デフォルト表紙
市場調査レポート
商品コード
1407593

オンショア浮体式ソーラー市場 - 世界の産業規模、シェア、動向、機会、予測:コンポーネント別、タイプ別、用途別、地域別、競合別、2018年~2028年

Onshore Floating Solar Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Component, By Type, By Application, By Region, By Competition, 2018-2028

出版日: | 発行: TechSci Research | ページ情報: 英文 189 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.76円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

オンショア浮体式ソーラー市場 - 世界の産業規模、シェア、動向、機会、予測:コンポーネント別、タイプ別、用途別、地域別、競合別、2018年~2028年
出版日: 2023年11月07日
発行: TechSci Research
ページ情報: 英文 189 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

世界のオンショア浮体式ソーラー市場は、2022年に29億米ドルと評価され、2028年までのCAGRは40.8%で、予測期間中に力強い成長が予測されています。

世界のオンショア浮体式ソーラー市場は、持続可能で再生可能なエネルギーソリューションに対する需要の高まりを背景に、大きな成長を遂げています。世界が二酸化炭素排出量の削減と、よりクリーンなエネルギー源への移行にますます力を入れる中、オンショア浮体式ソーラーは実行可能で革新的な選択肢として浮上しています。この市場の隆盛は、土地利用を最適化する能力に起因しており、利用可能な土地が限られている地域では特に魅力的です。オンショア浮体式ソーラーは、エネルギー生産効率の向上、水蒸発の減少、環境への影響の最小化などの利点を提供します。さらに、技術の進歩や太陽光発電システムのコスト削減も、市場の拡大に寄与しています。政府、企業、投資家は、オンショア浮体式ソーラーの可能性を、エネルギー転換目標を達成するための重要な要素として認識しており、この持続可能なエネルギーソリューションの世界規模でのさらなる開発と採用を促進しています。

市場促進要因

土地の最適化とエネルギー需要の増加

市場概要
予測期間 2024-2028
2022年の市場規模 29億米ドル
2028年の市場規模 228億米ドル
CAGR 2023-2028 40.8%
急成長セグメント 追尾型
最大市場 アジア太平洋

世界のオンショア浮体式ソーラー市場の急成長は、効率的な太陽光発電のために土地利用に革命を起こすという切実なニーズが主な要因となっています。従来型の太陽光発電設備が、特に人口密集地域において、有限でますます不足する土地を奪い合う世界において、オンショア浮体式ソーラーは、未利用の水域の可能性を活用する革新的なソリューションとして際立っています。この原動力は、湖、貯水池、池へのオンショア浮体式ソーラーアレイの配備に代表されるように、土地の利用を最適化することの重要性が認識されつつあることに起因します。このような戦略的利用により、地上空間を別の目的に解放し、利用可能な土地資源への負担を軽減することができます。その緊急性は、世界のエネルギー需要の絶え間ない急増によってさらに強調され、既存の土地区画から最大限の効用を引き出す必要性が強調されています。オンショア浮体式ソーラープロジェクトは、急増するエネルギー需要に対応するという要請に応えるだけでなく、土地不足に伴う深刻化する課題への現実的な対応策を提供することで、持続可能な開発を促進する上で極めて重要な役割を果たしています。この革新的なアプローチを通じて、オンショア浮体式ソーラーは、エネルギー状況の当面の需要を満たすだけでなく、エネルギー生産と生態系の持続可能性の調和という広範なビジョンにも大きく貢献し、太陽光発電の未来に向けた先進的なパラダイムを体現しています。

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 世界のオンショア浮体式ソーラー市場へのCOVID-19の影響

第5章 顧客の声

第6章 世界のオンショア浮体式ソーラー市場概要

第7章 オンショア浮体式ソーラーの世界市場の展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • コンポーネント別(PVモジュール、避雷システム、アンカーシステム、インバーター、その他)
    • タイプ別(定置型、追尾型)
    • 用途別(灌漑、水力発電ダム、水処理、採石、鉱業)
    • 地域別(北米,欧州,南米,中東&アフリカ,アジア太平洋)
  • 企業別(2022年)
  • 市場マップ

第8章 北米のオンショア浮体式ソーラー市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • コンポーネント別
    • タイプ別
    • 用途別
    • 国別
  • 北米国別分析
    • 米国
    • カナダ
    • メキシコ

第9章 欧州のオンショア浮体式ソーラー市場の展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • コンポーネント別
    • タイプ別
    • 用途別
    • 国別
  • 欧州国別分析
    • ドイツ
    • フランス
    • 英国
    • イタリア
    • スペイン
    • ベルギー

第10章 南米のオンショア浮体式ソーラー市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • コンポーネント別
    • タイプ別
    • 用途別
    • 国別
  • 南米:国別分析
    • ブラジル
    • コロンビア
    • アルゼンチン
    • チリ
    • ペルー

第11章 中東・アフリカのオンショア浮体式ソーラー市場の展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • コンポーネント別
    • タイプ別
    • 用途別
    • 国別
  • 中東・アフリカ:国別分析
    • サウジアラビア
    • アラブ首長国連邦
    • 南アフリカ
    • トルコ
    • イスラエル

第12章 アジア太平洋のオンショア浮体式ソーラー市場の展望

  • 市場規模・予測
    • コンポーネント別
    • タイプ別
    • 用途別
    • 国別
  • アジア太平洋地域国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア
    • インドネシア
    • ベトナム

第13章 市場力学

  • 促進要因
  • 課題

第14章 市場の動向と発展

第15章 企業プロファイル

  • Ciel & Terre International
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Kyocera Corporation
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Wartsila Corporation
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Infratech Industries
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Floating Power Plant A/S
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Statkraft
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • SPG Solar
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Swimsol GmbH
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Ocean Sun AS
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered
  • Principle Power, Inc.
    • Business Overview
    • Key Revenue and Financials
    • Recent Developments
    • Key Personnel/Key Contact Person
    • Key Product/Services Offered

第16章 戦略的提言

第17章 調査会社について・免責事項

目次
Product Code: 20435

Global Onshore Floating Solar Market was valued at USD 2.9 Billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 40.8% through 2028. The global onshore floating solar market is experiencing significant growth, driven by the escalating demand for sustainable and renewable energy solutions. As the world increasingly focuses on reducing carbon emissions and transitioning towards cleaner energy sources, onshore floating solar emerges as a viable and innovative option. This market's rise can be attributed to its ability to optimize land use, making it particularly attractive in regions where available land is limited. Onshore floating solar installations offer advantages such as increased energy production efficiency, reduced water evaporation, and minimized environmental impact. Additionally, advancements in technology and cost reductions in solar photovoltaic systems contribute to the market's expansion. Governments, businesses, and investors are recognizing the potential of onshore floating solar as a crucial component in achieving energy transition goals, fostering further development and adoption of this sustainable energy solution on a global scale.

Key Market Drivers

Land Optimization and Increasing Energy Demand

Market Overview
Forecast Period2024-2028
Market Size 2022USD 2.9 Billion
Market Size 2028USD 22.8 Billion
CAGR 2023-202840.8%
Fastest Growing SegmentTracking
Largest MarketAsia-Pacific

The surge in the global onshore floating solar market is primarily fueled by a compelling need to revolutionize land use for the efficient generation of solar power. In a world where conventional solar installations vie for a finite and increasingly scarce expanse of land, particularly in densely populated regions, onshore floating solar stands out as an innovative solution harnessing the potential of underutilized water bodies. This driving force stems from a growing acknowledgment of the critical importance of optimizing land utilization, exemplified by the deployment of onshore floating solar arrays on lakes, reservoirs, and ponds. This strategic utilization liberates terrestrial space for alternative purposes, mitigating the strain on available land resources. The urgency is further underscored by the relentless surge in global energy demand, emphasizing the need to extract the maximum utility from existing land parcels. Beyond merely addressing the imperative of meeting escalating energy needs, onshore floating solar projects play a pivotal role in fostering sustainable development by providing a pragmatic response to the escalating challenges associated with land scarcity. Through this innovative approach, onshore floating solar not only meets the immediate demands of the energy landscape but also contributes significantly to the broader vision of harmonizing energy production with ecological sustainability, epitomizing a forward-thinking paradigm for the future of solar power generation.

Technological Advancements and Cost Reductions

A pivotal force propelling the ascent of the global onshore floating solar market lies in the relentless evolution of solar technology coupled with concurrent cost reductions. This dynamic synergy of technological advancement and financial feasibility has become a linchpin in the industry's rapid growth. Innovations in floating platforms, characterized by heightened efficiency and adaptability, have played a pivotal role in reshaping the landscape. Similarly, the development of robust anchoring systems has fortified the resilience and stability of onshore floating solar installations, allowing for deployment in a diverse range of water bodies. Notably, the augmentation of solar panel efficiency has emerged as a transformative facet, amplifying the appeal of onshore floating solar projects by optimizing energy capture. Equally pivotal is the reduction in costs associated with solar photovoltaic systems, a trend that has substantially enhanced the economic viability of onshore floating solar endeavors. As the expense of harnessing solar power continues to decrease, the feasibility of onshore floating solar projects is markedly heightened, attracting investors and stakeholders alike. The cumulative impact of these advancements extends beyond mere economic considerations, as they significantly elevate the overall performance and durability of floating solar arrays. This transformative progress is not only shaping the present competitiveness of onshore floating solar but is also instrumental in steering the industry toward achieving grid parity. The attainment of grid parity is a crucial milestone, positioning onshore floating solar as not only a technologically sophisticated and environmentally friendly solution but also a financially competitive option within the broader spectrum of renewable energy. In essence, the symbiotic relationship between technological innovation and cost reduction is ushering in an era where onshore floating solar is transitioning from a niche technology to a mainstream contender in the global renewable energy landscape, offering a sustainable and economically viable alternative for meeting the escalating demands of clean energy.

Environmental Sustainability and Climate Change Mitigation

The imperative to confront climate change and champion environmental sustainability stands out as a pivotal force propelling the expansion of the global onshore floating solar market. In this paradigm shift towards sustainable energy solutions, onshore floating solar installations emerge as a beacon of environmental stewardship, ushering in a host of ecological benefits. A foremost advantage lies in the reduction of water evaporation from covered reservoirs, a critical contribution to water conservation efforts. Simultaneously, the deployment of onshore floating solar arrays plays a key role in mitigating the proliferation of algae, fostering the health and balance of aquatic ecosystems. Moreover, by minimizing the impacts of land-use change, these installations circumvent the environmental disruptions associated with conventional solar projects on terrestrial landscapes. Against the backdrop of a planet grappling with the palpable consequences of climate change, the global community is intensifying its scrutiny of clean energy solutions that can meaningfully curb greenhouse gas emissions. Onshore floating solar, as an exemplar of harnessing sunlight to generate electricity without contributing to carbon emissions, aligns seamlessly with the overarching global commitment to transition towards a low-carbon and sustainable energy future. In essence, the ascendancy of onshore floating solar mirrors an evolving ethos wherein environmental responsibility converges with cutting-edge technology to forge a path towards a cleaner, more resilient planet.

Government Policies and Incentives

The pivotal role of government policies and incentives in propelling the global expansion of the onshore floating solar market cannot be overstated. Governments worldwide have come to recognize the paramount importance of embracing renewable energy as a linchpin for achieving energy security, curbing dependence on finite fossil fuel resources, and meeting ambitious climate goals. To catalyze this shift, governments deploy a multifaceted approach, deploying subsidies, tax incentives, and cultivating regulatory frameworks that foster a conducive environment for businesses and investors to engage in onshore floating solar projects. This strategic alignment of governmental initiatives with the objectives of the onshore floating solar market is transformative. Policymakers are increasingly integrating onshore floating solar into their broader renewable energy agendas, underscoring a commitment that transcends rhetoric and manifests in tangible support. This manifests not only in financial backing but also in the provision of regulatory assurances, creating a landscape ripe for accelerated project development. In essence, the synergy between governmental vision and industry objectives engenders an environment that not only spurs immediate growth but lays a robust foundation for the sustained and dynamic expansion of the onshore floating solar market on a global scale.

Water-Energy Nexus and Synergy with Hydropower Infrastructure

The intricate interplay between water resources and energy production emerges as a compelling impetus propelling the ascent of the onshore floating solar market. This dynamic relationship is underscored by the strategic integration of onshore floating solar projects with existing hydropower infrastructure, facilitating a symbiotic synergy between these two renewable energy sources. The coexistence of onshore floating solar arrays and hydropower installations on shared water bodies stands out as a strategic utilization of resources, maximizing overall energy output. This interdependence is particularly pertinent in regions grappling with the dual challenges of water scarcity and escalating energy demand. The concurrent deployment of onshore floating solar and hydropower offers a dual solution, addressing both imperatives simultaneously and demonstrating the adaptability of renewable energy systems to diverse environmental and societal needs. The resulting synergy not only amplifies energy generation but aligns seamlessly with the overarching objective of forging resilient, diversified energy systems capable of navigating the complexities of a rapidly evolving global landscape. In essence, the nexus between water resources and renewable energy stands as a testament to the transformative potential of onshore floating solar, offering a strategic and sustainable pathway to meet the intertwined challenges of water scarcity and surging energy requirements.

Key Market Challenges

Technical and Engineering Challenges

The global onshore floating solar market faces significant technical and engineering challenges that impede its widespread adoption. One key obstacle lies in the development of robust floating platforms capable of withstanding various environmental conditions, including strong winds, waves, and water currents. Designing floating structures that are both durable and cost-effective poses a complex engineering challenge. Additionally, ensuring the stability of solar panels on water surfaces without compromising efficiency or risking damage remains a critical concern. As projects expand into diverse geographical locations, addressing these technical challenges becomes imperative to guarantee the long-term viability and success of onshore floating solar installations.

Environmental Impact and Ecological Concerns

While onshore floating solar projects offer environmental benefits, they also present potential ecological challenges that must be carefully managed. Concerns include alterations to aquatic ecosystems, changes in water temperature, and impacts on aquatic flora and fauna beneath the solar panels. The shading effect created by the panels can affect the natural processes occurring in the water bodies, potentially disrupting local ecosystems. Proper environmental impact assessments and mitigation measures are essential to minimize any adverse effects on biodiversity. Striking a balance between renewable energy generation and preserving the ecological integrity of water bodies is a complex challenge that requires close collaboration between stakeholders, including environmental experts, policymakers, and project developers.

Regulatory and Permitting Hurdles

The growth of the onshore floating solar market is hindered by regulatory and permitting challenges that vary across different regions. Obtaining the necessary approvals for deploying solar installations on water bodies involves navigating a complex regulatory landscape. Issues such as land ownership, water rights, and environmental regulations add layers of complexity to the permitting process. Inconsistent or unclear policies can create uncertainties for investors and developers, leading to delays and increased project costs. Streamlining regulatory frameworks and establishing standardized permitting processes specific to onshore floating solar projects are essential to foster a conducive environment for industry growth and facilitate the deployment of these innovative renewable energy solutions.

Financing and Economic Viability

The economic viability of onshore floating solar projects remains a challenge, primarily due to the higher upfront costs associated with floating platforms and anchoring systems. Despite ongoing reductions in the cost of solar photovoltaic technology, the additional expenses related to floating infrastructure can deter potential investors. Securing financing for onshore floating solar projects may be challenging, especially in regions where financial institutions may be unfamiliar with the technology or perceive it as higher risk. Addressing this challenge requires demonstrating the long-term economic benefits of onshore floating solar, emphasizing factors such as increased energy production efficiency, land use optimization, and potential revenue streams from dual-use applications. Unlocking financial mechanisms, such as subsidies, grants, and innovative financing models, can further incentivize investment and accelerate the development of the onshore floating solar market.

Key Market Trends

Increasing Capacity and Scale of Installations

A prominent trend in the global onshore floating solar market is the continual increase in the capacity and scale of installations. As technology advances and project developers gain more experience, the size of onshore floating solar projects has grown significantly. Initially considered suitable for smaller bodies of water, such as ponds or reservoirs, recent trends indicate a shift towards larger installations on expansive lakes and water bodies. This scaling up is driven by a desire to maximize energy output, capitalize on economies of scale, and meet the escalating global demand for renewable energy. Large-scale onshore floating solar installations are becoming integral components of national and regional energy portfolios, contributing substantially to the overall renewable energy capacity.

Integration with Energy Storage Systems

A pivotal trend shaping the landscape of onshore floating solar is the seamless integration of these installations with cutting-edge energy storage systems. This strategic incorporation addresses a perennial challenge inherent in solar power generation-the intermittent nature of sunlight availability. Energy storage emerges as a transformative solution, enabling the capture and retention of excess energy generated during peak production hours and subsequently releasing it during periods characterized by low sunlight. This trend is not merely a technological innovation but a harmonious alignment with the broader objectives of global energy transition. By augmenting the reliability and grid integration of onshore floating solar projects, the integration of energy storage systems plays a central role in enhancing the overall efficacy of renewable energy infrastructure. Project developers, cognizant of the transformative potential of advancements in battery technology, are proactively integrating storage solutions into their onshore floating solar projects. This strategic move aims to optimize energy dispatch, ensuring a consistent and reliable power supply irrespective of fluctuations in solar availability. The integration of energy storage not only contributes to the stability of onshore floating solar projects but also augments the resilience of the broader electricity grid, thus fortifying the foundation for a sustainable and dependable energy future. In essence, the trend towards seamlessly amalgamating onshore floating solar with energy storage systems signifies a pivotal step towards addressing the intermittency challenge inherent in solar power generation, concurrently steering the industry towards a more robust, adaptable, and grid-integrated renewable energy landscape.

Advancements in Floating Solar Technology

The onshore floating solar market is experiencing rapid technological advancements, driving improvements in floating platform design, anchoring systems, and solar panel efficiency. Innovations such as modular floating structures, advanced materials, and tracking mechanisms that optimize solar panel orientation contribute to increased performance and durability. These technological advancements not only enhance the overall efficiency of onshore floating solar installations but also play a crucial role in addressing technical challenges and expanding the geographic feasibility of projects. As the technology continues to evolve, onshore floating solar is becoming more adaptable to various water bodies and environmental conditions, opening up new opportunities for widespread deployment.

Emergence of Hybrid Renewable Energy Projects

A conspicuous trend in the onshore floating solar landscape is the rise of hybrid renewable energy projects, orchestrating a harmonious integration between onshore floating solar and other renewable energy sources like wind or hydropower. This paradigm shift underscores a strategic fusion of the distinctive characteristics inherent in different renewable technologies, engendering synergies that elevate overall energy generation capabilities. An illustrative example lies in the fusion of onshore floating solar with hydropower, where shared infrastructure optimizes the utilization of both water resources and land. This trend represents a sophisticated and forward-thinking approach to energy diversification, leveraging the strengths of various renewable technologies to create a resilient and sustainable energy ecosystem. By intertwining onshore floating solar with other renewables, these hybrid projects not only enhance energy output but also exemplify a strategic optimization of available resources, reinforcing the trajectory towards more adaptable, resilient, and ecologically sustainable energy systems. In essence, the emergence of hybrid renewable energy projects signals a transformative shift towards a future where the collaborative integration of diverse renewable sources paves the way for enhanced energy efficiency and a more sustainable energy landscape.

Growing Interest in Floating Solar for Industrial Applications

There is a growing trend towards deploying onshore floating solar installations for industrial applications. Industries with access to water bodies, such as mining operations, wastewater treatment plants, and agricultural facilities, are increasingly recognizing the potential of onshore floating solar to meet their energy needs. The dual-use concept, where floating solar installations coexist with industrial activities, is gaining traction. This trend not only enhances the economic viability of onshore floating solar projects but also underscores the versatility of this renewable energy solution in catering to the specific energy requirements of diverse industrial sectors. As industries seek sustainable energy alternatives, onshore floating solar presents itself as a viable and adaptable solution for powering industrial operations while minimizing environmental impact.

Segmental Insights

Component Insights

The photovoltaic (PV) modules segment emerged as the dominant force in the global onshore floating solar market and is poised to maintain its supremacy throughout the forecast period. PV modules, responsible for converting sunlight into electricity, constitute a fundamental and indispensable component of onshore floating solar installations. The dominance of this segment can be attributed to the continual advancements in solar technology, leading to increased efficiency and cost-effectiveness of PV modules. As the core energy-harvesting element, PV modules play a pivotal role in determining the overall performance and economic viability of onshore floating solar projects. Moreover, the global emphasis on reducing the levelized cost of electricity (LCOE) for solar power has further propelled the dominance of the PV modules segment. With ongoing research and development efforts focused on enhancing the efficiency and durability of PV modules, this component is expected to maintain its lead, driving the growth and expansion of the onshore floating solar market as it continues to establish itself as a key player in the renewable energy landscape.

Type Insights

In 2022, the stationary type segment asserted its dominance in the global onshore floating solar market and is anticipated to sustain its leading position throughout the forecast period. Stationary onshore floating solar installations, characterized by fixed positions on water bodies, have gained prominence due to their simplicity in design, cost-effectiveness, and ease of maintenance. This segment's dominance is further fueled by the suitability of stationary systems for a diverse range of water bodies, including lakes, reservoirs, and ponds, where tracking systems may not be as practical. The stability and reliability of stationary installations, coupled with the potential for reduced implementation costs, contribute to their widespread adoption. While tracking systems offer the advantage of following the sun's trajectory for optimized energy capture, the stationary segment's market dominance is expected to persist due to its broad applicability, economic feasibility, and the maturity of technology associated with fixed-position onshore floating solar installations. As the onshore floating solar market continues to evolve, stationary systems are likely to remain the preferred choice for many projects, particularly in regions with diverse water bodies and varying environmental conditions.

Application Insights

The irrigation application segment asserted its dominance in the global onshore floating solar market and is anticipated to maintain its leading position throughout the forecast period. Onshore floating solar installations for irrigation systems have experienced significant adoption due to their ability to provide a sustainable and efficient energy source for powering water pumps and irrigation processes. The integration of onshore floating solar with irrigation infrastructure aligns with the broader global emphasis on sustainable agriculture practices, offering a dual solution by simultaneously addressing energy needs and water management. The irrigation segment's dominance is further propelled by the potential to enhance agricultural productivity while reducing dependence on traditional energy sources. As water scarcity concerns persist, particularly in regions where agriculture is a crucial economic activity, the irrigation application segment is expected to see sustained growth. Additionally, the adaptability of onshore floating solar to various water bodies, including ponds and reservoirs used for irrigation, positions it as a versatile and effective solution for the agriculture sector. With ongoing efforts to promote renewable energy in agriculture and the increasing recognition of onshore floating solar's benefits in addressing both energy and water challenges, the irrigation application segment is poised to remain a key driver of market growth in the foreseeable future.

Regional Insights

The Asia-Pacific region emerged as the dominant force in the global onshore floating solar market and is expected to maintain its leadership throughout the forecast period. The dominance of the Asia-Pacific region can be attributed to the proactive adoption of renewable energy solutions, favorable government policies, and a surge in onshore floating solar installations across countries such as China, India, and Japan. These nations, driven by a growing demand for clean energy and a commitment to reducing carbon emissions, have witnessed substantial investments in onshore floating solar projects. Additionally, the abundance of water bodies, such as lakes and reservoirs, coupled with the region's technological advancements in solar energy, has contributed to the widespread deployment of onshore floating solar installations. The Asia-Pacific region's dominance is further reinforced by the focus on energy security and sustainable development, with governments actively promoting the integration of onshore floating solar into their energy mix. As the global onshore floating solar market continues to expand, the Asia-Pacific region is poised to maintain its leadership position, driven by a combination of market-friendly policies, technological expertise, and a robust commitment to transitioning towards renewable energy sources.

Key Market Players

Ciel & Terre International

Kyocera Corporation

Wartsila Corporation

Infratech Industries

Floating Power Plant A/S

Statkraft

SPG Solar

Swimsol GmbH

Ocean Sun AS

Principle Power, Inc.

Report Scope:

In this report, the Global Onshore Floating Solar Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Onshore Floating Solar Market, By Component:

  • PV Modules
  • Lightning Protection System
  • Anchoring System
  • Inverter
  • Others

Onshore Floating Solar Market, By Type:

  • Stationary
  • Tracking

Onshore Floating Solar Market, By Application:

  • Irrigation
  • Hydroelectric Dam
  • Water Treatment
  • Quarry
  • Mining

Onshore Floating Solar Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Belgium
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • Indonesia
  • Vietnam
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Chile
  • Peru
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Turkey
  • Israel

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Onshore Floating Solar Market.

Available Customizations:

  • Global Onshore Floating Solar market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
    • 1.2.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Impact of COVID-19 on Global Onshore Floating Solar Market

5. Voice of Customer

6. Global Onshore Floating Solar Market Overview

7. Global Onshore Floating Solar Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Component (PV Modules, Lightning Protection System, Anchoring System, Inverter, Others)
    • 7.2.2. By Type (Stationary, Tracking)
    • 7.2.3. By Application (Irrigation, Hydroelectric Dam, Water Treatment, Quarry and Mining)
    • 7.2.4. By Region (North America, Europe, South America, Middle East & Africa, Asia Pacific)
  • 7.3. By Company (2022)
  • 7.4. Market Map

8. North America Onshore Floating Solar Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Component
    • 8.2.2. By Type
    • 8.2.3. By Application
    • 8.2.4. By Country
  • 8.3. North America: Country Analysis
    • 8.3.1. United States Onshore Floating Solar Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Component
        • 8.3.1.2.2. By Type
        • 8.3.1.2.3. By Application
    • 8.3.2. Canada Onshore Floating Solar Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Component
        • 8.3.2.2.2. By Type
        • 8.3.2.2.3. By Application
    • 8.3.3. Mexico Onshore Floating Solar Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Component
        • 8.3.3.2.2. By Type
        • 8.3.3.2.3. By Application

9. Europe Onshore Floating Solar Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Component
    • 9.2.2. By Type
    • 9.2.3. By Application
    • 9.2.4. By Country
  • 9.3. Europe: Country Analysis
    • 9.3.1. Germany Onshore Floating Solar Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Component
        • 9.3.1.2.2. By Type
        • 9.3.1.2.3. By Application
    • 9.3.2. France Onshore Floating Solar Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Component
        • 9.3.2.2.2. By Type
        • 9.3.2.2.3. By Application
    • 9.3.3. United Kingdom Onshore Floating Solar Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Component
        • 9.3.3.2.2. By Type
        • 9.3.3.2.3. By Application
    • 9.3.4. Italy Onshore Floating Solar Market Outlook
      • 9.3.4.1. Market Size & Forecast
        • 9.3.4.1.1. By Value
      • 9.3.4.2. Market Share & Forecast
        • 9.3.4.2.1. By Component
        • 9.3.4.2.2. By Type
        • 9.3.4.2.3. By Application
    • 9.3.5. Spain Onshore Floating Solar Market Outlook
      • 9.3.5.1. Market Size & Forecast
        • 9.3.5.1.1. By Value
      • 9.3.5.2. Market Share & Forecast
        • 9.3.5.2.1. By Component
        • 9.3.5.2.2. By Type
        • 9.3.5.2.3. By Application
    • 9.3.6. Belgium Onshore Floating Solar Market Outlook
      • 9.3.6.1. Market Size & Forecast
        • 9.3.6.1.1. By Value
      • 9.3.6.2. Market Share & Forecast
        • 9.3.6.2.1. By Component
        • 9.3.6.2.2. By Type
        • 9.3.6.2.3. By Application

10. South America Onshore Floating Solar Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Component
    • 10.2.2. By Type
    • 10.2.3. By Application
    • 10.2.4. By Country
  • 10.3. South America: Country Analysis
    • 10.3.1. Brazil Onshore Floating Solar Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Component
        • 10.3.1.2.2. By Type
        • 10.3.1.2.3. By Application
    • 10.3.2. Colombia Onshore Floating Solar Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Component
        • 10.3.2.2.2. By Type
        • 10.3.2.2.3. By Application
    • 10.3.3. Argentina Onshore Floating Solar Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Component
        • 10.3.3.2.2. By Type
        • 10.3.3.2.3. By Application
    • 10.3.4. Chile Onshore Floating Solar Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Component
        • 10.3.4.2.2. By Type
        • 10.3.4.2.3. By Application
    • 10.3.5. Peru Onshore Floating Solar Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Component
        • 10.3.5.2.2. By Type
        • 10.3.5.2.3. By Application

11. Middle East & Africa Onshore Floating Solar Market Outlook

  • 11.1. Market Size & Forecast
    • 11.1.1. By Value
  • 11.2. Market Share & Forecast
    • 11.2.1. By Component
    • 11.2.2. By Type
    • 11.2.3. By Application
    • 11.2.4. By Country
  • 11.3. Middle East & Africa: Country Analysis
    • 11.3.1. Saudi Arabia Onshore Floating Solar Market Outlook
      • 11.3.1.1. Market Size & Forecast
        • 11.3.1.1.1. By Value
      • 11.3.1.2. Market Share & Forecast
        • 11.3.1.2.1. By Component
        • 11.3.1.2.2. By Type
        • 11.3.1.2.3. By Application
    • 11.3.2. UAE Onshore Floating Solar Market Outlook
      • 11.3.2.1. Market Size & Forecast
        • 11.3.2.1.1. By Value
      • 11.3.2.2. Market Share & Forecast
        • 11.3.2.2.1. By Component
        • 11.3.2.2.2. By Type
        • 11.3.2.2.3. By Application
    • 11.3.3. South Africa Onshore Floating Solar Market Outlook
      • 11.3.3.1. Market Size & Forecast
        • 11.3.3.1.1. By Value
      • 11.3.3.2. Market Share & Forecast
        • 11.3.3.2.1. By Component
        • 11.3.3.2.2. By Type
        • 11.3.3.2.3. By Application
    • 11.3.4. Turkey Onshore Floating Solar Market Outlook
      • 11.3.4.1. Market Size & Forecast
        • 11.3.4.1.1. By Value
      • 11.3.4.2. Market Share & Forecast
        • 11.3.4.2.1. By Component
        • 11.3.4.2.2. By Type
        • 11.3.4.2.3. By Application
    • 11.3.5. Israel Onshore Floating Solar Market Outlook
      • 11.3.5.1. Market Size & Forecast
        • 11.3.5.1.1. By Value
      • 11.3.5.2. Market Share & Forecast
        • 11.3.5.2.1. By Component
        • 11.3.5.2.2. By Type
        • 11.3.5.2.3. By Application

12. Asia Pacific Onshore Floating Solar Market Outlook

  • 12.1. Market Size & Forecast
    • 12.1.1. By Component
    • 12.1.2. By Type
    • 12.1.3. By Application
    • 12.1.4. By Country
  • 12.2. Asia-Pacific: Country Analysis
    • 12.2.1. China Onshore Floating Solar Market Outlook
      • 12.2.1.1. Market Size & Forecast
        • 12.2.1.1.1. By Value
      • 12.2.1.2. Market Share & Forecast
        • 12.2.1.2.1. By Component
        • 12.2.1.2.2. By Type
        • 12.2.1.2.3. By Application
    • 12.2.2. India Onshore Floating Solar Market Outlook
      • 12.2.2.1. Market Size & Forecast
        • 12.2.2.1.1. By Value
      • 12.2.2.2. Market Share & Forecast
        • 12.2.2.2.1. By Component
        • 12.2.2.2.2. By Type
        • 12.2.2.2.3. By Application
    • 12.2.3. Japan Onshore Floating Solar Market Outlook
      • 12.2.3.1. Market Size & Forecast
        • 12.2.3.1.1. By Value
      • 12.2.3.2. Market Share & Forecast
        • 12.2.3.2.1. By Component
        • 12.2.3.2.2. By Type
        • 12.2.3.2.3. By Application
    • 12.2.4. South Korea Onshore Floating Solar Market Outlook
      • 12.2.4.1. Market Size & Forecast
        • 12.2.4.1.1. By Value
      • 12.2.4.2. Market Share & Forecast
        • 12.2.4.2.1. By Component
        • 12.2.4.2.2. By Type
        • 12.2.4.2.3. By Application
    • 12.2.5. Australia Onshore Floating Solar Market Outlook
      • 12.2.5.1. Market Size & Forecast
        • 12.2.5.1.1. By Value
      • 12.2.5.2. Market Share & Forecast
        • 12.2.5.2.1. By Component
        • 12.2.5.2.2. By Type
        • 12.2.5.2.3. By Application
    • 12.2.6. Indonesia Onshore Floating Solar Market Outlook
      • 12.2.6.1. Market Size & Forecast
        • 12.2.6.1.1. By Value
      • 12.2.6.2. Market Share & Forecast
        • 12.2.6.2.1. By Component
        • 12.2.6.2.2. By Type
        • 12.2.6.2.3. By Application
    • 12.2.7. Vietnam Onshore Floating Solar Market Outlook
      • 12.2.7.1. Market Size & Forecast
        • 12.2.7.1.1. By Value
      • 12.2.7.2. Market Share & Forecast
        • 12.2.7.2.1. By Component
        • 12.2.7.2.2. By Type
        • 12.2.7.2.3. By Application

13. Market Dynamics

  • 13.1. Drivers
  • 13.2. Challenges

14. Market Trends and Developments

15. Company Profiles

  • 15.1. Ciel & Terre International
    • 15.1.1. Business Overview
    • 15.1.2. Key Revenue and Financials
    • 15.1.3. Recent Developments
    • 15.1.4. Key Personnel/Key Contact Person
    • 15.1.5. Key Product/Services Offered
  • 15.2. Kyocera Corporation
    • 15.2.1. Business Overview
    • 15.2.2. Key Revenue and Financials
    • 15.2.3. Recent Developments
    • 15.2.4. Key Personnel/Key Contact Person
    • 15.2.5. Key Product/Services Offered
  • 15.3. Wartsila Corporation
    • 15.3.1. Business Overview
    • 15.3.2. Key Revenue and Financials
    • 15.3.3. Recent Developments
    • 15.3.4. Key Personnel/Key Contact Person
    • 15.3.5. Key Product/Services Offered
  • 15.4. Infratech Industries
    • 15.4.1. Business Overview
    • 15.4.2. Key Revenue and Financials
    • 15.4.3. Recent Developments
    • 15.4.4. Key Personnel/Key Contact Person
    • 15.4.5. Key Product/Services Offered
  • 15.5. Floating Power Plant A/S
    • 15.5.1. Business Overview
    • 15.5.2. Key Revenue and Financials
    • 15.5.3. Recent Developments
    • 15.5.4. Key Personnel/Key Contact Person
    • 15.5.5. Key Product/Services Offered
  • 15.6. Statkraft
    • 15.6.1. Business Overview
    • 15.6.2. Key Revenue and Financials
    • 15.6.3. Recent Developments
    • 15.6.4. Key Personnel/Key Contact Person
    • 15.6.5. Key Product/Services Offered
  • 15.7. SPG Solar
    • 15.7.1. Business Overview
    • 15.7.2. Key Revenue and Financials
    • 15.7.3. Recent Developments
    • 15.7.4. Key Personnel/Key Contact Person
    • 15.7.5. Key Product/Services Offered
  • 15.8. Swimsol GmbH
    • 15.8.1. Business Overview
    • 15.8.2. Key Revenue and Financials
    • 15.8.3. Recent Developments
    • 15.8.4. Key Personnel/Key Contact Person
    • 15.8.5. Key Product/Services Offered
  • 15.9. Ocean Sun AS
    • 15.9.1. Business Overview
    • 15.9.2. Key Revenue and Financials
    • 15.9.3. Recent Developments
    • 15.9.4. Key Personnel/Key Contact Person
    • 15.9.5. Key Product/Services Offered
  • 15.10. Principle Power, Inc.
    • 15.10.1. Business Overview
    • 15.10.2. Key Revenue and Financials
    • 15.10.3. Recent Developments
    • 15.10.4. Key Personnel/Key Contact Person
    • 15.10.5. Key Product/Services Offered

16. Strategic Recommendations

17. About Us & Disclaimer