![]() |
市場調査レポート
商品コード
1493557
脳モニタリング市場 - 世界の産業規模、シェア、動向、機会、予測:デバイス別、エンドユーザー別、用途別、地域別、競合別、2019-2029年Brain Monitoring Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Device, By End-User, By Application, By Region, and By Competition, 2019-2029F |
||||||
カスタマイズ可能
|
脳モニタリング市場 - 世界の産業規模、シェア、動向、機会、予測:デバイス別、エンドユーザー別、用途別、地域別、競合別、2019-2029年 |
出版日: 2024年05月15日
発行: TechSci Research
ページ情報: 英文 183 Pages
納期: 2~3営業日
|
脳モニタリングの世界市場規模は2023年に34億6,000万米ドルとなり、予測期間では2029年までCAGR 6.59%で目覚ましい成長を遂げます。
脳モニタリングとは、脳機能、活動、生理学のさまざまな側面を、専門的な技術や手法を用いて継続的または断続的に評価するプロセスを指します。脳モニタリングの主な目的は、脳の状態に関するリアルタイムまたはほぼリアルタイムの情報を得ることであり、医療プロバイダー、研究者、臨床医が脳の健康をモニターし、神経疾患を診断し、治療を決定し、治療効果を評価することを可能にします。脳モニタリング技術には幅広いモダリティと手法があり、それぞれが脳機能と病態のさまざまな側面について独自の洞察を提供しています。脳波は、頭皮に装着した電極から電気信号を記録することにより、脳の電気的活動を測定する非侵襲的な手法です。脳波は、脳機能の評価、発作やてんかん、睡眠障害に関連する異常な電気パターンの検出、麻酔や神経クリティカルケア中の脳活動のモニタリングに使用されます。fMRIは、神経活動を反映する脳内の血流と酸素濃度の変化を測定する非侵襲的イメージング技術です。fMRIは、脳機能のマッピング、特定のタスクや認知プロセスに関与する脳領域の特定、神経疾患や精神疾患の神経相関の調査に使用されます。
市場概要 | |
---|---|
予測期間 | 2025-2029 |
市場規模:2023年 | 34億6,000万米ドル |
市場規模:2029年 | 50億9,000万米ドル |
CAGR:2024年~2029年 | 6.59% |
急成長セグメント | MRI |
最大市場 | 北米 |
脳波(EEG)、脳磁図(MEG)、機能的磁気共鳴画像法(fMRI)、陽電子放射断層撮影法(PET)、近赤外分光法(NIRS)など、脳モニタリング技術の継続的な進歩が市場成長の原動力となっています。技術革新により脳モニタリング装置の精度、感度、信頼性が向上し、医療プロバイダーは脳機能と病理に関する貴重な洞察を得ることができます。脳の健康の重要性と、神経障害の予防、診断、治療における脳モニタリングの役割に対する認識が高まっています。公的な教育キャンペーン、アドボカシー活動、医療組織や政府機関によるイニシアチブは、脳関連疾患の早期発見と介入の重要性に対する認識を高め、脳モニタリングテクノロジーに対する需要を促進しています。在宅医療や遠隔モニタリングソリューションへのシフトが市場成長を加速。ワイヤレスおよびウェアラブル脳モニタリングデバイスの進歩により、患者は従来の臨床環境以外でもリアルタイムで脳活動や神経学的健康をモニターすることができます。COVID-19の流行は、遠隔モニタリングソリューションの重要性をさらに強調し、遠隔医療および遠隔患者モニタリング技術の革新と採用に拍車をかけています。
技術の進歩
脳の健康に対する意識の高まりと重要性
在宅医療と遠隔モニタリングの急成長
デバイスの高コスト
複雑な規制状況
クリティカルケアにおける脳モニタリングの統合
Global Brain Monitoring Market was valued at USD 3.46 billion in 2023 and will see an impressive growth in the forecast period at a CAGR of 6.59% through 2029. Brain monitoring refers to the process of continuously or intermittently assessing various aspects of brain function, activity, and physiology using specialized techniques and technologies. The primary goal of brain monitoring is to obtain real-time or near-real-time information about the brain's status, allowing healthcare providers, researchers, and clinicians to monitor brain health, diagnose neurological disorders, guide treatment decisions, and evaluate treatment responses. Brain monitoring techniques encompass a wide range of modalities and methods, each offering unique insights into different aspects of brain function and pathology. EEG is a non-invasive technique that measures electrical activity in the brain by recording electrical signals from electrodes placed on the scalp. EEG is used to assess brain function, detect abnormal electrical patterns associated with seizures, epilepsy, sleep disorders, and monitor brain activity during anesthesia and neurocritical care. fMRI is a non-invasive imaging technique that measures changes in blood flow and oxygenation levels in the brain, reflecting neural activity. fMRI is used to map brain function, identify regions of the brain involved in specific tasks or cognitive processes, and investigate the neural correlates of neurological disorders and psychiatric conditions.
Market Overview | |
---|---|
Forecast Period | 2025-2029 |
Market Size 2023 | USD 3.46 Billion |
Market Size 2029 | USD 5.09 Billion |
CAGR 2024-2029 | 6.59% |
Fastest Growing Segment | MRI |
Largest Market | North America |
Ongoing advancements in brain monitoring technologies, including electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and near-infrared spectroscopy (NIRS), drive market growth. Technological innovations improve the accuracy, sensitivity, and reliability of brain monitoring devices, enabling healthcare providers to obtain valuable insights into brain function and pathology. There is increasing awareness of the importance of brain health and the role of brain monitoring in preventing, diagnosing, and treating neurological disorders. Public education campaigns, advocacy efforts, and initiatives by healthcare organizations and government agencies raise awareness about the significance of early detection and intervention in brain-related conditions, driving demand for brain monitoring technologies. The shift towards home healthcare and remote monitoring solutions accelerates market growth. Advancements in wireless and wearable brain monitoring devices enable patients to monitor their brain activity and neurological health in real-time outside traditional clinical settings. The COVID-19 pandemic further emphasizes the importance of remote monitoring solutions, spurring innovation and adoption of telehealth and remote patient monitoring technologies.
Key Market Drivers
Technological Advancements
Advances in EEG electrode design and array configurations have led to high-density EEG systems capable of recording brain activity with greater spatial resolution. Wireless EEG systems allow for more flexible and convenient monitoring, enabling ambulatory and long-term EEG recordings outside of traditional clinical settings. EEG source imaging techniques use computational algorithms to localize the sources of electrical activity within the brain, providing insights into the underlying neural networks and pathological changes associated with neurological disorders. Real-time fMRI techniques enable researchers and clinicians to monitor changes in brain activity as they occur, facilitating neurofeedback training, cognitive rehabilitation, and functional mapping during neurosurgical procedures. Resting-state fMRI allows for the characterization of functional brain networks and connectivity patterns in the absence of specific tasks or stimuli, providing valuable information about intrinsic brain function and organization.
Magnetoencephalography (MEG) systems equipped with SQUID sensors offer high spatial and temporal resolution for non-invasive measurement of magnetic fields generated by neural activity in the brain. Advanced algorithms and modeling techniques enable accurate localization of neuronal sources underlying MEG signals, improving the localization of epileptic foci and functional brain mapping. Near-Infrared Spectroscopy (NIRS) can be integrated with other imaging modalities such as EEG and fMRI to provide complementary information about cerebral hemodynamics, metabolism, and neural activity, enhancing the spatial and temporal resolution of brain monitoring. High-resolution iEEG systems equipped with microelectrode arrays enable precise mapping of epileptic networks and recording of single-neuron activity in patients undergoing epilepsy surgery. Machine learning algorithms and AI-based techniques automate the analysis and interpretation of brain monitoring data, facilitating the identification of biomarkers, patterns of abnormal activity, and predictive models for neurological disorders. Closed-loop systems integrate brain monitoring with real-time feedback and neuromodulation techniques to modulate neural activity and restore normal brain function in conditions such as epilepsy, Parkinson's disease, and depression. This factor will help in the development of the Global Brain Monitoring Market.
Growing Awareness and Importance of Brain Health
Healthcare organizations, advocacy groups, and governmental agencies conduct public education campaigns to raise awareness about brain health, the signs and symptoms of neurological disorders, and the importance of early detection and intervention. These campaigns help educate individuals about the benefits of brain monitoring for maintaining cognitive function and detecting potential neurological conditions. Increased media coverage of brain health topics, including advancements in neuroscience research, brain disorders, and brain fitness, contributes to greater public awareness and interest in brain monitoring technologies. Information sharing through social media, online platforms, and popular press channels helps disseminate knowledge about brain health and the role of monitoring in maintaining cognitive function. As the global population ages, the prevalence of age-related neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and dementia is increasing. Growing awareness of the impact of aging on brain health drives demand for brain monitoring technologies that can aid in early detection, diagnosis, and management of these conditions.
There is a growing recognition of the link between mental health, emotional well-being, and brain function. As societies prioritize mental health awareness and destigmatize discussions about brain-related disorders, individuals become more proactive in monitoring their brain health and seeking preventive measures and treatments when necessary. Technological advancements in brain monitoring, including wearable devices, mobile applications, and home-based monitoring solutions, make brain health monitoring more accessible and convenient for individuals. These technologies empower individuals to track their cognitive performance, monitor changes in brain activity, and take proactive steps to maintain brain health. The shift towards personalized medicine and preventive healthcare encourages individuals to take a proactive approach to their health, including brain health. Brain monitoring technologies enable personalized assessments of cognitive function, brain activity, and neurological health, empowering individuals to make informed decisions about lifestyle choices, interventions, and treatment options. This factor will pace up the demand of the Global Brain Monitoring Market.
Rapid Growth in Home Healthcare and Remote Monitoring
As the global population ages, there is an increasing prevalence of chronic conditions and age-related neurological disorders that require continuous monitoring and management. Home healthcare and remote monitoring technologies allow individuals to receive personalized care and monitoring from the comfort of their homes, reducing the need for frequent hospital visits and improving overall quality of life. Technological advancements in wearable devices, such as EEG headsets, portable EEG monitors, and sleep trackers, enable individuals to monitor their brain activity and neurological health in real-time outside of clinical settings. These wearable devices are lightweight, non-invasive, and easy to use, making them suitable for home-based monitoring and long-term tracking of brain health. The widespread adoption of telehealth and remote patient monitoring platforms facilitates virtual consultations, remote diagnostic assessments, and continuous monitoring of patients with neurological disorders. Brain monitoring technologies integrated with telehealth platforms enable healthcare providers to remotely monitor patients' brain activity, assess treatment responses, and intervene promptly in case of emergencies or changes in health status.
Home healthcare and remote monitoring offer greater convenience and flexibility for patients, especially those with mobility limitations, transportation challenges, or cognitive impairments. By bringing brain monitoring technologies into the home environment, patients can undergo monitoring and assessments in familiar surroundings, reducing stress and anxiety associated with hospital visits. Home-based brain monitoring reduces healthcare costs associated with hospital admissions, emergency room visits, and in-person consultations. Remote monitoring technologies enable early detection of neurological changes, timely intervention, and proactive management of neurological conditions, leading to better health outcomes and reduced healthcare expenditures. The COVID-19 pandemic has accelerated the adoption of home healthcare and remote monitoring solutions as healthcare systems seek to minimize in-person interactions and reduce the risk of virus transmission. Brain monitoring technologies that can be used remotely facilitate continuity of care, support self-management strategies, and enhance patient engagement in neurological health management. This factor will accelerate the demand of the Global Brain Monitoring Market.
Key Market Challenges
High Cost of Devices
Developing advanced brain monitoring devices involves substantial research and development (R&D) expenditures, including costs associated with technology innovation, clinical trials, regulatory compliance, and intellectual property protection. These R&D costs contribute to the high upfront expenses of bringing brain monitoring devices to market. The manufacturing and production processes for brain monitoring devices require specialized equipment, materials, and expertise, which can be expensive. High-quality components, precision engineering, and stringent quality control measures are necessary to ensure the reliability, accuracy, and safety of brain monitoring devices, adding to manufacturing costs. Brain monitoring devices are subject to rigorous regulatory requirements imposed by regulatory agencies such as the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Obtaining regulatory approvals and certifications for brain monitoring devices entails substantial costs and resources, including pre-market testing, documentation, audits, and ongoing compliance monitoring. Distributing and marketing brain monitoring devices involve additional expenses, including sales commissions, marketing campaigns, trade shows, and distribution channels. Establishing a global distribution network, building brand awareness, and educating healthcare providers and consumers about the benefits of brain monitoring technologies require significant financial investments.
Complex Regulatory Landscape
The Global Brain Monitoring Market operates in multiple jurisdictions with diverse regulatory requirements and standards for medical devices. Companies must navigate varying regulatory frameworks, submission processes, and documentation requirements across different regions and countries, which can be time-consuming, costly, and resource intensive. Brain monitoring devices are classified as medical devices and are subject to stringent regulatory standards to ensure safety, efficacy, and quality. Regulatory agencies such as the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), and the China National Medical Products Administration (NMPA) impose strict requirements for pre-market approval, post-market surveillance, quality management systems, and adverse event reporting. The regulatory landscape for medical devices is continually evolving in response to technological advancements, market dynamics, and emerging safety concerns. Regulatory agencies regularly update guidelines, policies, and requirements for medical device registration, labeling, and post-market surveillance, posing challenges for device manufacturers to stay compliant and adapt to regulatory changes. Companies operating in the Global Brain Monitoring Market must navigate complex regulatory requirements in international markets, including differences in product classification, registration pathways, and labeling requirements. Harmonizing regulatory standards and achieving regulatory convergence among different countries and regions can streamline market access and facilitate global market expansion.
Key Market Trends
Integration of Brain Monitoring in Critical Care Settings
Neurological conditions such as traumatic brain injury, stroke, seizures, and status epilepticus are common reasons for admission to critical care units. Integrating brain monitoring technologies in critical care settings enables continuous monitoring of brain function, detection of neurological changes, and timely intervention to prevent complications and optimize patient outcomes. Brain monitoring technologies provide real-time insights into brain activity, cerebral perfusion, intracranial pressure, and metabolic status, allowing healthcare providers to detect neurological complications early and intervene promptly. Continuous monitoring of neurological parameters helps identify signs of cerebral ischemia, hemorrhage, edema, and seizure activity, guiding treatment decisions and preventing secondary brain injury in critically ill patients. Integration of brain monitoring with multimodal monitoring systems, such as intracranial pressure (ICP) monitoring, cerebral oximetry, and EEG monitoring, enables comprehensive assessment of brain health and neurological function in critically ill patients. Multimodal monitoring facilitates individualized treatment strategies, titration of therapies, and optimization of neurocritical care management based on real-time data and patient-specific parameters. Technological advancements in brain monitoring technologies, such as intracranial EEG (iEEG), cerebral microdialysis, near-infrared spectroscopy (NIRS), and brain tissue oxygenation monitoring, have expanded the capabilities of neurocritical care monitoring. These advanced monitoring modalities provide valuable information about cerebral metabolism, oxygenation, and tissue perfusion, enhancing the accuracy and sensitivity of neurological assessments in critical care settings.
Segmental Insights
Device Insights
The MRI segment is projected to experience rapid growth in the Global Brain Monitoring Market during the forecast period. MRI provides high-resolution and detailed images of the brain's structure and function, making it a valuable tool for brain monitoring and diagnosis. Compared to other imaging modalities, such as CT scans, MRI offers superior soft tissue contrast and does not involve ionizing radiation, making it safer for patients, particularly for longitudinal monitoring of brain conditions. Ongoing advancements in MRI technology have significantly improved image quality, acquisition speed, and patient comfort. Innovations such as high-field MRI systems, advanced image processing algorithms, and functional MRI (fMRI) techniques have enhanced the accuracy and sensitivity of brain imaging, enabling healthcare providers to detect subtle changes in brain structure and function associated with various neurological disorders. MRI is widely used in neuroimaging applications for diagnosing and monitoring a variety of neurological conditions, including stroke, brain tumors, Alzheimer's disease, multiple sclerosis, and traumatic brain injury. The expanding applications of MRI in clinical practice, research, and drug development drive the demand for brain monitoring solutions based on MRI technology.
Regional Insights
North America emerged as the dominant region in the Global Brain Monitoring Market in 2023. North America is home to some of the world's leading medical device manufacturers and research institutions focused on neuroscience and brain monitoring. The region benefits from a robust ecosystem of innovation, which drives the development of cutting-edge brain monitoring technologies and solutions. The United States, in particular, allocates a significant portion of its GDP to healthcare spending. This high level of healthcare expenditure enables healthcare providers and institutions to invest in advanced medical technologies, including brain monitoring devices and solutions. North America boasts a strong research and development infrastructure, with renowned universities, hospitals, and research centers conducting groundbreaking research in neuroscience and brain monitoring. This ecosystem fosters collaboration between academia, industry, and healthcare providers, leading to the rapid advancement and adoption of brain monitoring technologies.
Dragerwerk Ag & Co. Kgaa
Masimo Corporation
Cadwell Industries, Inc.
NuroWave Systems, Inc.
Neurosoft SA
Cgx (A Cognionics Company)
Natus Medical, Inc.
Nihon Kohden Corporation
Koninklijke Philips N.V.
GE HealthCare Technologies Inc.
In this report, the Global Brain Monitoring Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:
United States
Canada
Mexico
Germany
United Kingdom
France
Italy
Spain
China
Japan
India
Australia
South Korea
Brazil
Argentina
Colombia
South Africa
Saudi Arabia
UAE
Company Profiles: Detailed analysis of the major companies present in the Global Brain Monitoring Market.
Global Brain Monitoring market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:
Detailed analysis and profiling of additional market players (up to five).