デフォルト表紙
市場調査レポート
商品コード
1383794

水力発電市場-世界の産業規模、シェア、動向、機会、予測、タイプ別、容量別、コンポーネント別、エンドユーザー別、地域別、競合別、2018~2028年

Hydropower Market - Global Industry Size, Share, Trends, Opportunity, and Forecast, Segmented By Type, By Capacity, By Component, By End-User, By Region, By Competition, 2018-2028

出版日: | 発行: TechSci Research | ページ情報: 英文 174 Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円

こちらのレポートには、数時間(ご購入金額の10%)分のアナリストへの質問/追加調査サービスが含まれております。

水力発電市場-世界の産業規模、シェア、動向、機会、予測、タイプ別、容量別、コンポーネント別、エンドユーザー別、地域別、競合別、2018~2028年
出版日: 2023年10月03日
発行: TechSci Research
ページ情報: 英文 174 Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 目次
概要

世界の水力発電市場は、2022年に2,200億8,000万米ドルと評価され、2028年までのCAGRは5.19%で、予測期間中に力強い成長を予測しています。

水力発電市場は、流れる水の運動エネルギーから生産される電力の発電、配電、利用を包含する世界の産業を指します。水力発電は、河川、ダム、貯水池といった水の力を利用して、再生可能で持続可能なエネルギーを生み出すことを中心に展開されています。

水力発電は、何世紀にも遡る豊かな歴史を持つ、最も古く、最も広く採用されている発電方法のひとつです。水力発電は、水の位置エネルギーをタービンや発電機を通して電気エネルギーに変換します。水力発電プロジェクトの規模はさまざまで、地域社会に電力を供給する小規模なものから、地域全体に電力を供給する数メガワットの大規模なものまです。

市場概要
予測期間 2024~2028年
市場規模 2,200億8,000万米ドル
2028年の市場規模 3,130億5,000万米ドル
CAGR 2023~2028年 5.19%
急成長セグメント 公益事業
最大市場 アジア太平洋

水力発電市場の主な構成要素は以下の通り:

魚の移動と通過:

水力発電の生態学的に重要な課題のひとつは、魚の移動への影響です。ダムは魚が産卵場所に到達するのを妨げる可能性があり、魚の個体数に悪影響を及ぼす可能性があります。この課題に対処するため、魚に優しいタービン設計や魚道システムの開発が進められているが、既存のダムの改修はコストがかかり複雑です。

エネルギー生産と生態系保全のバランス

クリーンなエネルギー生産と自然生態系保全の両立は、水力発電部門における永遠の課題です。このバランスをとるには、慎重な計画、革新的な技術、適応性のある管理戦略が必要です。

世界の水力発電市場において、このような環境と生態系に関する課題に対処するには、水力発電プロジェクトの生態系と社会への影響を考慮した総合的なアプローチが必要です。政府、プロジェクト開発者、環境団体は、クリーンなエネルギー生産の恩恵を最大化しつつ、生態系への害を最小化する解決策を見出すために、ますます協力するようになっています。

インフラの老朽化と改修

世界の水力発電市場におけるもう一つの大きな課題は、既存の水力発電施設のインフラの老朽化です。多くの水力発電所は数十年前に建設され、現在では効率と信頼性を維持するためのアップグレードと近代化が必要となっています。こうした施設の改修は、技術的・財政的な課題となっています。

老朽化したタービンと設備:

主な技術的課題の一つは、タービン、発電機、その他の重要機器の老朽化です。時間の経過とともに、これらの部品は磨耗や損傷を受け、効率の低下やメンテナンスの必要性の増加につながります。タービンや発電機の交換や改修は、複雑でコストのかかるプロセスになる可能性があります。

環境コンプライアンスと規制の更新:

水力発電に関連する生態学的懸念に対処するために環境規制が進化するにつれて、古い施設は最新の環境基準を満たすための改修が必要になる場合があります。これには、魚道システムの導入、水質管理の改善、土砂管理対策の強化などが含まれます。

改修費用とエネルギー生産のバランス:

財政的課題のひとつは、改修にかかる費用と、予想されるエネルギー生産量および収益の増加とのバランスをとることです。改修プロジェクトには多額の投資が必要な場合があり、エネルギー発電量の増加や効率性の向上によってこれらの費用を回収するには数年かかる可能性があります。

インフラの回復力と気候への適応:

気候条件の変化に直面して、水力発電施設は、洪水や干ばつを含む異常気象に対する耐性を高めなければならないです。耐障害性を向上させるための改修は、追加的なコストと工学的複雑さをもたらす可能性があります。

世界の水力発電市場におけるインフラの老朽化と改修の課題に対処するため、政府、電力会社、プロジェクト開拓者は、近代化の取り組みへの投資を増やしています。こうした取り組みには、先進技術の採用、メンテナンス方法の改善、進化する環境規制への対応などが含まれます。改修プロジェクトは、既存の水力発電資産の寿命を延ばし、クリーンエネルギー発電への継続的な貢献を確保するために不可欠です。

セグメント別洞察

100MW以上洞察

100MW超セグメントは、2022年に最大の市場シェアを占め、予測期間中もそれを維持すると予想されます。大規模水力発電所は、規模の経済の恩恵を受ける。つまり、発電所の容量が大きくなるにつれて、発電量当たりのコストは低下する傾向にあります。このため、大規模なプロジェクトは財政的に魅力的です。ダム建設やその他のインフラ整備に必要な多額の先行投資は、大規模プロジェクトの大きなエネルギー出力と収益の可能性によって正当化することができます。

通常、100MWを超える容量の水力発電所は、安定した信頼性の高いエネルギー供給を提供します。水力発電所はベースロード発電に適しており、地域の最低限のエネルギー需要を満たすために継続的に稼働することができます。この信頼性は、送電網を支え、安定した電力供給を確保するために不可欠であり、エネルギー需要の高い地域では特に価値があります。

大規模水力発電所は、送電網の安定性において極めて重要な役割を果たしています。水力発電所は電力需要の変化に素早く対応することができ、系統運用者に需給バランスをとるための貴重な手段を提供します。発電量を迅速に増減させる能力は、風力や太陽光のような再生可能エネルギーの変動時に送電網を安定させるのに役立ちます。

揚水発電所のような大規模水力発電所には、エネルギー貯蔵機能を備えたものもあります。需要が少ない間は余剰エネルギーを貯蔵し、需要が高まったときに放出することで、送電網の仮想バッテリーの役割を果たします。エネルギー貯蔵は、送電網がより断続的な再生可能エネルギー源を取り込むにつれて、ますます重要になっています。

大規模な水力発電所は大量の電力を生み出す可能性があり、プロジェクト開発者や電力会社にとっては高収益となります。大規模なエネルギー出力は、初期の設備投資と長期的な運用コストを相殺することができます。

地形や水資源に恵まれた地域によっては、大規模な水力発電プロジェクトの開発に適しています。このようなプロジェクトでは、河川の自然の流れを利用し、発電用に水を貯めるための大規模な貯水池を作ることができます。大規模なダムや貯水池の建設は環境に影響を与える可能性があるが、多数の小規模プロジェクトと比較すると、管理しやすいと考えられることが多いです。

公益事業洞察

公益事業分野は2022年に最大の市場シェアを占め、予測期間中も急成長が続くと予測されています。公益事業者は、住宅、商業、工業を含む大規模かつ多様な顧客層の電力需要を満たす役割を担っています。このような大きな需要に対応するため、公益事業会社は大きな発電能力を持つ電源を必要としています。多くの場合100MWを超える大規模水力発電所は、電力会社の電力需要を効率的に満たすために必要な規模を提供します。多くの水力発電所、特に容量の大きい水力発電所は、ベースロード電力を供給することができます。ベースロード電源は、最低限の電力需要を満たすために連続運転が可能であり、安定した信頼性の高い電力供給を保証するため、電力会社にとって不可欠です。ベースロード電源として機能する水力発電の能力は、風力や太陽光のような他の断続的な再生可能電源を補完します。大規模な水力発電所は、送電網の安定性と信頼性に大きく貢献します。電力需要の変動に素早く対応し、電力会社が送電網の需給バランスを取るのを助けることができます。この能力は、特に再生可能エネルギー源が変動する地域において、安定した強靭な電力インフラを維持するために不可欠です。ダム、貯水池、送電線などの水力発電インフラの開発と維持には、しばしば多額の資本投資が必要となります。資金力と長期的な計画能力を持つ公益事業者は、このような投資を行うのに適しています。こうした投資により、水力発電施設の信頼性の高い操業と、消費者への電力供給が保証されます。多くの電力会社は、エネルギー・ポートフォリオを多様化し、再生可能エネルギーの割合を増やすことに積極的に取り組んでいます。水力発電は、持続可能性の目標や規制要件に合致する、信頼性が高く確立された再生可能エネルギー源と考えられています。その安定した発電能力は、二酸化炭素排出量の削減を目指す電力会社にとって魅力的な選択肢となっています。様々な地域において、政府や規制当局は、有利な政策、補助金、再生可能エネルギー目標を通じて、電力会社が水力発電のような再生可能エネルギー源に投資するインセンティブを与えることが多いです。このような政策は、電力会社が水力発電プロジェクトの開発と拡大を優先することを奨励しています。水力発電は何十年もの間、主要な発電源であり、電力会社は歴史的にその開発において中心的な役割を果たしてきました。電力会社のポートフォリオに長年水力発電が存在することで、この分野における支配的なエネルギー源としての地位が確固たるものとなっています。

地域別洞察

アジア太平洋

アジア太平洋は水力発電の最大市場であり、世界市場シェアの40%以上を占めています。中国が世界最大の水力発電国であり、インド、ブラジルがこれに続く。

アジア太平洋における水力発電市場の成長は、以下を含む多くの要因によって牽引されている:

急速な経済成長:急速な経済成長:アジア太平洋は急速な経済成長を遂げており、それがエネルギー需要の増加につながっています。水力発電は、大規模で信頼性の高いエネルギー源であるため、この需要増に対応するのに適しています。

政府の支援:アジア太平洋の各国政府は、水力発電を含む再生可能エネルギーの開発を促進するため、財政的・規制的支援を行っています。こうした支援は、水力発電プロジェクトのコスト削減を助け、投資家にとってより魅力的なものとなっています。

豊富な水力発電資源:アジア太平洋には豊富な水力資源があります。これは、この地域の山岳地帯と大きな河川によるものです。

北米

北米は水力発電の第2位の市場です。米国はこの地域最大の水力発電国であり、カナダがこれに続く。

北米の水力発電市場の成長は、以下を含む多くの要因によって牽引されている:

再生可能エネルギー需要の増加北米では、気候変動への懸念や温室効果ガス排出削減の必要性から、再生可能エネルギーへの需要が高まっています。水力発電はクリーンで信頼性の高い再生可能エネルギー源です。

政府の支援:北米の各国政府は、水力発電を含む再生可能エネルギーの開発を促進するため、財政的・規制的支援を行っています。こうした支援は、水力発電プロジェクトのコスト削減を助け、投資家にとってより魅力的なものとなっています。

水力発電インフラの老朽化:北米の水力発電インフラの多くは老朽化しており、交換やアップグレードが必要です。これにより、新たな水力発電プロジェクトの機会が生まれています。

目次

第1章 概要

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 顧客の声

第5章 世界の水力発電市場展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • タイプ別(ミニ水力発電、マイクロ水力発電)
    • 容量別(100MW以上、10MW以下、その他)
    • コンポーネント別(土木建設、電気機械設備、電気、電力インフラ、その他)、
    • エンドユーザー別(産業用、公益事業用、その他)
    • 地域別
    • 企業別(2022年)
  • 市場マップ

第6章 北米の水力発電市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェア・予測
    • タイプ別
    • 容量別
    • コンポーネント別
    • エンドユーザー別
    • 国別
  • 北米:国別分析
    • 米国
    • カナダ
    • メキシコ

第7章 欧州の水力発電市場展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • コンポーネント別
    • エンドユーザー別
    • 国別
  • 欧州:国別分析
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン

第8章 アジア太平洋の水力発電市場展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • コンポーネント別
    • エンドユーザー別
    • 国別
  • アジア太平洋:国別分析
    • 中国
    • インド
    • 日本
    • 韓国
    • オーストラリア

第9章 南米の水力発電市場展望

  • 市場規模と予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • コンポーネント別
    • エンドユーザー別
    • 国別
  • 南米:国別分析
    • ブラジル
    • アルゼンチン
    • コロンビア

第10章 中東・アフリカの水力発電市場展望

  • 市場規模・予測
    • 金額別
  • 市場シェアと予測
    • タイプ別
    • 容量別
    • コンポーネント別
    • エンドユーザー別
    • 国別
  • 中東・アフリカ:国別分析
    • 南アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • クウェート
    • トルコ

第11章 市場力学

第12章 市場動向と発展

第13章 競合情勢

  • China Three Gorges Corporation
  • Statkraft AS.
  • GE Renewable Energy
  • Voith Group
  • Andritz AG
  • Siemens Energy AG
  • ALSTOM Holdings
  • ABB Ltd
  • Hitachi Ltd
  • Toshiba Corporation

第14章 戦略的提言

第15章 調査会社について・免責事項

目次
Product Code: 17552

Global Hydropower Market has valued at USD 220.08 billion in 2022 and is anticipated to project robust growth in the forecast period with a CAGR of 5.19% through 2028.

The hydropower market refers to the global industry encompassing the generation, distribution, and utilization of electricity produced from the kinetic energy of flowing water. It revolves around harnessing the power of water, typically in the form of rivers, dams, and reservoirs, to generate renewable and sustainable energy.

Hydropower is one of the oldest and most widely adopted methods of electricity generation, with a rich history dating back centuries. It involves the conversion of water's potential energy into electrical energy through turbines and generators. Hydropower projects vary in size, from small-scale installations serving localized communities to large, multi-megawatt facilities supplying power to entire regions.

Market Overview
Forecast Period2024-2028
Market Size 2022USD 220.08 Billion
Market Size 2028USD 313.05 Billion
CAGR 2023-20285.19%
Fastest Growing SegmentUtility
Largest MarketAsia-Pacific

Key components of the hydropower market include:

Hydropower Plants: These facilities are designed to capture the energy of moving water and convert it into electricity. They can be categorized into various types, such as run-of-river, reservoir, and pumped storage hydropower plants, each with its unique characteristics and applications.

Infrastructure: Hydropower projects often require extensive infrastructure, including dams, penstocks, turbines, generators, and transmission lines, to efficiently deliver electricity to consumers.

End-Users: The electricity generated by hydropower is distributed to various end-users, including residential, commercial, industrial, and utility sectors, contributing to the diversification of energy sources and meeting growing electricity demands.

Environmental Considerations: The hydropower market is increasingly focused on minimizing environmental impacts, such as habitat disruption and water resource management, while maximizing energy production and efficiency.

Policy and Regulation: Government policies, incentives, and regulatory frameworks influence the growth and development of the hydropower market, promoting renewable energy adoption, environmental sustainability, and grid integration.

The hydropower market continues to evolve, driven by a global shift toward renewable energy sources, energy security concerns, and efforts to reduce greenhouse gas emissions. It plays a vital role in addressing the world's growing energy needs while contributing to environmental sustainability and climate change mitigation.

Key Market Drivers

Renewable Energy Transition and Decarbonization Efforts

The global hydropower market is being driven by the worldwide transition toward renewable energy sources and ambitious decarbonization goals. As countries seek to reduce their reliance on fossil fuels and mitigate the impacts of climate change, hydropower stands out as a clean and sustainable energy option. It produces electricity without emitting greenhouse gases, making it a crucial component of clean energy portfolios.

Governments and organizations worldwide are setting targets to increase the share of renewable energy in their energy mix. For instance, the European Union aims to achieve 32% renewable energy consumption by 2030. Hydropower plays a pivotal role in helping nations meet these targets, making it a driver of growth in the global market.

The integration of hydropower into national energy strategies is further supported by international agreements like the Paris Agreement, which encourages countries to reduce their carbon emissions. As nations work to fulfill their commitments under such agreements, the development of new hydropower projects and the modernization of existing ones become paramount drivers in the global hydropower market.

Energy Security and Diversification of Energy Sources

Energy security is a critical driver in the global hydropower market, especially in regions where dependence on fossil fuels or energy imports poses significant risks. Hydropower provides a reliable and domestically sourced energy supply, reducing vulnerability to energy price fluctuations and supply disruptions.

Countries view hydropower as a means to diversify their energy sources and reduce their dependence on imported fossil fuels, enhancing their energy security. Hydropower projects, both large and small, contribute to a stable energy supply, which is essential for economic growth and national security.

In addition, hydropower's ability to provide energy storage through pumped storage hydroelectric plants adds to its significance in maintaining grid stability and ensuring a consistent power supply, particularly in areas prone to extreme weather events or geopolitical tensions.

Economic Development and Job Creation

The development of hydropower projects generates substantial economic benefits, including job creation and infrastructure development. These projects typically require a significant workforce for construction, operation, and maintenance, providing employment opportunities in both urban and rural areas.

Hydropower investments stimulate local economies by supporting industries such as construction, manufacturing, and services. Additionally, hydropower projects often lead to the development of new infrastructure, including roads, transmission lines, and water management systems, which can have positive ripple effects on regional development.

For many developing countries, hydropower projects represent a source of revenue and foreign investment, helping to finance other critical infrastructure projects and improve overall living standards. As such, the economic development potential of hydropower is a compelling driver for its growth on a global scale.

Technological Advancements and Innovation

Technological advancements are driving the global hydropower market by enhancing the efficiency and environmental sustainability of hydropower generation. Innovations in turbine design, materials, and control systems have led to increased energy output and reduced environmental impacts.

For instance, advanced fish-friendly turbine designs and fish passage technologies have mitigated the environmental impact on aquatic ecosystems, addressing a key concern associated with traditional hydropower dams. Additionally, the integration of digital technologies, such as artificial intelligence and remote monitoring, has improved the operational efficiency and reliability of hydropower facilities.

Pumped storage hydroelectric plants are benefiting from advancements in energy storage technologies, contributing to grid stability by efficiently storing and releasing electricity during peak demand periods. These technological innovations drive investments in the hydropower sector and make it a more competitive option in the global energy landscape.

Climate Resilience and Adaptation

Hydropower's role in climate resilience and adaptation is becoming increasingly critical as the world faces more frequent and severe climate-related challenges, such as droughts and extreme weather events. Hydropower infrastructure, including dams and reservoirs, can provide water storage and flood control capabilities, helping communities manage and adapt to changing climate conditions. In regions with water scarcity, hydropower projects are often designed to prioritize water resource management, ensuring a reliable water supply for agriculture, drinking water, and energy generation. These adaptations enhance the resilience of communities to climate-related risks.

Furthermore, hydropower contributes to reducing greenhouse gas emissions by displacing fossil fuel-based power generation, thus aligning with climate adaptation and mitigation strategies at both national and international levels. This climate resilience and mitigation potential make hydropower an essential driver in the global effort to combat climate change.

Grid Integration and Energy Transition

Hydropower plays a vital role in integrating intermittent renewable energy sources, such as wind and solar, into the electricity grid. Its ability to provide baseload power and grid stability complements the variability of renewables, ensuring a reliable electricity supply.

As countries increase their reliance on intermittent renewables to meet their clean energy targets, the need for flexible energy sources like hydropower grows. Hydropower can quickly respond to fluctuations in electricity demand, making it an ideal partner for wind and solar power.

Moreover, the flexibility of hydropower allows for the rapid adjustment of output, which is valuable in managing grid stability during sudden changes in supply and demand. This capability is especially relevant as more nations aim to achieve high levels of renewable energy penetration.

In conclusion, the global hydropower market is driven by a combination of factors, including the transition to renewable energy, energy security, economic development, technological advancements, climate resilience, and its role in grid integration. As the world seeks sustainable and reliable energy solutions, hydropower continues to be a crucial player in meeting these challenges and achieving a cleaner, more secure energy future.

Government Policies are Likely to Propel the Market

Renewable Portfolio Standards (RPS)

Renewable Portfolio Standards (RPS), also known as Renewable Energy Standards (RES) or Renewable Energy Portfolio Standards (REPS), are a prominent policy driver in the global hydropower market. These policies require utilities and energy providers to generate a specific percentage of their electricity from renewable sources, including hydropower.

RPS policies vary from country to country and state to state, but they all share the goal of promoting clean energy production. Hydropower, as a reliable and established renewable energy source, often plays a significant role in helping regions meet their RPS targets. Governments set specific benchmarks and timelines for increasing the share of renewables in the energy mix, spurring investment in new hydropower projects and the modernization of existing ones.

One example is the U.S., where various states have implemented RPS policies, each with its own targets and compliance mechanisms. These policies incentivize the growth of hydropower capacity, ensuring a steady market for this clean energy source.

Feed-in Tariffs (FiTs)

Feed-in Tariffs (FiTs) are another effective government policy that promotes the growth of the global hydropower market. Under FiT programs, governments offer fixed, premium rates for electricity generated from renewable sources, guaranteeing long-term contracts to renewable energy producers, including hydropower facilities.

FiTs provide stable and attractive returns on investment for hydropower project developers and investors. These policies are particularly beneficial for smaller-scale hydropower projects that may face financial uncertainties without such incentives. By offering favorable pricing structures, governments encourage the development of both large and small hydropower projects, contributing to the diversification of the energy mix.

Germany is known for its successful FiT program, which has driven significant growth in renewable energy capacity, including hydropower. Other countries, including Spain and Japan, have also implemented FiTs to stimulate investment in clean energy sources.

Tax Incentives and Investment Credits

Tax incentives and investment credits are essential government policies that provide financial benefits to hydropower project developers and investors. These incentives help offset the initial capital costs of constructing and upgrading hydropower facilities, making these projects more financially viable.

Common tax incentives include Investment Tax Credits (ITCs) and Production Tax Credits (PTCs). ITCs provide a percentage-based reduction in the upfront cost of building new hydropower plants or modernizing existing ones. PTCs offer tax credits for each megawatt-hour of electricity generated from qualifying renewable sources, including hydropower.

In the United States, the federal government has utilized both ITCs and PTCs to encourage investment in renewable energy projects, boosting the growth of the hydropower sector.

Environmental Regulations and Licensing Processes

Environmental regulations and licensing processes play a pivotal role in shaping the global hydropower market. Governments implement stringent regulations to ensure the responsible development and operation of hydropower projects, safeguarding the environment and aquatic ecosystems.

These regulations mandate comprehensive environmental impact assessments (EIAs) and require project developers to implement measures for mitigating ecological disturbances. For example, fish-friendly turbine designs and fish passage systems are often required to protect aquatic life during hydropower operations.

Governments also establish licensing processes that involve public consultation, permitting, and compliance with environmental standards. These processes provide a framework for assessing the feasibility and sustainability of hydropower projects while addressing stakeholder concerns.

The licensing and regulatory frameworks differ by country and region, but they all aim to strike a balance between energy development and environmental protection. By ensuring responsible hydropower development, governments facilitate the growth of the sector while maintaining environmental integrity.

Incentives for Small and Micro Hydropower

To encourage the development of small and micro hydropower projects, many governments implement specific incentives and policies tailored to these scales of facilities. Small and micro hydropower are often considered ideal for rural electrification, off-grid communities, and decentralized energy generation.

Government policies for small and micro hydropower may include grants, subsidies, preferential tariffs, and simplified permitting processes. These incentives make it more financially feasible for local communities and small enterprises to invest in hydropower projects, contributing to regional development and energy access.

In India, for example, the Ministry of New and Renewable Energy (MNRE) has implemented various programs and incentives to promote small hydropower projects and electrify remote areas.

Hydropower Research and Development Funding

Government funding for hydropower research and development (R&D) is a critical policy driver that fosters innovation and technological advancements in the sector. By allocating resources to R&D initiatives, governments support the development of more efficient and environmentally friendly hydropower technologies.

These R&D efforts focus on various aspects of hydropower, including turbine design, fish passage systems, sediment management, and grid integration. The goal is to enhance the performance and sustainability of hydropower projects while minimizing environmental impacts.

In the United States, the Department of Energy's Water Power Technologies Office provides funding for research projects aimed at advancing hydropower technologies. This funding promotes innovation and helps hydropower remain a competitive and viable clean energy source in the face of evolving energy challenges.

In conclusion, government policies play a pivotal role in driving the global hydropower market by promoting renewable energy adoption, offering financial incentives, regulating environmental aspects, supporting small-scale projects, and funding research and development. These policies collectively contribute to the sustainable growth of the hydropower sector as a clean and reliable source of electricity.

Key Market Challenges

Environmental and Ecological Concerns

One of the foremost challenges facing the global hydropower market is the significant environmental and ecological impact associated with the construction and operation of hydropower projects. While hydropower is a renewable and low-carbon energy source, it can have adverse effects on aquatic ecosystems, water quality, and local habitats. These concerns have led to increased scrutiny and opposition to new hydropower developments.

Habitat Disruption and Species Impacts:

Hydropower projects often involve the construction of dams and reservoirs, which can alter river and aquatic habitats. The flooding of large areas for reservoirs can submerge terrestrial ecosystems, displacing wildlife and altering natural migration patterns for fish species. Many fish species, such as salmon and trout, rely on free-flowing rivers to spawn, and the presence of dams can disrupt their life cycles.

Water Quality and Sediment Management:

Reservoirs formed by hydropower dams can trap sediment and alter natural sediment transport in rivers. This can lead to downstream erosion and adversely affect aquatic ecosystems. Additionally, stagnant water in reservoirs can result in water quality issues, such as increased nutrient levels and algal blooms, which can harm aquatic life.

Fish Migration and Passage:

One of the critical ecological challenges of hydropower is the impact on fish migration. Dams can block fish from reaching their spawning grounds, which can have detrimental effects on fish populations. To address this challenge, fish-friendly turbine designs and fish passage systems are being developed, but retrofitting existing dams can be costly and complex.

Balancing Energy Production and Ecosystem Conservation:

Balancing the need for clean energy generation with the conservation of natural ecosystems is a persistent challenge in the hydropower sector. Striking this balance requires careful planning, innovative technologies, and adaptive management strategies.

Addressing these environmental and ecological challenges in the global hydropower market necessitates a holistic approach that considers the ecological and social impacts of hydropower projects. Governments, project developers, and environmental organizations are increasingly working together to find solutions that minimize harm to ecosystems while maximizing the benefits of clean energy production.

Aging Infrastructure and Retrofitting

Another significant challenge in the global hydropower market is the aging infrastructure of existing hydropower facilities. Many hydropower plants were constructed several decades ago and are now in need of upgrades and modernization to maintain their efficiency and reliability. Retrofitting these facilities poses both technical and financial challenges.

Aging Turbines and Equipment:

One of the primary technical challenges is the aging of turbines, generators, and other critical equipment. Over time, these components experience wear and tear, leading to reduced efficiency and increased maintenance needs. Replacing or refurbishing turbines and generators can be a complex and costly process.

Environmental Compliance and Regulatory Updates:

As environmental regulations evolve to address ecological concerns associated with hydropower, older facilities may need to undergo retrofits to meet modern environmental standards. This can involve implementing fish passage systems, improving water quality management, and enhancing sediment control measures.

Balancing Retrofit Costs with Energy Production:

One of the financial challenges is balancing the costs of retrofitting with the expected increase in energy production and revenue. Retrofit projects can require substantial investments, and it may take several years to recoup these costs through increased energy generation and efficiency gains.

Infrastructure Resilience and Climate Adaptation:

In the face of changing climate conditions, hydropower facilities must be made more resilient to extreme weather events, including floods and droughts. Retrofitting to improve resilience can add additional costs and engineering complexity.

To address the challenges of aging infrastructure and retrofitting in the global hydropower market, governments, utility companies, and project developers are increasingly investing in modernization efforts. These efforts include the adoption of advanced technologies, improved maintenance practices, and compliance with evolving environmental regulations. Retrofit projects are essential for extending the lifespan of existing hydropower assets and ensuring their continued contribution to clean energy generation.

Segmental Insights

Above 100 MW Insights

The Above 100 MW segment had the largest market share in 2022 & expected to maintain it in the forecast period. Large hydropower plants benefit from economies of scale, which means that as the capacity of a plant increases, the cost per unit of electricity generated tends to decrease. This makes larger projects financially attractive. The significant upfront investment required for dam construction and other infrastructure can be justified by the substantial energy output and revenue potential of large-scale projects.

Hydropower plants with capacities above 100 MW typically provide a stable and reliable energy supply. They are well-suited for baseload power generation, meaning they can run continuously to meet the minimum energy demand of a region. This reliability is essential for supporting the grid and ensuring a consistent power supply, which is especially valuable in regions with high energy demand.

Large hydropower plants play a crucial role in grid stability. They can quickly respond to changes in electricity demand, providing grid operators with a valuable tool to balance supply and demand. The ability to ramp up or down power production swiftly helps stabilize the grid during fluctuations in renewable energy sources like wind and solar.

Some large-scale hydropower plants, such as pumped storage hydroelectric plants, offer energy storage capabilities. They can store excess energy during periods of low demand and release it when demand is high, acting as virtual batteries for the grid. Energy storage is increasingly important as the grid incorporates more intermittent renewable energy sources.

Large hydropower plants have the potential to generate a significant amount of electricity, which translates into higher revenue for project developers and utilities. The substantial energy output can offset the initial capital investment and operational costs over the long term.

Some regions with favorable topography and water resources are well-suited for the development of large hydropower projects. These projects can utilize the natural flow of rivers and create substantial reservoirs to store water for energy generation. While the construction of large dams and reservoirs can have environmental impacts, they are often considered more manageable when compared to numerous smaller-scale projects.

Utility Insights

The Utility segment had the largest market share in 2022 and is projected to experience rapid growth during the forecast period. Utilities are responsible for meeting the electricity needs of a large and diverse customer base, including residential, commercial, and industrial consumers. To serve such a significant demand, utilities require power sources with substantial generating capacity. Large-scale hydropower plants, often exceeding 100 MW, provide the necessary scale to meet the electricity demand of utilities efficiently. Many hydropower plants, particularly those with higher capacities, are capable of providing baseload power. Baseload power sources are essential for utilities because they can operate continuously to meet the minimum electricity demand, ensuring a stable and reliable power supply. Hydropower's ability to function as baseload power complements other intermittent renewable sources like wind and solar. Large hydropower plants contribute significantly to grid stability and reliability. They can quickly respond to fluctuations in electricity demand, helping utilities balance supply and demand on the grid. This capability is vital for maintaining a stable and resilient electrical infrastructure, particularly in regions with variable renewable energy sources. The development and maintenance of hydropower infrastructure, including dams, reservoirs, and transmission lines, often require substantial capital investment. Utilities, with their financial resources and long-term planning capabilities, are well-suited to undertake such investments. These investments ensure the reliable operation of hydropower facilities and the delivery of electricity to consumers. Many utilities are actively working to diversify their energy portfolios and increase the share of renewable energy sources. Hydropower is considered a reliable and established renewable energy source that aligns with sustainability goals and regulatory requirements. Its consistent generation capacity makes it an attractive option for utilities aiming to reduce their carbon footprint. In various regions, governments and regulatory authorities often incentivize utilities to invest in renewable energy sources like hydropower through favorable policies, subsidies, and renewable energy targets. These policies encourage utilities to prioritize the development and expansion of hydropower projects. Hydropower has been a primary source of electricity generation for many decades, and utilities have historically played a central role in its development. The long-standing presence of hydropower in utility portfolios has solidified its position as a dominant energy source in this sector.

.Regional Insights

Asia Pacific

Asia Pacific is the largest market for hydropower, accounting for over 40% of the global market share. China is the largest hydropower producer in the world, followed by India and Brazil.

The growth of the hydropower market in Asia Pacific is being driven by a number of factors, including:

Rapid economic growth: The Asia Pacific region is experiencing rapid economic growth, which is leading to an increase in energy demand. Hydropower is well-suited to meet this growing demand, as it is a large-scale and reliable source of energy.

Government support: Governments in the Asia Pacific region are providing financial and regulatory support to promote the development of renewable energy, including hydropower. This support is helping to reduce the cost of hydropower projects and making them more attractive to investors.

Abundant hydropower resources: The Asia Pacific region has abundant hydropower resources. This is due to the region's mountainous regions and large rivers.

North America

North America is the second-largest market for hydropower. The United States is the largest hydropower producer in the region, followed by Canada.

The growth of the hydropower market in North America is being driven by a number of factors, including:

Increasing demand for renewable energy: There is a growing demand for renewable energy in North America, due to concerns about climate change and the need to reduce greenhouse gas emissions. Hydropower is a clean and reliable source of renewable energy.

Government support: Governments in North America are providing financial and regulatory support to promote the development of renewable energy, including hydropower. This support is helping to reduce the cost of hydropower projects and making them more attractive to investors.

Aging hydropower infrastructure: Much of the hydropower infrastructure in North America is aging and needs to be replaced or upgraded. This is creating opportunities for new hydropower projects.

Key Market Players

China Three Gorges Corporation

Statkraft AS.

GE Renewable Energy

Voith Group

Andritz AG

Siemens Energy AG

ALSTOM Holdings

ABB Ltd

Hitachi Ltd

Toshiba Corporation

Report Scope:

In this report, the Global Hydropower Market has been segmented into the following categories, in addition to the industry trends which have also been detailed below:

Hydropower Market, By Type:

  • Mini Hydropower
  • Micro Hydropower

Hydropower Market, By Capacity:

  • Above 100 MW
  • Under 10 MW
  • Others

Hydropower Market, By Component:

  • Civil Construction
  • Electromechanical Equipment
  • Electric
  • Power Infrastructure
  • Others

Hydropower Market, By End-User:

  • Industrial
  • Utility
  • Others

Hydropower Market, By Region:

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • France
  • United Kingdom
  • Italy
  • Germany
  • Spain
  • Asia-Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Middle East & Africa
  • South Africa
  • Saudi Arabia
  • UAE
  • Kuwait
  • Turkey

Competitive Landscape

  • Company Profiles: Detailed analysis of the major companies present in the Global Hydropower Market.

Available Customizations:

  • Global Hydropower market report with the given market data, Tech Sci Research offers customizations according to a company's specific needs. The following customization options are available for the report:

Company Information

  • Detailed analysis and profiling of additional market players (up to five).

Table of Contents

1. Product Overview

  • 1.1. Market Definition
  • 1.2. Scope of the Market
    • 1.2.1. Markets Covered
    • 1.2.2. Years Considered for Study
  • 1.3. Key Market Segmentations

2. Research Methodology

  • 2.1. Objective of the Study
  • 2.2. Baseline Methodology
  • 2.3. Formulation of the Scope
  • 2.4. Assumptions and Limitations
  • 2.5. Sources of Research
    • 2.5.1. Secondary Research
    • 2.5.2. Primary Research
  • 2.6. Approach for the Market Study
    • 2.6.1. The Bottom-Up Approach
    • 2.6.2. The Top-Down Approach
  • 2.7. Methodology Followed for Calculation of Market Size & Market Shares
  • 2.8. Forecasting Methodology
    • 2.8.1. Data Triangulation & Validation

3. Executive Summary

4. Voice of Customer

5. Global Hydropower Market Outlook

  • 5.1. Market Size & Forecast
    • 5.1.1. By Value
  • 5.2. Market Share & Forecast
    • 5.2.1. By Type (Mini Hydropower, Micro Hydropower),
    • 5.2.2. By Capacity (Above 100 MW, Under 10 MW, Others),
    • 5.2.3. By Component (Civil Construction, Electromechanical Equipment, Electric, Power Infrastructure, Others),
    • 5.2.4. By End-User (Industrial, Utility, Others)
    • 5.2.5. By Region
    • 5.2.6. By Company (2022)
  • 5.3. Market Map

6. North America Hydropower Market Outlook

  • 6.1. Market Size & Forecast
    • 6.1.1. By Value
  • 6.2. Market Share & Forecast
    • 6.2.1. By Type
    • 6.2.2. By Capacity
    • 6.2.3. By Component
    • 6.2.4. By End-User
    • 6.2.5. By Country
  • 6.3. North America: Country Analysis
    • 6.3.1. United States Hydropower Market Outlook
      • 6.3.1.1. Market Size & Forecast
        • 6.3.1.1.1. By Value
      • 6.3.1.2. Market Share & Forecast
        • 6.3.1.2.1. By Type
        • 6.3.1.2.2. By Capacity
        • 6.3.1.2.3. By Component
        • 6.3.1.2.4. By End-User
    • 6.3.2. Canada Hydropower Market Outlook
      • 6.3.2.1. Market Size & Forecast
        • 6.3.2.1.1. By Value
      • 6.3.2.2. Market Share & Forecast
        • 6.3.2.2.1. By Type
        • 6.3.2.2.2. By Capacity
        • 6.3.2.2.3. By Component
        • 6.3.2.2.4. By End-User
    • 6.3.3. Mexico Hydropower Market Outlook
      • 6.3.3.1. Market Size & Forecast
        • 6.3.3.1.1. By Value
      • 6.3.3.2. Market Share & Forecast
        • 6.3.3.2.1. By Type
        • 6.3.3.2.2. By Capacity
        • 6.3.3.2.3. By Component
        • 6.3.3.2.4. By End-User

7. Europe Hydropower Market Outlook

  • 7.1. Market Size & Forecast
    • 7.1.1. By Value
  • 7.2. Market Share & Forecast
    • 7.2.1. By Type
    • 7.2.2. By Capacity
    • 7.2.3. By Component
    • 7.2.4. By End-User
    • 7.2.5. By Country
  • 7.3. Europe: Country Analysis
    • 7.3.1. Germany Hydropower Market Outlook
      • 7.3.1.1. Market Size & Forecast
        • 7.3.1.1.1. By Value
      • 7.3.1.2. Market Share & Forecast
        • 7.3.1.2.1. By Type
        • 7.3.1.2.2. By Capacity
        • 7.3.1.2.3. By Component
        • 7.3.1.2.4. By End-User
    • 7.3.2. United Kingdom Hydropower Market Outlook
      • 7.3.2.1. Market Size & Forecast
        • 7.3.2.1.1. By Value
      • 7.3.2.2. Market Share & Forecast
        • 7.3.2.2.1. By Type
        • 7.3.2.2.2. By Capacity
        • 7.3.2.2.3. By Component
        • 7.3.2.2.4. By End-User
    • 7.3.3. Italy Hydropower Market Outlook
      • 7.3.3.1. Market Size & Forecast
        • 7.3.3.1.1. By Value
      • 7.3.3.2. Market Share & Forecast
        • 7.3.3.2.1. By Type
        • 7.3.3.2.2. By Capacity
        • 7.3.3.2.3. By Component
        • 7.3.3.2.4. By End-User
    • 7.3.4. France Hydropower Market Outlook
      • 7.3.4.1. Market Size & Forecast
        • 7.3.4.1.1. By Value
      • 7.3.4.2. Market Share & Forecast
        • 7.3.4.2.1. By Type
        • 7.3.4.2.2. By Capacity
        • 7.3.4.2.3. By Component
        • 7.3.4.2.4. By End-User
    • 7.3.5. Spain Hydropower Market Outlook
      • 7.3.5.1. Market Size & Forecast
        • 7.3.5.1.1. By Value
      • 7.3.5.2. Market Share & Forecast
        • 7.3.5.2.1. By Type
        • 7.3.5.2.2. By Capacity
        • 7.3.5.2.3. By Component
        • 7.3.5.2.4. By End-User

8. Asia-Pacific Hydropower Market Outlook

  • 8.1. Market Size & Forecast
    • 8.1.1. By Value
  • 8.2. Market Share & Forecast
    • 8.2.1. By Type
    • 8.2.2. By Capacity
    • 8.2.3. By Component
    • 8.2.4. By End-User
    • 8.2.5. By Country
  • 8.3. Asia-Pacific: Country Analysis
    • 8.3.1. China Hydropower Market Outlook
      • 8.3.1.1. Market Size & Forecast
        • 8.3.1.1.1. By Value
      • 8.3.1.2. Market Share & Forecast
        • 8.3.1.2.1. By Type
        • 8.3.1.2.2. By Capacity
        • 8.3.1.2.3. By Component
        • 8.3.1.2.4. By End-User
    • 8.3.2. India Hydropower Market Outlook
      • 8.3.2.1. Market Size & Forecast
        • 8.3.2.1.1. By Value
      • 8.3.2.2. Market Share & Forecast
        • 8.3.2.2.1. By Type
        • 8.3.2.2.2. By Capacity
        • 8.3.2.2.3. By Component
        • 8.3.2.2.4. By End-User
    • 8.3.3. Japan Hydropower Market Outlook
      • 8.3.3.1. Market Size & Forecast
        • 8.3.3.1.1. By Value
      • 8.3.3.2. Market Share & Forecast
        • 8.3.3.2.1. By Type
        • 8.3.3.2.2. By Capacity
        • 8.3.3.2.3. By Component
        • 8.3.3.2.4. By End-User
    • 8.3.4. South Korea Hydropower Market Outlook
      • 8.3.4.1. Market Size & Forecast
        • 8.3.4.1.1. By Value
      • 8.3.4.2. Market Share & Forecast
        • 8.3.4.2.1. By Type
        • 8.3.4.2.2. By Capacity
        • 8.3.4.2.3. By Component
        • 8.3.4.2.4. By End-User
    • 8.3.5. Australia Hydropower Market Outlook
      • 8.3.5.1. Market Size & Forecast
        • 8.3.5.1.1. By Value
      • 8.3.5.2. Market Share & Forecast
        • 8.3.5.2.1. By Type
        • 8.3.5.2.2. By Capacity
        • 8.3.5.2.3. By Component
        • 8.3.5.2.4. By End-User

9. South America Hydropower Market Outlook

  • 9.1. Market Size & Forecast
    • 9.1.1. By Value
  • 9.2. Market Share & Forecast
    • 9.2.1. By Type
    • 9.2.2. By Capacity
    • 9.2.3. By Component
    • 9.2.4. By End-User
    • 9.2.5. By Country
  • 9.3. South America: Country Analysis
    • 9.3.1. Brazil Hydropower Market Outlook
      • 9.3.1.1. Market Size & Forecast
        • 9.3.1.1.1. By Value
      • 9.3.1.2. Market Share & Forecast
        • 9.3.1.2.1. By Type
        • 9.3.1.2.2. By Capacity
        • 9.3.1.2.3. By Component
        • 9.3.1.2.4. By End-User
    • 9.3.2. Argentina Hydropower Market Outlook
      • 9.3.2.1. Market Size & Forecast
        • 9.3.2.1.1. By Value
      • 9.3.2.2. Market Share & Forecast
        • 9.3.2.2.1. By Type
        • 9.3.2.2.2. By Capacity
        • 9.3.2.2.3. By Component
        • 9.3.2.2.4. By End-User
    • 9.3.3. Colombia Hydropower Market Outlook
      • 9.3.3.1. Market Size & Forecast
        • 9.3.3.1.1. By Value
      • 9.3.3.2. Market Share & Forecast
        • 9.3.3.2.1. By Type
        • 9.3.3.2.2. By Capacity
        • 9.3.3.2.3. By Component
        • 9.3.3.2.4. By End-User

10. Middle East and Africa Hydropower Market Outlook

  • 10.1. Market Size & Forecast
    • 10.1.1. By Value
  • 10.2. Market Share & Forecast
    • 10.2.1. By Type
    • 10.2.2. By Capacity
    • 10.2.3. By Component
    • 10.2.4. By End-User
    • 10.2.5. By Country
  • 10.3. MEA: Country Analysis
    • 10.3.1. South Africa Hydropower Market Outlook
      • 10.3.1.1. Market Size & Forecast
        • 10.3.1.1.1. By Value
      • 10.3.1.2. Market Share & Forecast
        • 10.3.1.2.1. By Type
        • 10.3.1.2.2. By Capacity
        • 10.3.1.2.3. By Component
        • 10.3.1.2.4. By End-User
    • 10.3.2. Saudi Arabia Hydropower Market Outlook
      • 10.3.2.1. Market Size & Forecast
        • 10.3.2.1.1. By Value
      • 10.3.2.2. Market Share & Forecast
        • 10.3.2.2.1. By Type
        • 10.3.2.2.2. By Capacity
        • 10.3.2.2.3. By Component
        • 10.3.2.2.4. By End-User
    • 10.3.3. UAE Hydropower Market Outlook
      • 10.3.3.1. Market Size & Forecast
        • 10.3.3.1.1. By Value
      • 10.3.3.2. Market Share & Forecast
        • 10.3.3.2.1. By Type
        • 10.3.3.2.2. By Capacity
        • 10.3.3.2.3. By Component
        • 10.3.3.2.4. By End-User
    • 10.3.4. Kuwait Hydropower Market Outlook
      • 10.3.4.1. Market Size & Forecast
        • 10.3.4.1.1. By Value
      • 10.3.4.2. Market Share & Forecast
        • 10.3.4.2.1. By Type
        • 10.3.4.2.2. By Capacity
        • 10.3.4.2.3. By Component
        • 10.3.4.2.4. By End-User
        • 10.3.4.2.5.
    • 10.3.5. Turkey Hydropower Market Outlook
      • 10.3.5.1. Market Size & Forecast
        • 10.3.5.1.1. By Value
      • 10.3.5.2. Market Share & Forecast
        • 10.3.5.2.1. By Type
        • 10.3.5.2.2. By Capacity
        • 10.3.5.2.3. By Component
        • 10.3.5.2.4. By End-User

11. Market Dynamics

12. Market Trends & Developments

13. Competitive Landscape

  • 13.1. China Three Gorges Corporation
    • 13.1.1. Business Overview
    • 13.1.2. Key Revenue and Financials
    • 13.1.3. Recent Developments
    • 13.1.4. Key Personnel/Key Contact Person
    • 13.1.5. Key Product/Services Offered
  • 13.2. Statkraft AS.
    • 13.2.1. Business Overview
    • 13.2.2. Key Revenue and Financials
    • 13.2.3. Recent Developments
    • 13.2.4. Key Personnel/Key Contact Person
    • 13.2.5. Key Product/Services Offered
  • 13.3. GE Renewable Energy
    • 13.3.1. Business Overview
    • 13.3.2. Key Revenue and Financials
    • 13.3.3. Recent Developments
    • 13.3.4. Key Personnel/Key Contact Person
    • 13.3.5. Key Product/Services Offered
  • 13.4. Voith Group
    • 13.4.1. Business Overview
    • 13.4.2. Key Revenue and Financials
    • 13.4.3. Recent Developments
    • 13.4.4. Key Personnel/Key Contact Person
    • 13.4.5. Key Product/Services Offered
  • 13.5. Andritz AG
    • 13.5.1. Business Overview
    • 13.5.2. Key Revenue and Financials
    • 13.5.3. Recent Developments
    • 13.5.4. Key Personnel/Key Contact Person
    • 13.5.5. Key Product/Services Offered
  • 13.6. Siemens Energy AG
    • 13.6.1. Business Overview
    • 13.6.2. Key Revenue and Financials
    • 13.6.3. Recent Developments
    • 13.6.4. Key Personnel/Key Contact Person
    • 13.6.5. Key Product/Services Offered
  • 13.7. ALSTOM Holdings
    • 13.7.1. Business Overview
    • 13.7.2. Key Revenue and Financials
    • 13.7.3. Recent Developments
    • 13.7.4. Key Personnel/Key Contact Person
    • 13.7.5. Key Product/Services Offered
  • 13.8. ABB Ltd
    • 13.8.1. Business Overview
    • 13.8.2. Key Revenue and Financials
    • 13.8.3. Recent Developments
    • 13.8.4. Key Personnel/Key Contact Person
    • 13.8.5. Key Product/Services Offered
  • 13.9. Hitachi Ltd
    • 13.9.1. Business Overview
    • 13.9.2. Key Revenue and Financials
    • 13.9.3. Recent Developments
    • 13.9.4. Key Personnel/Key Contact Person
    • 13.9.5. Key Product/Services Offered
  • 13.10. Toshiba Corporation
    • 13.10.1. Business Overview
    • 13.10.2. Key Revenue and Financials
    • 13.10.3. Recent Developments
    • 13.10.4. Key Personnel/Key Contact Person
    • 13.10.5. Key Product/Services Offered

14. Strategic Recommendations

15. About Us & Disclaimer