![]() |
市場調査レポート
商品コード
1733641
先端材料市場:複合材料、機能性フィルム・コーティング、先端セラミックス、地域別、2026~2032年Advanced Materials Market By Composite (Polymer Matrix Composites, Metal Matrix Composites, Ceramic Matrix Composites ), Functional Films and Coatings, Advanced Ceramics, & Region for 2026-2032 |
||||||
|
先端材料市場:複合材料、機能性フィルム・コーティング、先端セラミックス、地域別、2026~2032年 |
出版日: 2025年04月29日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
|
多くの産業における急速な技術進歩とイノベーションが、先端材料市場の需要を牽引しています。ナノ材料、生体材料、スマート材料、複合材料を含む先端材料は、強度、耐久性、軽量性、機能性の向上など、優れた性能を備えています。これらの材料は、2024年に780億4,000万米ドルの収益を突破し、2032年には約1,531億6,000万米ドルの評価額に達することを可能にすることで、次世代製品や技術の構築に不可欠です。
洗練された材料への需要増加を促すもうひとつの重要な要素は、持続可能性とエネルギー効率を重視する傾向が強まっていることです。環境負荷を低減し、エネルギー効率を高め、サステイナブル開発を促進する材料を求める産業のニーズは高まっており、2026~2032年のCAGRは9.70%に達する見込みです。
先端材料市場定義/概要
先端材料は、従来型材料よりも優れた品質と性能特性を持つ人工物質です。これらの材料は特定の仕様に合わせて調整され、最先端の技術や用途に頻繁に採用されています。ナノ材料、複合材料、生体材料、スマート材料などが含まれます。例えばナノ材料は、ナノスケール(10億分の1メートル)の構造を持つ材料で、電気的、光学的、機械的に明確な特性を持っています。
その優れた品質と性能特性により、先端材料は多くのセグメントに変革をもたらしつつあります。これらの材料は、航空宇宙産業や防衛産業において、軽量で耐久性があり、強度の高い部品を製造するために極めて重要です。例えば、炭素繊維複合材料は航空機や宇宙船に広く利用され、強度を維持しながら重量を減らすことで、より高い燃費効率と性能を実現しています。
先端材料の将来的な応用は、そのユニークな特徴と能力により、多くの産業にわたって大きな変革を約束するものです。先端材料はエネルギーの領域に大きな影響を与えると考えられます。例えば、グラフェン、ペロブスカイト、先端複合材料は、エネルギー産業を変革する準備が整っています。
航空宇宙産業のニーズ拡大は、先端材料市場の主要な促進要因です。航空機メーカーがより軽く、より強く、より燃費の良い設計を求めるにつれ、複合材料、先端合金、ナノ材料などの革新的材料の重要性が増しています。国際航空運送協会(IATA)によると、世界の航空旅客輸送量は2037年までに倍増し、年間82億人に達すると予測されています。Boeingは、2037年までに4万2,730機の民間航空機が新たに必要になると予測しています。航空宇宙産業の持続可能性への取り組みは、航空機を軽量化し、燃料効率を高めることができる革新的な材料の使用を奨励しています。
さらに、宇宙開発産業は急速に拡大しており、洗練された材料への需要が高まっています。NASAの2023会計年度予算は前年度比3%増の254億米ドルで、これはNASAが引き続き先進的材料に大きく依存する宇宙技術に予算を投じることを示しています。宇宙財団によれば、世界の宇宙経済は2020年に4,470億米ドルに達し、モルガン・スタンレーによれば、2040年には1兆米ドルに達すると予想されています。モルガン・スタンレーによれば、2040年には1兆米ドルに達すると予想されています。このような拡大により、宇宙での過酷な条件に耐える材料への需要が高まると考えられます。さらに、米国国防総省は2023会計年度に極超音速関連研究に47億米ドルの予算を計上するなど、極超音速技術への注力を強めており、過酷な条件に耐える革新的な材料の必要性がさらに高まると考えられます。
原料の入手が制限されることは、先端材料ビジネスにとって大きな障害となるが、イノベーションとサステイナブル実践を促すことにもなります。重要な要因のひとつは、ハイテク用途における希土類元素(REE)の需要の高まりです。米国地質調査所によると、レアアース酸化物の世界生産量は2023年に28万トンに達し、その70%以上を中国が占めます。このように供給が集中することで、ボトルネックが発生し、価格が不安定になる可能性があります。例えば、欧州委員会は、EUのレアアース需要が2030年までに5倍に増加すると予測しており、サプライチェーンの多様性と代替資源の開発が極めて重要であることを強調しています。
もうひとつの原動力は、持続可能でリサイクル可能な材料を求める動きです。国連環境計画(UNEP)によると、世界全体での材料使用量は、2011年の790億トンから2060年には1,670億トンに倍増すると予想されています。この動向は、バイオベースの代替材料や、より効率的なリサイクル方法の調査を推進しています。例えば、米国エネルギー省先進製造局は、エコフレンドリー製造方法や材料を開発するプログラムに4億米ドル以上を投資しています。さらに、欧州連合(EU)の循環経済行動計画は、2030年までにEU域内でリサイクル材料の使用量を増やすことを目標としており、これにより原料の確保に対する圧力を軽減することができます。
Rapid technological advances and innovations across numerous industries are driving the demand for the advanced materials market. Advanced materials which include nanomaterials, biomaterials, smart materials, and composites have superior performance qualities such as increased strength, durability, lightweight, and functionality. These materials are crucial for building next-generation products and technologies by enabling the market to surpass a revenue of USD 78.04 Billion valued in 2024 and reach a valuation of around USD 153.16 Billion by 2032.
Another key element driving the increase in demand for sophisticated materials is the growing emphasis on sustainability and energy efficiency. Industries are increasingly looking for materials that can reduce environmental impact, increase energy efficiency, and promote sustainable development by enabling the market to grow at a CAGR of 9.70 % from 2026 to 2032.
Advanced Materials Market: Definition/ Overview
Advanced materials are engineered substances that have better qualities and performance characteristics than traditional materials. These materials are tailored to specific specifications and are frequently employed in cutting-edge technology and applications. They include nanomaterials, composites, biomaterials, and smart materials. Nanomaterials, for example, are materials with structures at the nanoscale (one billionth of a meter) that have distinct electrical, optical, and mechanical properties.
Because of their better qualities and performance characteristics, advanced materials are transforming many sectors. These materials are crucial in the aerospace and defense industries for producing lightweight, durable, and high-strength components. For example, carbon fiber composites are widely utilized in aircraft and spacecraft to reduce weight while maintaining strength resulting in greater fuel efficiency and performance.
The future application of advanced materials promises substantial transformations across numerous industries owing to their unique features and capabilities. Advanced materials will have a significant impact on the realm of energy. For example, graphene, perovskites, and advanced composites are poised to transform the energy industry.
The aerospace industry's expanding need is a primary driver of the advanced materials market. As airplane makers seek lighter, stronger, and more fuel-efficient designs, innovative materials such as composites, advanced alloys, and nanomaterials become increasingly important. According to the International Air Transport Association (IATA), global air passenger traffic is predicted to double by 2037, to 8.2 billion people per year. This increase in demand needs the manufacturing of more aircraft with Boeing estimating a requirement for 42,730 new commercial aircraft by 2037. The aerospace industry's effort for sustainability encourages the use of innovative materials that can lower aircraft weight and enhance fuel efficiency.
Furthermore, the space exploration industry is expanding rapidly increasing the demand for sophisticated materials. NASA's budget for fiscal year 2023 is USD 25.4 Billion, up 3% from the previous year indicating that the agency will continue to spend on space technologies that rely largely on sophisticated materials. The global space economy reached USD 447 Billion in 2020, according to the Space Foundation, and is expected to reach USD 1 Trillion by 2040, according to Morgan Stanley. This expansion will increase the demand for materials that can survive severe conditions in space. Furthermore, the US Department of Defense's increased focus on hypersonic technology with a budget commitment of USD 4.7 Billion for hypersonic-related research in fiscal year 2023 will further drive the need for innovative materials capable of withstanding harsh conditions.
The restricted availability of raw materials presents substantial hurdles for the advanced materials business but it also encourages innovation and sustainable practices. One significant factor is the growing demand for rare earth elements (REEs) in high-tech applications. According to the United States Geological Survey, global rare earth oxide production will reach 280,000 metric tons in 2023, with China accounting for over 70% of this total output. This concentration of supply leads to possible bottlenecks and price instability. For example, the European Commission forecasts that the EU's demand for rare earth elements is predicted to increase fivefold by 2030 emphasizing the critical need for supply chain diversity and the development of alternative resources.
Another motivator is the movement toward sustainable and recyclable materials. According to the United Nations Environment Programme, worldwide material use is expected to more than double from 79 billion tons in 2011 to 167 billion tons by 2060. This trend is driving research into bio-based alternatives and more efficient recycling methods. For example, the Advanced Manufacturing Office of the United States Department of Energy has invested more than USD 400 Million in programs to develop environmentally friendly manufacturing methods and materials. Furthermore, the European Union's Circular Economy Action Plan seeks to increase the usage of recycled materials in the EU by 2030, thus alleviating some of the pressure on raw material availability.
Polymer Matrix Composites (PMCs) dominate the advanced materials industry due to their broad application across industries and favorable features. PMCs, which are made of a polymer matrix reinforced with fibers like carbon, glass, or aramid, are popular because of their high strength-to-weight ratio, corrosion resistance, and design flexibility. These properties make PMCs particularly attractive in industries including aerospace, automotive, and sports equipment where weight reduction while retaining structural integrity is critical. For example, in the aerospace industry, PMCs are widely utilized in the manufacturing of aircraft components like fuselages, wings, and tail sections because they dramatically reduce overall aircraft weight resulting in improved fuel efficiency and performance.
PMCs' supremacy is due to their versatility and low cost of creating complicated forms and structures. The simplicity of molding and shaping PMCs allows for increased design flexibility allowing producers to make complicated pieces that would be difficult to create with standard materials. This adaptability is especially useful in the sports equipment market where personalized and ergonomically designed goods are critical for peak performance. PMCs' cost-effectiveness which stems from lower raw material costs and simpler production procedures than metal and ceramic composites, reinforces their market dominance.
Non-oxide ceramics are growing as the leading segment owing to their better mechanical qualities and high thermal resistance. Non-oxide ceramics including silicon carbide (SiC), silicon nitride (Si3N4), and boron nitride (BN) have excellent strength, hardness, and endurance making them perfect for demanding applications in a variety of high-performance sectors. These materials can tolerate severe temperatures with little deterioration, and their low thermal expansion coefficients provide dimensional stability under thermal stress. This makes non-oxide ceramics especially desirable in industries such as aircraft, automotive, and industrial manufacturing where components must work dependably in hostile environments.
Non-oxide ceramics are gaining traction in the electronics industry where their superior thermal and electrical qualities are critical. Silicon nitride and boron nitride, for example, are commonly utilized in semiconductor fabrication and advanced electrical equipment. Silicon nitride is an ideal material for electronic substrates and heat sinks due to its high thermal conductivity and electrical insulating qualities which help to regulate heat in high-power electronics while also boosting device performance and lifetime. Boron nitride which has a unique mix of thermal conductivity and electrical insulation is employed in thermal management applications such as heat spreaders and electronic device insulators.
The aerospace and defense sectors dominate the North American advanced materials market, with composites playing an important role in lightweight and high-performance applications. The region's dominance in these industries significantly drives up demand for advanced composites.
The aircraft industry is a significant driver of advanced composites in North America. The Aerospace Industries Association estimates that the U.S. aerospace and military industry will contribute $892 billion to the economy in 2022, accounting for 1.8% of total GDP. The Federal Aviation Administration (FAA) expects the total commercial aircraft fleet to rise from 7,690 in 2021 to 10,555 in 2042, showing a constant growth in demand for lightweight materials. Advanced composites, noted for their high strength-to-weight ratio, are critical to increasing fuel efficiency and lowering emissions.
The drive for efficiency is bolstered by the International Civil Aviation Organization's goal of achieving carbon-neutral expansion by 2020. In the defense sector, the US Department of Defense's USD 842 Billion budget request for fiscal year 2024 including a sizable amount dedicated to research and development demonstrates the sustained investment in advanced materials for military uses. The automotive industry also adds to the rising need for sophisticated composites. The US Environmental Protection Agency's Corporate Average Fuel Economy (CAFE) requirements which seek to attain an industry-wide objective of 49 mpg for passenger cars and light trucks by 2026 are encouraging manufacturers to use lightweight materials.
The Asia-Pacific region is expected to be the fastest-growing market for advanced materials driven mostly by rising demand for high-end automotive components. This expansion is likely to surpass other regions because of fast industrialization and rising disposable income in China, Japan, and South Korea. The need for high-end automotive products is a major driver of the Asia-Pacific advanced materials industry. This is supported by several important elements and statistics. First, the International Organization of Motor Vehicle Manufacturers (OICA) reports that China alone will generate over 27 million vehicles in 2021, accounting for around 32.5% of global vehicle production. The China Passenger Car Association estimated that the luxury car segment in China will grow by 80% in 2021.
According to the International Energy Agency, China sold half of the world's electric vehicles in 2021, with 3.3 million units sold. EVs necessitate sophisticated materials for lightweight construction and battery technology which further fuels the market. According to Japan's "Green Growth Strategy," the government aims to have all new automobile sales be electric by 2035. This strategy is designed to speed up the adoption of innovative materials in the automotive industry. In addition, the Asia Pacific region is seeing significant investment in advanced material research and development.
The advanced materials market is a dynamic and competitive space, characterized by a diverse range of players vying for market share. These players are on the run for solidifying their presence through the adoption of strategic plans such as collaborations, mergers, acquisitions, and political support. The organizations are focusing on innovating their product line to serve the vast population in diverse regions.
Some of the prominent players operating in the advanced materials market include:
Momentive Performance Materials, Inc.
BASF SE
DowDuPont, Inc.
Morgan Advanced Materials
Hanwha Group
PyroGenesis Canada, Inc.
Cytech Products, Inc.
Akzo Nobel N.V.
Hexcel Corporation
In February 2023, Covestro AG announced plans to establish a thermoplastic polyurethanes (TPU) facility in Zhuhai, China. This would be the company's largest investment in the TPU industry, costing in the low three-digit millions of Euros.
In February 2023, Covestro AG introduced Makrolon 3638 polycarbonate, an ultra-durable polymer for healthcare and life science applications.