![]() |
市場調査レポート
商品コード
1778904
クラウドベースの水質分析市場- 世界の産業規模、シェア、動向、機会、予測、コンポーネント別、展開モード別、用途別、地域別、競合別、2020~2030年Cloud-based Water Analytics Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Deployment Mode, By Application, By Region & Competition, 2020-2030F |
||||||
カスタマイズ可能
|
クラウドベースの水質分析市場- 世界の産業規模、シェア、動向、機会、予測、コンポーネント別、展開モード別、用途別、地域別、競合別、2020~2030年 |
出版日: 2025年07月29日
発行: TechSci Research
ページ情報: 英文 185 Pages
納期: 2~3営業日
|
クラウドベースの水質分析の世界市場規模は2024年に184億3,000万米ドルで、2030年のCAGRは11.48%で2030年には353億7,000万米ドルに達すると予測されています。
クラウドベースの水質分析とは、クラウドコンピューティングプラットフォームを利用して、水関連データをリアルタイムで収集、分析、管理し、モニタリング、最適化、予測洞察を行うことを指します。
市場概要 | |
---|---|
予測期間 | 2026~2030年 |
市場規模:2024年 | 184億3,000万米ドル |
市場規模:2030年 | 353億7,000万米ドル |
CAGR:2025~2030年 | 11.48% |
急成長セグメント | 需要予測と消費分析 |
最大市場 | 北米 |
これらのプラットフォームは、センサ、IoTデバイス、AIアルゴリズム、ビッグデータ分析を活用して、水質、使用量、配水、漏水、環境への影響を追跡します。クラウドベースのシステムは、重要な水データへの一元的なアクセスを可能にすることで、公益事業、産業、政府による意思決定の強化、資源利用の最適化、規制遵守を支援します。従来型水管理システムとは異なり、クラウドベースの分析は、拡大性、リモートアクセス、インフラコストの削減、スマートシティのフレームワークとのシームレスな統合を実現します。
クラウドベースの水質分析の市場は、世界の水不足、インフラの老朽化、厳しい環境規制の増加により、公益事業や産業がよりスマートなソリューションを求めるようになっています。都市化と工業化は水資源への圧力を強めており、効率的なモニタリングと管理が不可欠となっています。さらに、洪水、干ばつ、汚染物質の発生といった気候変動に起因する事象は、予測的な水質分析の必要性を浮き彫りにしています。政府や自治体は、スマートシティプロジェクトの一環としてデジタル水ソリューションに多額の投資を行っており、一方、産業は、より優れた資産管理と運用効率のためのツールを求めています。AI、機械学習、IoT技術のクラウドプラットフォームへの統合は、予知保全、漏水検知、リアルタイムアラートを可能にすることで、その価値提案をさらに強化します。
世界のクラウドベースの水質分析市場の今後の成長は、クラウドコンピューティングの進歩、スマートデバイスの普及、MaaS(Monitoring-as-a-Service)ビジネスモデルの採用増加によって促進されます。サブスクリプションベースモデルにより初期費用が削減されるため、小規模の公益企業や新興経済国でも先進的水質分析ツールにアクセスできるようになります。技術プロバイダ、水道事業体、政府間のパートナーシップは、技術革新を促進し、市場範囲を拡大しています。アジア太平洋のは急速な都市化と水管理の課題から高成長地域として浮上しており、市場は世界的に持続的な成長が見込まれています。全体として、効率的でインテリジェントかつコンプライアンスに準拠した水管理システムに対する需要が、今後数年間、クラウドベースの分析の採用を促進すると考えられます。
世界の水不足と効率的な資源管理に対する需要の高まり
従来型インフラや既存の水管理システムとの統合
水質分析における人工知能と機械学習の採用
Global Cloud-based Water Analytics Market was valued at USD 18.43 Billion in 2024 and is expected to reach USD 35.37 Billion by 2030 with a CAGR of 11.48% through 2030. Cloud-based water analytics refers to the use of cloud computing platforms to collect, analyze, and manage water-related data in real time for monitoring, optimization, and predictive insights.
Market Overview | |
---|---|
Forecast Period | 2026-2030 |
Market Size 2024 | USD 18.43 Billion |
Market Size 2030 | USD 35.37 Billion |
CAGR 2025-2030 | 11.48% |
Fastest Growing Segment | Demand Forecasting & Consumption Analytics |
Largest Market | North America |
These platforms leverage sensors, IoT devices, AI algorithms, and big data analytics to track water quality, usage, distribution, leakages, and environmental impacts. By enabling centralized access to critical water data, cloud-based systems help utilities, industries, and governments enhance decision-making, optimize resource usage, and meet regulatory compliance. Unlike traditional water management systems, cloud-based analytics offer scalability, remote access, lower infrastructure costs, and seamless integration with smart city frameworks.
The market for cloud-based water analytics is rising due to increasing global water scarcity, aging infrastructure, and stringent environmental regulations pushing utilities and industries toward smarter solutions. Urbanization and industrialization have intensified pressure on water resources, making efficient monitoring and management essential. Furthermore, climate change-driven events like floods, droughts, and contamination outbreaks highlight the need for predictive water analytics. Governments and municipalities are investing heavily in digital water solutions as part of smart city projects, while industries demand tools for better asset management and operational efficiency. The integration of AI, machine learning, and IoT technologies into cloud platforms further enhances their value proposition by enabling predictive maintenance, leakage detection, and real-time alerts.
The future growth of the global cloud-based water analytics market will be propelled by advancements in cloud computing, the proliferation of smart devices, and the increasing adoption of Monitoring-as-a-Service (MaaS) business models. As subscription-based models reduce upfront costs, even small utilities and emerging economies can access advanced water analytics tools. Partnerships between technology providers, water utilities, and governments are fostering innovation and expanding market reach. With Asia Pacific emerging as a high-growth region due to its rapid urbanization and water management challenges, the market is poised for sustained growth globally. Overall, the demand for efficient, intelligent, and compliant water management systems will drive the adoption of cloud-based analytics in the years ahead.
Key Market Drivers
Rising Global Water Scarcity and Demand for Efficient Resource Management
The increasing scarcity of freshwater resources is compelling governments, industries, and utilities worldwide to seek advanced solutions for monitoring and managing water usage. Population growth, rapid urbanization, and climate change have collectively stressed global water supplies. Cloud-based water analytics platforms allow organizations to track consumption patterns, detect inefficiencies, and optimize distribution systems in real time. These platforms support sustainable water management by enabling data-driven decisions, predictive maintenance, and leakage detection-functions critical to minimizing wastage and ensuring equitable distribution.
For instance, agriculture accounts for approximately 70% of global freshwater withdrawals according to the Food and Agriculture Organization (FAO). Cloud-based analytics help optimize irrigation systems by analyzing water needs based on soil moisture data, weather forecasts, and historical usage patterns. Similarly, urban utilities leverage real-time analytics to identify leakages-responsible for up to 30% of water loss in distribution networks-and take timely corrective action. By integrating cloud platforms with IoT-enabled sensors, utilities and industrial users gain actionable insights, which support both operational efficiency and environmental sustainability. By 2025, an estimated 1.8 billion people will live in regions suffering from absolute water scarcity, as reported by the United Nations. This projection emphasizes the urgent global need for advanced water management solutions like cloud-based analytics, which help optimize usage, detect leakages, and improve overall water resource sustainability in increasingly strained environments.
Key Market Challenges
Integration with Legacy Infrastructure and Existing Water Management Systems
One of the most significant challenges facing the global cloud-based water analytics market is the complexity involved in integrating modern analytics platforms with existing, often outdated, water management infrastructure. Water utilities and industrial operators in many regions, particularly in emerging economies, have traditionally relied on legacy systems characterized by manual operations, analog instrumentation, and siloed data environments. These legacy infrastructures were never designed with digital transformation in mind, making it difficult to seamlessly implement cloud-based analytics solutions. The process of retrofitting old systems with advanced sensors, real-time data acquisition tools, and cloud gateways requires both significant capital investment and specialized technical expertise. Furthermore, legacy infrastructure may lack the necessary digital interfaces or compatibility standards, resulting in extended project timelines, unexpected costs, and operational disruptions during the transition phase.
The challenge of integration is compounded by the diversity of water management systems across regions and industries. Different utilities may operate varying types of hardware, communication protocols, and software systems, creating fragmented environments that resist standardized cloud deployment. This heterogeneity necessitates customized integration strategies for each deployment, further driving up implementation complexity and cost. Moreover, water management is often critical infrastructure, and utilities are understandably cautious about adopting technologies that may compromise operational reliability or data integrity. Ensuring continuous service delivery while upgrading systems remains a delicate balance for operators. Cloud-based solutions must offer robust interoperability, secure data migration capabilities, and minimal downtime assurances to gain acceptance within such environments. Until these integration hurdles are systematically addressed, especially for small to medium-sized utilities with limited budgets, the growth potential of cloud-based water analytics will remain partially constrained.
Key Market Trends
Adoption of Artificial Intelligence and Machine Learning in Water Analytics
The increasing integration of artificial intelligence and machine learning into cloud-based water analytics platforms is transforming the way water resources are monitored, managed, and optimized. Artificial intelligence-driven solutions enable predictive analysis, anomaly detection, and automated decision-making, which enhance operational efficiency and reduce water loss. These advanced technologies process large volumes of real-time data collected from various sources, including sensors, smart meters, and satellite imagery, to provide actionable insights. Predictive maintenance models based on artificial intelligence help utilities anticipate equipment failures, pipeline leaks, or contamination events, minimizing service disruptions and maintenance costs.
Machine learning algorithms continuously improve the accuracy of water demand forecasting, leakage detection, and consumption pattern analysis by learning from historical and real-time data. This ability allows water utilities, municipalities, and industrial operators to make data-driven decisions and proactively manage water distribution networks. The integration of artificial intelligence into cloud platforms also supports dynamic optimization of water usage in agriculture, industrial processes, and smart city applications. As these technologies mature and become more accessible through cloud services, the adoption of artificial intelligence and machine learning in water analytics is expected to increase steadily, providing enhanced predictive capabilities and operational intelligence for users across diverse sectors.
In this report, the Global Cloud-based Water Analytics Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
Company Profiles: Detailed analysis of the major companies present in the Global Cloud-based Water Analytics Market.
Global Cloud-based Water Analytics Market report with the given market data, TechSci Research offers customizations according to a company's specific needs. The following customization options are available for the report: