表紙:電池不要の電気エネルギー貯蔵とストレージ排除 (ミリWh-GWh):市場と技術 (2024-2044年)
市場調査レポート
商品コード
1364940

電池不要の電気エネルギー貯蔵とストレージ排除 (ミリWh-GWh):市場と技術 (2024-2044年)

Battery-Free Electrical Energy Storage and Storage Elimination milliWh-GWh: Markets, Technologies 2024-2044

出版日: | 発行: Zhar Research | ページ情報: 英文 429 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=158.97円
電池不要の電気エネルギー貯蔵とストレージ排除 (ミリWh-GWh):市場と技術 (2024-2044年)
出版日: 2023年10月18日
発行: Zhar Research
ページ情報: 英文 429 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

電池で達成できる範囲を超える市場の電力ニーズ

今後20年間は、レーザーピストル、大型レーザー砲、多くの新しい航空宇宙・医療パルス技術、高速応答の緊急電源、数ヶ月から数シーズンにおよぶソーラーグリッド蓄電、水素高速鉄道、熱核発電などが広く展開されるでしょう。電池を使用しないエネルギー貯蔵はこれらすべてに不可欠です。電池ではその基本的な化学的性質により、必要とされるパルスパワー、最小限の自己放電、GWhの経済性、長寿命を達成することができないからです。例えば、主に物理学に基づいたアプローチである電池不要のストレージでは、100倍の電力密度、自己放電ゼロ、10分の1のGWh LCOS、100年の寿命を提供します。そして一般的に、不燃性で毒性や希少性の問題もありません。

ニーズの変化に伴う電池不要ストレージの急成長

電池不要のストレージ技術は、今日の250億米ドル規模の送電網用揚水発電事業や、40億米ドル規模のスーパーキャパシタやキャパシタバンク事業をはるかに超える軌道にあります。これには、リフティングウェイト、圧縮ガス、化学中間体、スーパーキャパシタ派生製品の製造が含まれ、そのほとんどはすでに遅延電力用の最初の大型受注を獲得しています。さらに、揚水発電の再発明や、電気フライホイールや熱遅延電力といったニッチな分野も加わります。

ストレージ排除技術に台頭する大きな市場

また、ストレージ排除技術には、計画されている6G通信による無電源IoTノードへの電力供給や、稼働時に化学物質を生成する太陽光発電所、光があれば移動するトカゲ型マイクロボットなども含まれます。ワイヤレスセンサーネットワークノードの中には、マルチモードエネルギーハーベスティングが十分な入力を得たときに通信を行うものもあります。新しい超低消費電力エレクトロニクスのおかげで、これらの多くはほんのわずかな電力しか必要としません。

当レポートでは、電池不要の電気エネルギー貯蔵とストレージ排除の市場を調査し、電力および電池の課題、主な電池不要ストレージ技術の種類と概要、ストレージ排除の回路とインフラ、技術開発の動向と今後の発展のロードマップなどをまとめています。

目次

第1章 エグゼクティブサマリー・総論

  • 本書の目的・範囲
  • 調査手法
  • 総論・予測
  • 13の主な結論:電池不要技術
  • 電池不要のストレージとストレージ排除のロードマップ
  • 電池不要市場の予測とリチウムイオン電池との比較
  • SWOT評価:電池不要蓄電技術
  • SWOT評価:ストレージ排除の回路とインフラ

第2章 イントロダクション

  • 電動化・電池の採用・電池の廃止というメガトレンド
  • 電池への圧力
  • 6Gを含むICTの電力問題
  • WPT・WIET・ SWIPT
  • IoTとその電力の問題と解決策
  • 100%ゼロ排出の再生可能電力へのトレンドと供給の断続性の増加
  • 電池不要ストレージツールキット

第3章 ワイヤレスエレクトロニクスと電池の排除

  • 概要
  • セルフパワーセンサーへのトレンド
  • パッシブリピーターアンテナ、メタマテリアルパッシブ6Gリフレクター
  • 後方散乱-EASおよびパッシブRFID、より洗練された形式
  • 6GおよびIoT向けのWIET (Wireless Information and Energy Transfer)
  • エネルギーハーベスティングとデマンド管理
  • 電池不要のエレクトロニクス:センサー、IoTノード、電話、カメラ、小型ドローン
  • 電池不要のパワーエレクトロニクス
  • SWOT評価:ストレージを排除する回路とインフラ

第4章 電池の数を減らし、小型化するための戦略

  • 概要
  • 必要な電池の数を減らした電子機器におけるBEC (Battery Elimination Circuits)
  • V2G、V2H、V2V、ソーラーパネルからの直接車両充電による電池の排除
  • 需要管理
  • 途切れることの少ない断続性の少ないゼロ排出発電技術

第5章 6G、IoT、ウェアラブル、その他のシステムにおける電池排除のためのエネルギーハーベスティング (マイクロW-GW)

  • 概要
  • エネルギーハーベスティングシステムの設計
  • エネルギーハーベスティングシステムの詳細と年の改善戦略
  • マイクロWからGWまでのエネルギーハーベスティングを必要とするデバイスおよび構造物
  • 新しい14タイプのエネルギーハーベスティング技術
  • 9つの形態のエネルギーハーベスティング
  • 音響を含むメカニカルハーベスティングの詳細
  • メカニカルエネルギー源とハーベスティングオプション
  • エレクトロダイナミックハーベスティングの進歩
  • 電磁エネルギー源とハーベスティングオプション
  • 単位体積および単位面積あたりの太陽光発電出力を増加させるための戦略
  • より多くの場所で実現可能で手頃な価格になる太陽光発電:極端な車両、スマートウォッチなど
  • フレキシブル層流エネルギーハーベスティングの重要性
  • その他の例: 圧電、熱電、磁電、太陽光発電

第6章 キャパシタ、スーパーキャパシタ、擬似キャパシタ、リチウムイオンキャパシタ

  • キャパシタの場所とそのバリエーション
  • 選択の幅:キャパシタ、スーパーキャパシタ、バッテリ
  • 研究パイプライン:ピュアスーパーキャパシタ
  • 研究パイプライン:ハイブリッドアプローチ
  • 研究パイプライン:擬似キャパシタ
  • スーパーキャパシタとその派生品の実際に用途と潜在的用途
  • スーパーキャパシター企業103社の評価

第7章 LDES (Long Duration Energy Storage):6G/IoTデータセンター、基地局、建物、マイクログリッド、グリッド用の大容量電池不要ストレージ

  • 概要
  • コスト:太陽光発電がグリッドおよびマイクログリッド発電を支配する理由の1つ
  • 太陽光発電の優位性:どのように小規模システムから始まるか
  • グリッド、マイクログリッド、建物のエネルギー貯蔵
  • LDES技術の可能性:全体像
  • LDESツールキット
  • LDES技術の等価効率と貯蔵時間の関係
  • グリッド、マイクログリッド、建物向けLDES:最大の販売数の技術
  • LDES技術の利用可能なサイトとスペース効率の比較
  • LDESロードマップ
  • 2023年から2033年に完了するLDESプロジェクトからの教訓
  • LDESロードマップ
  • LCOSのドル/kWhのトレンドと貯蔵時間・放電時間の関係
  • LDES電力GWのトレンドと貯蔵・放電時間の関係
  • LDES技術:貯蔵日数と定格電力リターンMW
  • LDES技術:貯蔵日数とMWh量
  • さまざまな遅延後のピーク電力でLDESを供給する可能性:技術別
  • CAES (圧縮空気エネルギー貯蔵)
  • 液化ガスエネルギー貯蔵:液体空気LAESまたはCO2
  • 固体重力エネルギー貯蔵
  • APHES (先進揚水エネルギー貯蔵)
  • SWOT評価:電池不要蓄電技術

第8章 提案されている水素経済と遅延電力へのその利用

  • 概要
  • 水素の供給源と用途の推計
  • 水素の起源の解明
  • 2024年の水素経済の現状
  • 水素貯蔵のオプションと導入
  • ゼロ排出電力の配電と使用のための主なオプション
目次

Summary

A huge new market for materials and hardware awaits you in the new Zhar Research report, "Battery-free electrical energy storage and storage elimination milliWh-GWh: markets, technologies 2024-2044" at 429 pages. There is a glossary at the start and terms are explained throughout the report.

Market needs often moving beyond what batteries can achieve

The next 20 years will see the widespread deployment of laser pistols, large laser cannon, many new aerospace and medical pulse technologies, fast-response emergency power, months-to-seasonal solar grid storage, hydrogen high-speed trains, maybe some thermonuclear power. Battery-free energy storage will be essential to all of them, mainly because batteries can never provide the required pulse power, minimal self-leakage, GWh economy or longest life due to their fundamental chemistry. For example, the largely physics-based approach of battery-free storage variously provides one hundred times the power density, zero self-leakage, one tenth of the GWh Levelised Cost of Storage LCOS and/or 100-year life. Indeed, it is typically non-flammable, with no toxicity or scarcity issues.

Massive growth in battery-free storage as needs change

Batteryless storage technologies are on a trajectory way beyond today's $25 billion business of pumped hydro for grids and the $4 billion business of supercapacitors and capacitor banks. This is a world that includes lifting weights, compressing gases, chemical intermediaries and making supercapacitor derivatives, with most of those already landing first large orders for delayed electricity. Add pumped hydro reinvented and niches like electrical flywheels and thermally delayed electricity.

Large market emerging for storage elimination technology

Storage elimination is also covered including planned 6G Communications powering powerless IoT nodes only when interrogated, solar farms making chemicals when operative and the lizard-like microbot moving when light is available. Some Wireless Sensor Network nodes communicate when their multi-mode energy harvesting has enough input - which can be often, thanks to the new ultra- low power electronics needing only a whisper of electricity.

Lithium-ion batteries do not escape the S curve

The Zhar Research facts-based analysis finds that lithium-ion battery sales are not immune to the S curve. They will saturate at around $330 billion as we approach 2044 because of new batteries, decline of their major applications and inability to serve those huge new batteryless markets. Later on the S curve, your around $230 billion batteryless storage opportunity and your market for storage elimination technology will both be growing increasingly rapidly in twenty years from now. Learn how to create a multi-billion-dollar hardware business out of that, including gaps in the market, potential acquisitions, partners and best pickings from the research pipeline.

What is offered in the new report:

The Executive Summary and Conclusions at 37 pages is sufficient for those with limited time. Here are the basics, methodology, 22 key conclusions, roadmaps 2024-2044 and the 31 forecast lines 2024-2044. Many new infograms make it easy reading. See SWOT appraisals: one of battery-free technologies and one of storage elimination.

Chapter 2 Introduction has 10 pages covering megatrends of electrification, battery adoption and battery elimination, pressures on batteries 2024-2044, Information and Communication Technology ICT power issues including 6G, WPT, WIET, SWIPT, Internet of Things and its power problems and solutions. Understand the trend to 100% zero-emission renewable power and increased intermittency of supply from more wind/ solar. Understand renewable energy by country and its effect on Long Duration Energy Storage LDES choices. Here is the batteryless storage toolkit from options with little growth potential - inductor, conventional capacitor, flywheel - and those with major growth potential: supercapacitors and their variants and the heavy engineering options.

Chapter 3 "Wireless electronics and electrics battery elimination" takes 40 pages, including a SWOT appraisal, to explain these aspects in more detail. Highlights include the trends to self-powered sensors, passive repeater antennas, metamaterial passive 6G reflectors, backscatter - EAS and passive RFID then more sophisticated forms, wireless information and energy transfer WIET for 6G and IOT, even wireless Internet of Everything IoE from forthcoming 6G. Here are energy harvesting with demand management to reduce or eliminate storage and detail on battery-free electronics: sensors, phones, cameras, small drones, self-powered sensors and also sensors and biometric access by harvesting man-made radiation. Understand the contribution of those ultra-low power circuits, the new intermittency-tolerant electronics and battery-free power electrics, even vehicle charging direct from solar.

The 19 pages of Chapter 4. "Strategies for fewer and smaller batteries" explores intermittency issues and solutions including Battery Elimination Circuits BEC and both multi-mode and multi-source energy harvesting. The 24 pages of Chapter 5 "Energy harvesting µW to GW for battery reduction and elimination in 6G, IOT, wearables and other systems" are also an easy read, again with the priority being business opportunities not nostalgia or academic obscurity. You are now sufficiently warmed up to absorb the heroic deep-dive chapters.

Chapter 6 "Capacitors, supercapacitors, pseudocapacitors, lithium-ion capacitors" takes 133 pages to explain why these will sell at 7.5 times the 2024 level in 2044. Clue: much of that projection comes from new market needs that call for their particular attributes. They are appearing in aircraft, aerospace, electric vehicles, microgrids, grids, for peak shaving, renewable energy, uninterrupted power supplies, medical, wearables, military such as the new pulsed linear accelerator weapons, radar and trucks. Add power and signal electronics, data centers and welding all with subsections here.

See the spectrum of choice and latest research pipeline separately for pure supercapacitors, many hybrid approaches and pseudocapacitors. That prepares you for the coverage of actual and potential major applications of supercapacitors and their derivatives and the very detailed comparison of 103 supercapacitor companies assessed in 10 columns with a profusion of illustrations.

Chapter 7 "Large capacity battery-free storage for 6G/IOT base stations, data centers, buildings, microgrid and grid Long Duration Energy Storage LDES" is also a very deep dive. Its 140 pages are necessary because this heavy end, mainly MWh to GWh, is going to grow eightfold to around $200 billion in 2044. Mostly, that is because so many microgrids and grids will progress to highly intermittent solar and wind power because of dramatic cost advantages even allowing for the added need for storage. 50-100% adoption in a given system demands months to seasonal storage that batteries can never provide competitively. Because it has the largest potential market, LDES takes most of this chapter with six SWOT appraisals, roadmaps and parameter comparisons as tables and infograms comparing everything from hydrogen intermediary to thermal for delayed electricity, including how they will improve. Most detail is on those assessed to be particularly promising for growing the market, including compressed air, liquid air or carbon dioxide, lifting solid weights, pumped hydro reinvented. See parameters, costings, competitors, technologies and targets.

Hydrogen has a place

Hydrogen is an important part of this story, from Chinese supercapacitor-hydrogen high-speed trains demonstrated in 2023 to hydrogen storage in salt caverns proposed for the UK and elsewhere for months-to-seasonally delayed electricity. Although hydrogen storage is covered in Chapter 7, the brief Chapter 8 gives the bigger picture of "The proposed hydrogen economy and its use for delayed electricity" in seven pages, mostly detailed infograms, to close the report.

Be inspired

We therefore trust that you will then be sufficiently inspired and informed to consider making a multi-billion-dollar hardware business out of some of this. Zhar Research report, "Battery-free electrical energy storage and storage elimination milliWh-GWh: markets, technologies 2024-2044" is your essential reading.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology of this analysis
  • 1.3. Nine primary market conclusions including battery vs batteryless storage forecast 2024-2044
  • 1.4. Thirteen primary conclusions: batteryless technologies 2024-2044
  • 1.5. Battery-free storage and storage elimination roadmaps 2024-2044
    • 1.5.1. Battery-free storage vs storage elimination
    • 1.5.2. Long Duration Energy Storage LDES roadmap 2024-2044
  • 1.6. Batteryless market forecasts and, for comparison, lithium-ion batteries 2024-2044
    • 1.6.1. Batteryless storage for electricity-to-electricity: terminology and trends
    • 1.6.2. Batteryless storage short vs long duration 2023-2044
    • 1.6.3. Batteryless energy storage vs lithium-ion battery market $ billion 2023-2044: table, graphs, explanation
    • 1.6.4. Lithium-ion battery market by three storage levels 2023-2044: table
    • 1.6.5. Lithium-ion battery market by three storage levels $ billion 2023-2044: graphs
    • 1.6.6. Batteryless energy storage by three storage levels $ billion 2023-2044: table
    • 1.6.7. Batteryless energy storage by three storage levels $ billion 2023-2044: graphs and explanation
    • 1.6.8. Batteryless storage market by 13 technology categories $ billion 2023-2044 table
    • 1.6.9. Batteryless storage market by 13 technology categories $ billion 2023-2044 area graph and 2044 pie chart
    • 1.6.10. Infrastructure enabling client devices without storage: global yearly 6G RIS sales by five types and total $ billion 2024-2044 table
    • 1.6.11. Global yearly 6G RIS sales by five types $ billion 2023-2043: area graph with explanation
    • 1.6.12. Batteryless backscatter RFID and EAS tags market $ billion 2023-2044: table and graphs
  • 1.7. SWOT appraisal of batteryless storage technologies
  • 1.8. SWOT appraisal of circuits and infrastructure that eliminate storage

2. Introduction

  • 2.1. Megatrends of electrification, battery adoption and battery elimination
    • 2.1.1. Overview
    • 2.1.2. Electronics and small electrical devices
  • 2.2. Pressures on batteries 2024-2044
  • 2.3. Information and communication technology ICT power issues including 6G
  • 2.4. WPT, WIET, SWIPT
  • 2.5. Internet of Things and its power problems and solutions
  • 2.6. Trending to 100% zero-emission renewable power and increased intermittency of supply
    • 2.6.1. Overview
    • 2.6.2. Renewable energy by country and effect on Long Duration Energy Storage LDES choices
  • 2.7. Batteryless storage toolkit
    • 2.7.1. Options with little growth potential: inductor, conventional capacitor, flywheel
    • 2.7.2. Options with major growth potential: supercapacitors and their variants, heavy engineering

3. Wireless electronics and electrics battery elimination

  • 3.1. Overview
  • 3.2. The trend to self-powered sensors
  • 3.3. Passive repeater antennas, metamaterial passive 6G reflectors
  • 3.4. Backscatter - EAS and passive RFID then more sophisticated forms
  • 3.5. Wireless information and energy transfer WIET for 6G and IoT
    • 3.5.1. WIET/ SWIPT
    • 3.5.2. Wireless powered IoE for 6G
  • 3.6. Energy harvesting with demand management
  • 3.7. Battery-free electronics: sensors, IOT nodes, phones, cameras, small drones
    • 3.7.1. Overview and self-powered sensors
    • 3.7.2. Sensors and biometric access by harvesting man-made radiation
    • 3.7.3. IOT node strategies for battery-free
    • 3.7.4. Mobile phone and electronic stylus
    • 3.7.5. Battery-free camera using excess light
    • 3.7.6. EnOcean building controls "no wires, no batteries, no limits" pitched as IoT
    • 3.7.7. Battery-free drones as sensors and IOT
    • 3.7.8. The Everactive ultra-low power circuits contribution to IoT
    • 3.7.9. Intermittency-tolerant electronics BFree
  • 3.8. Battery-free power electrics
    • 3.8.1. Overview: hand cranked electrics, capacitor dynamos etc.
    • 3.8.2. Vehicle charging direct from solar
  • 3.9. SWOT appraisal of circuits and infrastructure that eliminate storage

4. Strategies for fewer and smaller batteries

  • 4.1. Overview
  • 4.2. Battery elimination circuits BEC in electronics reducing number of batteries needed
  • 4.3. Battery reduction by V2G, V2H, V2V and vehicle charging directly from solar panels
  • 4.4. Demand management
    • 4.4.1. Overview
    • 4.4.2. Lessons from wireless sensor networks
    • 4.4.3. Lessons from active RFID
  • 4.5. Less intermittent zero emission electricity generation technologies
    • 4.5.1. Types if intermittency of supply
    • 4.5.2. Less intermittent single sources
    • 4.5.3. Multi-mode and multiple-source harvesting to reduce intermittency
    • 4.5.4. Multi-mode harvesting research pipeline
    • 4.5.5. Combining different harvesting technologies in one device: research pipeline

5. Energy harvesting µW-GW for battery reduction and elimination in 6G, IOT, wearables and other systems

  • 5.1. Overview
  • 5.2. Energy harvesting system design
    • 5.2.1. Elements of a harvesting system
    • 5.2.2. Ultra-low power 6G, IoT and other client devices to reduce harvesting need
  • 5.3. Energy harvesting system detail with improvement strategies 2023-2043
  • 5.4. Energy harvesting devices and structures needing energy harvesting µW-GW 2023-2043
  • 5.5. 14 families of energy harvesting technology emerging µW-GW 2023-2043
  • 5.6. A closer look at nine forms of energy harvesting 2023-2043
  • 5.7. Mechanical harvesting including acoustic in detail
  • 5.8. Sources of mechanical energy and harvesting options 2023-2043
  • 5.9. Electrodynamic harvesting advances
    • 5.9.1. Kinetron electrodynamic ("electrokinetic") harvesters typically harvesting infrasound
    • 5.9.2. Transpiration electrokinetic harvesting for battery-free power supply
  • 5.10. Sources of electromagnetic energy and harvesting options 2023-2043
  • 5.11. Strategies for increasing photovoltaic output per unit volume and area 2023-2043
  • 5.12. Photovoltaics feasible and affordable in more places: extreme vehicles, smartwatches
  • 5.13. Importance of flexible laminar energy harvesting 2023-2043
    • 5.13.1. Overview
    • 5.13.2. Flexible energy harvesting: biofuel cell skin sensor system
  • 5.14. Other examples : piezoelectric, thermoelectric, magnetoelectric, photovoltaic

6. Capacitors, supercapacitors, pseudocapacitors, lithium-ion capacitors

  • 6.1. The place of capacitors and their variants
  • 6.2. Spectrum of choice - capacitor to supercapacitor to battery
  • 6.3. Research pipeline: pure supercapacitors
  • 6.4. Research pipeline: hybrid approaches
  • 6.5. Research pipeline: pseudocapacitors
  • 6.6. Actual and potential major applications of supercapacitors and their derivatives 2024-2044
    • 6.6.1. Overview
    • 6.6.2. Aircraft and aerospace
    • 6.6.3. Electric vehicles: AGV, material handling, car, truck, bus, tram, train
    • 6.6.4. Grid, microgrid, peak shaving, renewable energy and uninterrupted power supplies
    • 6.6.5. Medical and wearables
    • 6.6.6. Military: Laser cannon, railgun, pulsed linear accelerator weapon, radar, trucks, other
    • 6.6.7. Power and signal electronics, data centers
    • 6.6.8. Welding
  • 6.7. 103 supercapacitor companies assessed in 10 columns

7. Large capacity battery-free storage for 6G/IoT data centers, base stations, buildings, microgrid and grid Long Duration Energy Storage LDES

  • 7.1. Overview
  • 7.2. How cost becomes one reason for solar dominating grid and microgrid generation
  • 7.3. How dominance of solar starts at the smaller systems
  • 7.4. Energy storage for grids, microgrids and buildings 2024-2044
  • 7.5. Big picture of LDES technology potential
  • 7.6. LDES toolkit
  • 7.7. Equivalent efficiency vs storage hours for LDES technologies
  • 7.8. Technologies for largest number of LDES sold for grids, microgrids, buildings
  • 7.9. Available sites vs space efficiency for LDES technologies
  • 7.10. LDES roadmap 2024-2033
  • 7.11. Lessons from LDES projects completing 2023-2033
  • 7.12. LDES roadmap 2033-2044
  • 7.13. LCOS $/kWh trend vs storage and discharge time
  • 7.14. LDES power GW trend vs storage and discharge time
  • 7.15. Days storage vs rated power return MW for LDES technologies
  • 7.16. Days storage vs amount MWh for LDES technologies
  • 7.17. Potential by technology to supply LDES at peak power after various delays
  • 7.18. Compressed air energy storage CAES
    • 7.18.1. Overview
    • 7.18.2. Parameter appraisal of CAES for LDES
    • 7.18.3. Technology options
    • 7.18.4. CAES manufacturers, projects and research
    • 7.18.5. CAES companies: Hydrostor and others
    • 7.18.6. SWOT appraisal of CAES for LDES
  • 7.19. Liquefied gas energy storage: Liquid air LAES or CO2
    • 7.19.1. Overview
    • 7.19.2. Principle of a liquified air energy storage system
    • 7.19.3. Parameter appraisal of LAES for LDES
    • 7.19.4. Increasing the LAES storage time and discharge duration
    • 7.19.5. LAES supplier assessments with Zhar Research appraisal: Highview Power, Phelas
    • 7.19.6. LAES research: Mitsubishi Hitachi, Linde, European Union, Others
    • 7.19.7. SWOT appraisal for LAES for LDES
    • 7.18.8. Energy Dome Italy - carbon dioxide storage
    • 7.18.9. SWOT appraisal of Energy Dome liquid CO2 for LDES
  • 7.20. Solid gravity energy storage
    • 7.20.1. Overview
    • 7.20.2. Energy Vault Switzerland, USA with Zhar Research appraisal
    • 7.20.3. Gravitricity UK with Zhar Research appraisal
    • 7.20.4. SinkFloatSolutions France with Zhar Research appraisal
    • 7.20.5. Parameter appraisal of SGES for LDES
    • 7.20.6. SWOT appraisal of SGES for LDES
  • 7.21. Advanced pumped hydro energy storage APHES
    • 7.21.1. Overview
    • 7.21.2. Quidnet Energy USA: pressurised hydro underground with Zhar Research appraisal
    • 7.21.3. Underwater pumped hydro StEnSea, Ocean Grazer with Zhar Research appraisals
    • 7.21.4. Cavern Energy USA - brine in salt caverns with Zhar Research appraisal
    • 7.21.5. Mine Storage Sweden - Hydro in mines with Zhar Research appraisal
    • 7.21.6. RheEnergise UK hills and heavy liquid with Zhar Research appraisal
    • 7.21.7. SWOT appraisal of pumped hydro reinvented for LDES
  • 7.22. SWOT appraisal of batteryless storage technologies

8. The proposed hydrogen economy and its use for delayed electricity

  • 8.1. Overview
  • 8.2. Estimates of hydrogen sources and uses
  • 8.3. Finessing the origin of hydrogen
  • 8.4. Status of the hydrogen economy in 2024
  • 8.5. Hydrogen storage options and adoption
  • 8.6. Primary options for distributing and using zero emission power