ドルと評価され、耐久性の向上、軽量化、燃費効率の改善が求められる用途において炭素繊維の採用が拡大していることを示しました。2025年から2035年の予測期間中は14.44%で推移し、2035年には153億米ドルに達すると予測されています。

市場セグメンテーションの詳細

前駆体タイプ別では、ポリアクリロニトリル (PAN) 系炭素繊維が市場を支配し続けており、2024年に73.31%で圧倒的シェアを示しました。この圧倒的な優位性は、製造技術の大きな進歩と、PAN系繊維に依存する産業用途の拡大によってもたらされています。このセグメントのCAGRは11.09%であり、新興分野や高成長分野におけるPAN炭素繊維の採用が加速していることを示しています。

トウサイズ別では、2024年には、24~48kのカテゴリが支配的セグメントとして台頭し、70.07%という高いシェアを占めました。この優位性は、炭素繊維製造の経済性とその用途の多様性における根本的な変革を示しています。このセグメントはCAGR 11.16%という力強い成長を遂げており、さまざまな産業における重要性が高まっていることを裏付けています。24~48kトウサイズは、特に自動化された複合材料製造プロセスの基盤となっており、ロボットによる自動配置システムでの利用が代表的です。

エンドユーザー別では、2024年に航空宇宙・防衛分野が重要な地位を占め、総収益シェアの26.02%を獲得しました。この分野はまた成長可能性においても先導しており、予測されるCAGRは11.23%と最も高い数値を示しています。これらの数値は、航空宇宙・防衛分野が炭素繊維産業におけるイノベーションと品質基準の向上を推進する最重要の原動力であることを示しています。商用航空の回復と拡大は、炭素繊維材料の採用を加速させる上で極めて重要な役割を果たしています。

弾性率別では、標準弾性率 (T300~T700) のグレードが2024年も市場を支配しており、82.05%という大きなシェアを占めています。この圧倒的な存在感は、その卓越した汎用性の証であり、幅広い産業用途に効果的に適用できることを示しています。その費用対効果の高さもまた、過剰なコストをかけずに信頼性の高い性能を求める製造業者やエンジニアにとって、標準弾性率グレードが選ばれる理由をさらに強固なものにしています。

地域別内訳

炭素繊維市場の中心はアジア太平洋地域であり、同地域は42%以上という圧倒的な市場シェアを占めています。この優位性は、卓越した製造能力と、各種産業分野にわたる戦略的統合によって支えられています。アジア太平洋地域は、高度な技術と大規模な生産体制を活かし、多様な高需要産業に対応することで、炭素繊維生産の世界的ハブとしての地位を確立しています。

アジア太平洋地域の中でも、中国が年間16万300トンという驚異的な生産能力を持つ最大の生産国として浮上しています。これに日本と韓国が続き、この3カ国は航空宇宙、自動車、風力エネルギーといった世界の重要産業に炭素繊維を供給する強力な三本柱を形成しています。これらの国々は、厳格な品質および生産量要件に応える強固な製造エコシステムを構築しており、世界市場におけるリーダーシップを確実なものにしています。

当レポートでは、世界の炭素繊維の市場を調査し、場概要、市場成長への各種影響因子の分析、市場規模の推移・予測、各種区分別の詳細分析、競合情勢、主要企業のプロファイルなどをまとめています。

目次

第1章 調査の枠組み

  • 調査目的
  • 製品概要
  • 市場セグメンテーション

第2章 調査手法

第3章 エグゼクティブサマリー:世界の炭素繊維市場

第4章 世界の炭素繊維市場:概要

  • バリューチェーン分析
  • 産業の展望
  • PESTLE分析
  • ポーターのファイブフォース分析
  • 市場力学と動向
  • 市場成長動向に対するCOVID-19の影響評価
  • 市場の成長と展望
  • 競合ダッシュボード

第5章 世界の炭素繊維市場の分析:前駆体タイプ別

  • 重要な洞察
  • 市場規模・予測
    • PAN型炭素繊維
    • ピッチ系炭素繊維

第6章 世界の炭素繊維市場の分析:トウサイズ別

  • 重要な洞察
  • 市場規模・予測
    • 1~12k
    • 24~48k
    • >48k

第7章 世界の炭素繊維市場の分析:弾性率別

  • 重要な洞察
  • 市場規模・予測
    • 標準弾性率 (T300-T700)
    • 中間弾性率 (T800-T1100)
    • 高弾性率 (M35-M60)

第8章 世界の炭素繊維市場の分析:エンドユーザー別

  • 重要な洞察
  • 市場規模・予測
    • 航空宇宙・防衛
    • 自動車
    • 圧力容器/水素貯蔵
    • 風力・エネルギー
    • インフラ/土木
    • 消費者

第9章 世界の炭素繊維市場の分析:地域別

  • 重要な洞察
  • 市場規模・予測
    • 欧州
    • 北米
    • アジア太平洋
    • 中東・アフリカ
    • 南米

第10章 欧州の炭素繊維市場の分析

  • 重要な洞察
  • 市場規模・予測
    • 前駆体タイプ別
    • トウサイズ別
    • 弾性率別
    • エンドユーザー別
    • 国別

第11章 北米の炭素繊維市場の分析

  • 重要な洞察
  • 市場規模・予測
    • 前駆体タイプ別
    • トウサイズ別
    • 弾性率別
    • エンドユーザー別
    • 国別

第12章 アジア太平洋の炭素繊維市場の分析

  • 重要な洞察
  • 市場規模・予測
    • 前駆体タイプ別
    • トウサイズ別
    • 弾性率別
    • エンドユーザー別
    • 国別

第13章 中東・アフリカの炭素繊維市場の分析

  • 重要な洞察
  • 市場規模・予測
    • 前駆体タイプ別
    • トウサイズ別
    • 弾性率別
    • エンドユーザー別
    • 国別

第14章 南米の炭素繊維市場の分析

  • 重要な洞察
  • 市場規模・予測
    • 前駆体タイプ別
    • トウサイズ別
    • 弾性率別
    • エンドユーザー別
    • 国別

第15章 企業プロファイル

  • Advanced Composites Inc.
  • BASF SE
  • Formosa M Co. Ltd
  • Hexcel Corporation
  • Mitsubishi Chemical Carbon Fiber &Composites Inc.
  • Nippon Graphite Fiber Co. Ltd.
  • SGL Group
  • Solvay
  • Teijin Limited
  • Toray Industries Inc
  • Zoltek Corporation
  • 他の主要企業
目次
Product Code: AA1023650

Carbon fiber is a highly advanced material consisting of extremely thin, yet exceptionally strong, crystalline filaments made from carbon atoms. The global carbon fiber market is witnessing robust growth, fueled by rising demand for lightweight and high-performance materials across a variety of sectors, including aerospace, automotive, construction, and renewable energy. In 2024, the market was valued at approximately US$ 3.47 billion, reflecting the increasing adoption of carbon fiber in applications that require enhanced durability, reduced weight, and improved fuel efficiency. Looking ahead, the carbon fiber market is projected to achieve a remarkable market valuation of US$ 15.30 billion by 2035. This growth corresponds to a compound annual growth rate (CAGR) of 14.44% during the forecast period spanning from 2025 to 2035.

Noteworthy Market Developments

The carbon fiber market in 2025 is characterized by intense competition as companies strategically position themselves to capitalize on the sector's rapid growth. Industry leaders are actively pursuing partnerships that combine complementary strengths to drive faster innovation and expand market reach. A notable example occurred in June 2025 when Dow announced its plan to sell its 50% stake in the DowAksa carbon fiber joint venture to its Turkish partner, Aksa Akrilik Kimya. Valued at approximately $125 million, this transaction is expected to finalize in the third quarter of 2025.

Alongside these corporate realignments, regional expansions in production capacity are accelerating, especially across Asia and Europe, driven by surging demand for carbon fiber materials. In China, the importance of the carbon fiber market is growing rapidly, evidenced by PetroChina's announcement of plans to enter the industry through a joint venture with Changsheng (Langfang) Technology.

To better manage costs and ensure a stable supply of critical raw materials such as carbon fibers and resins, vertical integration has emerged as a key competitive strategy. Companies are investing heavily to control multiple stages of the value chain, reducing reliance on external suppliers and improving operational efficiencies. For instance, the French startup Fairmat, specializing in recycling carbon fiber composites, secured €51.5 million in a Series B funding round. This capital infusion is aimed at scaling up its innovative recycling technologies to produce high-quality recycled carbon fiber materials for a variety of industries.

Core Growth Drivers

The aerospace industry continues to be a central force propelling the demand for carbon fiber, driven by its relentless pursuit of materials that offer both lightweight characteristics and exceptional strength. These attributes are critical in the aerospace sector, where reducing aircraft weight directly translates into enhanced fuel efficiency and lowered greenhouse gas emissions. As environmental regulations tighten and airlines seek to optimize operational costs, the integration of advanced materials like carbon fiber composites has become indispensable in aircraft design and manufacturing.

In 2024, aerospace manufacturers are increasingly incorporating carbon fiber composites into a wide range of aircraft components, including fuselage panels, wings, and interior structural elements. The use of carbon fiber in these applications allows for substantial weight reductions without compromising structural integrity or safety. This superior strength-to-weight ratio not only improves overall aircraft performance-such as increased range, payload capacity, and maneuverability-but also contributes to lower fuel consumption. Consequently, airlines benefit from reduced operating expenses and a smaller carbon footprint, aligning with both economic and environmental objectives.

Emerging Technology Trends

The production of carbon fiber is known for its extreme energy intensity, which profoundly influences both sustainability concerns and cost competitiveness within the carbon fiber market. The energy-intensive nature of manufacturing processes not only contributes to higher production costs but also raises environmental challenges, making sustainability a critical focus for industry stakeholders. In 2024, addressing these challenges has become a priority, leading to significant advancements in recycling technologies that are reshaping the carbon fiber industry.

Recycling methods for carbon fiber have evolved to become increasingly efficient and cost-effective, enabling the recovery and reprocessing of fibers from end-of-life composite materials. Traditional disposal methods, which often involved landfilling or incineration, are being replaced by processes that reclaim usable carbon fibers without significantly degrading their mechanical properties. Techniques such as pyrolysis, solvolysis, and mechanical reclamation are gaining traction, allowing manufacturers to extract carbon fibers that can be reintegrated into the production cycle.

Barriers to Optimization

Carbon composites have become integral materials across a variety of industries, including aerospace, automotive, construction, oil and gas, and wind energy, due to their exceptional combination of high performance and lightweight characteristics. However, despite their advantages, the manufacturing process of carbon fiber remains costly, significantly impacting the overall price of carbon composite products. This elevated cost acts as a major barrier to broader adoption, preventing many industries from fully integrating carbon composites into their products and infrastructure.

The high price of carbon fiber is closely linked to both the yield and the cost of the precursor material used in its production. Polyacrylonitrile (PAN) is currently the predominant precursor, but the conversion process from PAN to carbon fiber has an efficiency rate of only about 50%. This low conversion efficiency means that a significant amount of raw precursor material is required to produce a given quantity of carbon fiber, driving up costs. At present, the average price for PAN-based carbon fibers, particularly those not meeting aerospace-grade specifications, hovers around USD 21.5 per kilogram. These prices remain prohibitively expensive for many manufacturers, especially smaller or domestic companies that lack the economies of scale enjoyed by larger producers.

Detailed Market Segmentation

By Precursor Type, Polyacrylonitrile (PAN) type carbon fiber continues to dominate the carbon fiber market in 2024, holding a commanding 73.31% share. This overwhelming market supremacy is driven by significant breakthroughs in manufacturing technologies and the expanding range of industrial applications that rely on PAN-based fibers. The segment's impressive compound annual growth rate (CAGR) of 11.09% reflects the accelerating adoption of PAN carbon fibers across emerging and high-growth sectors.

By Tow Size, in 2024, the 24-48k tow size category has emerged as the dominant segment within the carbon fiber market, commanding an impressive 70.07% share. This dominance signifies a fundamental transformation in both the economics of carbon fiber manufacturing and the versatility of its applications. The segment is experiencing robust growth, with a compound annual growth rate (CAGR) of 11.16%, underscoring its increasing importance across various industries. The 24-48k tow size has become the cornerstone of automated composite manufacturing processes, particularly in the use of robotic placement systems.

By End Users, in 2024, the aerospace and defense sector holds a significant position in the carbon fiber market, commanding 26.02% of the total revenue share. This sector also leads in growth potential, boasting the highest projected compound annual growth rate (CAGR) of 11.23%. These figures highlight aerospace and defense as the foremost catalysts for innovation and elevated quality standards within the carbon fiber industry. The resurgence and expansion of commercial aviation have played a pivotal role in accelerating the adoption of carbon fiber materials.

By modulus, the standard modulus range of carbon fibers, specifically the T300 to T700 grades, continues to dominate the market in 2024, accounting for a substantial 82.05% share. This overwhelming market presence is a testament to the range's exceptional versatility, which allows it to be applied effectively across a broad spectrum of industrial uses. Its cost-effectiveness further solidifies its position as the preferred choice among manufacturers and engineers who require reliable performance without incurring excessive expenses.

Segment Breakdown

By Precursor Type

  • PAN Type Carbon Fibre
  • Pitch Type Carbon Fibre

By Tow Size

  • 1-12 k
  • 24-48 k
  • >48 k

By Modules

  • Standard Modulus (T300 -T700)
  • Intermediate Modulus (T800-T1100)
  • High Modulus (M35-M60)

By End User

  • Aerospace & Defence
    • Civil wide body
    • Civil narrow body
    • EVtol/drones
    • Military
    • Other
  • Automotive
    • Super cars
    • Premium vehicles (gasoline)
    • Electric vehicles (EVs)
  • Pressure vessels / Hydrogen storage
    • CNG
    • Hydrogen storage Automotive
    • Hydrogen storage Aerospace
    • Hydrogen storage Ground
    • Hydrogen storage Rail
  • Pressure vessels / Hydrogen storage
    • CNG
    • Hydrogen storage Automotive
    • Hydrogen storage Aerospace
    • Hydrogen storage Ground
    • Hydrogen storage Rail
  • Wind & Energy
    • Wind on-shore
    • Wind off-shore
    • Tidal power
    • Fuel cells
    • Other
  • Infrastructure/civil
    • Buildings
    • Concrete re-bar
    • Trains
    • Other
  • Consumer
    • Bicycles
    • Marine
    • Consumer goods
    • Other

By Region

  • North America
    • The U.S.
    • Canada
    • Mexico
  • Europe
    • The UK
    • Germany
    • France
    • Italy
    • Spain
    • Poland
    • Russia
    • Rest of Europe
  • Asia Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia & New Zealand
    • ASEAN
      • Malaysia
      • Singapore
      • Thailand
      • Indonesia
      • Philippines
      • Vietnam
      • Rest of ASEAN
    • Rest of Asia Pacific
  • Middle East & Africa
    • UAE
    • Saudi Arabia
    • South Africa
    • Rest of MEA
  • South America
    • Argentina
    • Brazil
    • Rest of South America

Geographical Breakdown

The carbon fiber market is predominantly centered in the Asia Pacific region, which holds a commanding market share exceeding 42%. This dominance is driven by the region's exceptional manufacturing capabilities combined with strategic integration across various industrial sectors. The Asia Pacific has effectively positioned itself as a global hub for carbon fiber production, leveraging advanced technologies and large-scale operations that cater to diverse high-demand industries.

Within Asia Pacific, China emerges as the foremost producer with an impressive annual production capacity of 160,300 metric tons. It is closely followed by Japan and South Korea, together forming a powerful triad that supplies critical sectors such as aerospace, automotive, and wind energy worldwide. These countries have developed robust manufacturing ecosystems that enable them to meet the rigorous quality and volume requirements demanded by these industries, ensuring their leadership on the global stage.

Leading Market Participants

  • Advanced Composites Inc.
  • BASF SE
  • Formosa M Co. Ltd
  • Hexcel Corporation
  • Mitsubishi Chemical Carbon Fiber & Composites Inc.
  • Nippon Graphite Fiber Co. Ltd.
  • SGL Group
  • Solvay
  • Teijin Limited
  • Toray Industries Inc
  • Zoltek Corporation
  • Other Prominent players

Table of Content

Chapter 1. Research Framework

  • 1.1 Research Objective
  • 1.2 Product Overview
  • 1.3 Market Segmentation

Chapter 2. Research Methodology

  • 2.1 Qualitative Research
    • 2.1.1 Primary & Secondary Sources
  • 2.2 Quantitative Research
    • 2.2.1 Primary & Secondary Sources
  • 2.3 Breakdown of Primary Research Respondents, By Region
  • 2.4 Assumption for the Study
  • 2.5 Market Size Estimation
  • 2.6. Data Triangulation

Chapter 3. Executive Summary: Global Carbon Fiber Market

Chapter 4. Global Carbon Fiber Market Overview

  • 4.1. Industry Value Chain Analysis
    • 4.1.1. Material Provider
    • 4.1.2. Manufacturer
    • 4.1.3. Distributor
    • 4.1.4. End User
  • 4.2. Industry Outlook
    • 4.2.1. Carbon Fiber EXIM Analysis - 2023
  • 4.3. PESTLE Analysis
  • 4.4. Porter's Five Forces Analysis
    • 4.4.1. Bargaining Power of Suppliers
    • 4.4.2. Bargaining Power of Buyers
    • 4.4.3. Threat of Substitutes
    • 4.4.4. Threat of New Entrants
    • 4.4.5. Degree of Competition
  • 4.5. Market Dynamics and Trends
    • 4.5.1. Growth Drivers
    • 4.5.2. Restraints
    • 4.5.3. Challenges
    • 4.5.4. Key Trends
  • 4.6. Covid-19 Impact Assessment on Market Growth Trend
  • 4.7. Market Growth and Outlook
    • 4.7.1. Market Revenue Estimates and Forecast (US$ Mn), 2020-2035
    • 4.7.2. Market Volume Estimates and Forecast (Tons), 2020-2035
    • 4.7.3. Price Trend Analysis
  • 4.8. Competition Dashboard
    • 4.8.1. Market Concentration Rate
    • 4.8.2. Company Market Share Analysis (Value %), 2023
    • 4.8.3. Competitor Mapping & Benchmarking

Chapter 5. Global Carbon Fiber Market Analysis, By Precursor Type

  • 5.1. Key Insights
  • 5.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 5.2.1. PAN Type Carbon Fibre
    • 5.2.2. Pitch Type Carbon Fibre

Chapter 6. Global Carbon Fiber Market Analysis, By Tow Size

  • 6.1. Key Insights
  • 6.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 6.2.1. 1-12 k
    • 6.2.2. 24-48 k
    • 6.2.3. >48 k

Chapter 7. Global Carbon Fiber Market Analysis, By Modulus

  • 7.1. Key Insights
  • 7.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 7.2.1. Standard Modulus (T300 -T700)
    • 7.2.2. Intermediate Modulus (T800-T1100)
    • 7.2.3. High Modulus (M35-M60)

Chapter 8. Global Carbon Fiber Market Analysis, By End Users

  • 8.1. Key Insights
  • 8.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 8.2.1. Aerospace & Defence
      • 8.2.1.1. Civil wide body
      • 8.2.1.2. Civil narrow body
      • 8.2.1.3. EVtol/drones
      • 8.2.1.4. Military
      • 8.2.1.5. Other
    • 8.2.2. Automotive
      • 8.2.2.1. Super cars
      • 8.2.2.2. Premium vehicles (gasoline)
      • 8.2.2.3. Electric vehicles (EVs)
    • 8.2.3. Pressure vessels / Hydrogen storage
      • 8.2.3.1. CNG
      • 8.2.3.2. Hydrogen storage Automotive
      • 8.2.3.3. Hydrogen storage Aerospace
      • 8.2.3.4. Hydrogen storage Ground
      • 8.2.3.5. Hydrogen storage Rail
    • 8.2.4. Wind & Energy
      • 8.2.4.1. Wind on-shore
      • 8.2.4.2. Wind off-shore
      • 8.2.4.3. Tidal power
      • 8.2.4.4. Fuel cells
      • 8.2.4.5. Other
    • 8.2.5. Infrastructure/civil
      • 8.2.5.1. Buildings
      • 8.2.5.2. Concrete re-bar
      • 8.2.5.3. Trains
      • 8.2.5.4. Other
    • 8.2.6. Consumer
      • 8.2.6.1. Bicycles
      • 8.2.6.2. Marine
      • 8.2.6.3. Consumer goods
      • 8.2.6.4. Other

Chapter 9. Global Carbon Fiber Market Analysis, By Region

  • 9.1. Key Insights
  • 9.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 9.2.1. Europe
      • 9.2.1.1. Western Europe
        • 9.2.1.1.1. The UK
        • 9.2.1.1.2. Germany
        • 9.2.1.1.3. France
        • 9.2.1.1.4. Italy
        • 9.2.1.1.5. Spain
        • 9.2.1.1.6. Rest of Western Europe
      • 9.2.1.2. Eastern Europe
        • 9.2.1.2.1. Poland
        • 9.2.1.2.2. Russia
        • 9.2.1.2.3. Rest of Eastern Europe
    • 9.2.2. North America
      • 9.2.2.1. The U.S.
      • 9.2.2.2. Canada
      • 9.2.2.3. Mexico
    • 9.2.3. Asia Pacific
      • 9.2.3.1. China
      • 9.2.3.2. India
      • 9.2.3.3. Japan
      • 9.2.3.4. Singapore
      • 9.2.3.5. South Korea
      • 9.2.3.6. Australia & New Zealand
      • 9.2.3.7. ASEAN
      • 9.2.3.8. Rest of Asia Pacific
    • 9.2.4. Middle East & Africa
      • 9.2.4.1. UAE
      • 9.2.4.2. Saudi Arabia
      • 9.2.4.3. South Africa
      • 9.2.4.4. Rest of MEA
    • 9.2.5. South America
      • 9.2.5.1. Argentina
      • 9.2.5.2. Brazil
      • 9.2.5.3. Rest of South America

Chapter 10. Europe Carbon Fiber Market Analysis

  • 10.1. Key Insights
  • 10.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 10.2.1. By Precursor Type
    • 10.2.2. By Tow Size
    • 10.2.3. By Modulus
    • 10.2.4. By End Users
    • 10.2.5. By Country

Chapter 11. North America Carbon Fiber Market Analysis

  • 11.1. Key Insights
  • 11.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons
    • 11.2.1. By Precursor Type
    • 11.2.2. By Tow Size
    • 11.2.3. By Modulus
    • 11.2.4. By End Users
    • 11.2.5. By Country

Chapter 12. Asia Pacific Carbon Fiber Market Analysis

  • 12.1. Key Insights
  • 12.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 12.2.1. By Precursor Type
    • 12.2.2. By Tow Size
    • 12.2.3. By Modulus
    • 12.2.4. By End Users
    • 12.2.5. By Country

Chapter 13. Middle East and Africa Carbon Fiber Market Analysis

  • 13.1. Key Insights
  • 13.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 13.2.1. By Precursor Type
    • 13.2.2. By Tow Size
    • 13.2.3. By Modulus
    • 13.2.4. By End Users
    • 13.2.5. By Country

Chapter 14. South America Carbon Fiber Market Analysis

  • 14.1. Key Insights
  • 14.2. Market Size and Forecast, 2020-2035 (US$ Mn & Tons)
    • 14.2.1. By Precursor Type
    • 14.2.2. By Tow Size
    • 14.2.3. By Modulus
    • 14.2.4. By End Users
    • 14.2.5. By Country

Chapter 15. Company Profile (Company Overview, Financial Matrix, Key Product landscape, Key Personnel, Key Competitors, Contact Address, and Business Strategy Outlook)

  • 15.1. Advanced Composites Inc.
  • 15.2. BASF SE
  • 15.3. Formosa M Co. Ltd
  • 15.4. Hexcel Corporation
  • 15.5. Mitsubishi Chemical Carbon Fiber & Composites Inc.
  • 15.6. Nippon Graphite Fiber Co. Ltd.
  • 15.7. SGL Group
  • 15.8. Solvay
  • 15.9. Teijin Limited
  • 15.10. Toray Industries Inc
  • 15.11. Zoltek Corporation
  • 15.12. Other Prominent Players