デフォルト表紙
市場調査レポート
商品コード
1725064

宇宙軌道上燃料補給市場の2032年までの予測: 推進剤、燃料補給技術タイプ、機能、プラットフォーム、用途、エンドユーザー、地域別の世界分析

Space In-Orbit Refueling Market Forecasts to 2032 - Global Analysis By Propellant Type, Refueling Technology Type, Capability, Platform, Application, End User and By Geography


出版日
ページ情報
英文 200+ Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=145.28円
宇宙軌道上燃料補給市場の2032年までの予測: 推進剤、燃料補給技術タイプ、機能、プラットフォーム、用途、エンドユーザー、地域別の世界分析
出版日: 2025年05月03日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、世界の宇宙軌道上燃料補給市場は2025年に15億3,266万米ドルを占め、2032年には39億3,032万米ドルに達すると予測され、予測期間中のCAGRは14.4%で成長する見込みです。

軌道上給油は、宇宙船が宇宙空間にいる間に給油することを可能にする新技術であり、宇宙船の運用寿命を大幅に延ばし、ミッション能力を拡大します。この方法によって、まったく新しいシステムを立ち上げる必要性が低くなり、衛星、宇宙望遠鏡、さらには有人ミッションが地球に戻ることなく燃料を補給できるようになることで、より持続可能な宇宙運用が促進されます。

欧州宇宙機関(ESA)によると、ASSIST(Autonomous and SpacE Interface for Satellite Servicing and Transfer)プロジェクトには、欧州4カ国の6つのパートナー組織が参加しており、衛星の15年の寿命の間に何度も燃料補給を可能にする標準化されたドッキングメカニズムの構築を目指しています。

高まる衛星寿命延長への関心

通信衛星の寿命は通常10年から15年で、そのほとんどは操縦と定点保持のための燃料の利用可能性に依存します。それにもかかわらず、これらの衛星の多くは、燃料が尽きた後も、ペイロード、太陽電池アレイ、プロセッサーなどのサブシステムを完全に稼動させたまま維持しています。さらに、軌道上での燃料補給を可能にすることで、退役や代替衛星の打ち上げを遅らせる軌道上燃料補給という画期的なソリューションもあります。運用期間が1年延びるごとに数,000万米ドルの収益増につながるGEOの高価値衛星では、これは非常に有益です。

開発と運用のための高いスタートアップ費用

軌道上での宇宙燃料補給には長期的なメリットがあるとはいえ、ミッションの実施、試験、技術開発には多額の初期投資が必要です。微小重力下でのロボット・サービス、流体移送、正確なドッキングを管理できる宇宙船の設計には、数億米ドルかかることが多いです。これには高度なエンジニアリングと厳格な宇宙資格認定手順が必要となります。さらに、特に深宇宙や地球低軌道外でのミッションの場合、これらの補給機が軌道に打ち上げられる際に費用が発生します。軌道上給油ソリューションの広範な導入は、このような資本要件によって遅々として進まず、多くの民間事業者、特に小規模な事業者にとっては参入への大きな障壁となっています。

保守可能なモジュール式衛星設計の開発

宇宙産業が標準化とモジュール型アーキテクチャに移行するにつれて、保守・補給を念頭に置いて設計される新型衛星の数が増えています。この変化は、ESAのSPACECRAFTプログラムやNASAのCSA(Cooperative Servicing Aids)に見られるような、業界全体のドッキング・補給ガイドラインを作成する道を開きます。さらに、プラグアンドプレイの電源モジュールや交換可能な推進ユニットなど、軌道上でアップグレードやメンテナンスが可能なモジュール部品が、メーカーによって使用され始めています。定期的なメンテナンス、アップグレード、燃料補給が、特別な出来事ではなく、当たり前のことになるにつれて、この動向は、軌道上給油事業者に、より広範な軌道上サービス・エコシステムに統合する大きなチャンスを提供しています。

高いミッションの複雑性と技術的リスク

軌道上での燃料補給には、極めて精密なドッキング、流体の移送、漏れの検出、熱管理のすべてが必要です。なぜなら、これらの作業は、修理が事実上不可能な真空状態の宇宙空間で完了しなければならないからです。機械的な不具合や些細なズレがあれば、ミッション全体が危険にさらされる可能性があります。さらに、技術は無重力状態での流体力学を考慮する必要があり、地球上のシステムとはまったく異なる特別設計のポンプやバルブが必要となります。宇宙空間での検証にはコストと時間がかかり、これらのシステムで利用できる地上試験はほとんどないです。

COVID-19の影響:

サプライチェーンの中断、重要なミッションの延期、研究開発の遅れにより、COVID-19の大流行は当初、宇宙軌道上補給市場の進展を遅らせた。新技術の試験と配備は、閉鎖と制限によって妨げられ、いくつかの宇宙プロジェクトの資金は、より差し迫った要件に流用されました。衛星の寿命を保証し、新規打ち上げの頻度を下げるために、パンデミックはまた、より強靭な宇宙インフラと、より長持ちする衛星コンステレーションの必要性を浮き彫りにしました。さらに、自律的な宇宙運用に対する需要の高まりによってもたらされた、このような焦点の変更、新たな投資、戦略的パートナーシップの結果として、市場はパンデミック後の時代に成長すると位置づけられました。

予測期間中、化学推進剤セグメントが最大となる見込み

化学推進剤セグメントは、予測期間中に最大の市場シェアを占めると予想されます。ヒドラジン、液体水素、ヒドラジン誘導体を含むこれらの推進剤は、姿勢制御、ステーション維持、軌道変更を含む様々な軌道操作のために宇宙船で一般的に使用されています。化学推進剤は、そのよく理解された技術、高い推力能力、さまざまな宇宙環境における信頼性の高い性能により、電気推進が進歩した現在でも、近い将来の燃料補給ミッションの最良の選択肢となっています。さらに、特に地球低軌道と静止衛星では、市場は引き続きこのセグメントによって支配されると予想されます。

予測期間中、CAGRが最も高くなると予想されるのは非冷媒燃料補給セグメントです。

ヒドラジン、グリーン推進剤、電気推進システムのような非冷媒推進剤は、保管に極低温を必要とする極低温燃料よりも取り扱いと保管が容易であるため、予測期間中、非冷媒燃料補給セグメントが最も高い成長率を示すと予測されます。これらの推進剤は、インフラを最小限に抑え、ミッションの寿命を長くする必要のある、コンステレーションや小型衛星にとって特に魅力的です。さらに、より安全な取り扱いと環境への影響を低減するグリーン推進剤技術の開発も、この拡大に拍車をかけています。商業宇宙オペレーターや地球低軌道(LEO)衛星は、より大きな柔軟性と費用対効果を提供するため、非冷媒燃料補給を好んでいます。

最大のシェアを占める地域:

予測期間中、北米地域が最大の市場シェアを占めると予想されるが、これはSpaceXやBlue Originのような重要な非公開会社やNASAのような重要な宇宙機関の存在感が強いことによる。衛星のメンテナンスと燃料補給技術への大規模な投資により、米国は軌道上燃料補給を含む宇宙インフラの技術開発をリードしています。さらに、軌道上燃料補給技術の開発と導入は、北米の洗練された宇宙政策、規制の枠組み、確立された商業宇宙エコシステムによって可能となっています。

CAGRが最も高い地域:

予測期間中、アジア太平洋が最も高いCAGRを示すと予測されます。この地域では、中国、インド、日本などの国々に後押しされて、宇宙探査と衛星打ち上げが急速に拡大しており、軌道上燃料補給などの宇宙インフラ技術に対する顕著なニーズが生まれています。成長の主な原動力となっているのは、軌道上の宇宙ステーションや月探査計画といった中国の野心的な宇宙計画や、通信衛星やリモートセンシング衛星の数を増やしているインドです。民間セクターも宇宙活動に参入しており、この地域は宇宙イノベーションへの大規模な投資を目の当たりにしています。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下の無料カスタマイズオプションのいずれかをご利用いただけます:

  • 企業プロファイル
    • 追加市場企業の包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査資料
    • 1次調査資料
    • 2次調査情報源
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • 用途分析
  • エンドユーザー分析
  • 新興市場
  • COVID-19の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の宇宙軌道上燃料補給市場:推進剤別

  • 化学推進剤
  • 電気推進剤

第6章 世界の宇宙軌道上燃料補給市場:燃料補給技術タイプ別

  • 極低温燃料補給
  • 非極低温燃料補給

第7章 世界の宇宙軌道上燃料補給市場:機能別

  • 推進剤移送
  • 軌道上ランデブー
  • 軌道上推進剤貯蔵

第8章 世界の宇宙軌道上燃料補給市場:プラットフォーム別

  • 衛星
  • 宇宙ステーション
  • 宇宙探査探査機

第9章 世界の宇宙軌道上燃料補給市場:用途別

  • コミュニケーション
  • 衛星サービス
  • 深宇宙ミッション
  • その他の用途

第10章 世界の宇宙軌道上燃料補給市場:エンドユーザー別

  • 政府機関
  • 民間宇宙企業

第11章 世界の宇宙軌道上燃料補給市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他の欧州
  • アジア太平洋
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他のアジア太平洋
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他の南米
  • 中東・アフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他の中東・アフリカ

第12章 主な発展

  • 契約、パートナーシップ、コラボレーション、ジョイントベンチャー
  • 買収と合併
  • 新製品発売
  • 事業拡大
  • その他の主要戦略

第13章 企業プロファイリング

  • Altius Space Machines, Inc
  • SpaceX
  • Lockheed Martin Corporation
  • Tethers Unlimited, Inc
  • Maxar Technologies Inc
  • Northrop Grumman Corporation
  • ClearSpace Inc
  • Astroscale Holdings Inc
  • Obruta Space Solutions Crop
  • D-Orbit SpA
  • Eta Space
  • Thales
  • Momentus Space Inc
  • LMO Space
図表

List of Tables

  • Table 1 Global Space In-Orbit Refueling Market Outlook, By Region (2024-2032) ($MN)
  • Table 2 Global Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 3 Global Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 4 Global Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 5 Global Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 6 Global Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 7 Global Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 8 Global Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 9 Global Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 10 Global Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 11 Global Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 12 Global Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 13 Global Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 14 Global Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 15 Global Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 16 Global Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 17 Global Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 18 Global Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 19 Global Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 20 Global Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 21 Global Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 22 Global Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 23 Global Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
  • Table 24 North America Space In-Orbit Refueling Market Outlook, By Country (2024-2032) ($MN)
  • Table 25 North America Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 26 North America Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 27 North America Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 28 North America Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 29 North America Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 30 North America Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 31 North America Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 32 North America Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 33 North America Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 34 North America Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 35 North America Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 36 North America Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 37 North America Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 38 North America Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 39 North America Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 40 North America Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 41 North America Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 42 North America Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 43 North America Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 44 North America Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 45 North America Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 46 North America Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
  • Table 47 Europe Space In-Orbit Refueling Market Outlook, By Country (2024-2032) ($MN)
  • Table 48 Europe Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 49 Europe Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 50 Europe Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 51 Europe Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 52 Europe Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 53 Europe Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 54 Europe Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 55 Europe Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 56 Europe Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 57 Europe Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 58 Europe Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 59 Europe Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 60 Europe Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 61 Europe Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 62 Europe Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 63 Europe Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 64 Europe Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 65 Europe Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 66 Europe Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 67 Europe Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 68 Europe Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 69 Europe Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
  • Table 70 Asia Pacific Space In-Orbit Refueling Market Outlook, By Country (2024-2032) ($MN)
  • Table 71 Asia Pacific Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 72 Asia Pacific Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 73 Asia Pacific Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 74 Asia Pacific Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 75 Asia Pacific Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 76 Asia Pacific Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 77 Asia Pacific Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 78 Asia Pacific Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 79 Asia Pacific Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 80 Asia Pacific Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 81 Asia Pacific Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 82 Asia Pacific Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 83 Asia Pacific Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 84 Asia Pacific Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 85 Asia Pacific Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 86 Asia Pacific Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 87 Asia Pacific Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 88 Asia Pacific Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 89 Asia Pacific Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 90 Asia Pacific Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 91 Asia Pacific Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 92 Asia Pacific Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
  • Table 93 South America Space In-Orbit Refueling Market Outlook, By Country (2024-2032) ($MN)
  • Table 94 South America Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 95 South America Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 96 South America Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 97 South America Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 98 South America Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 99 South America Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 100 South America Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 101 South America Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 102 South America Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 103 South America Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 104 South America Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 105 South America Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 106 South America Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 107 South America Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 108 South America Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 109 South America Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 110 South America Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 111 South America Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 112 South America Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 113 South America Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 114 South America Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 115 South America Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
  • Table 116 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Country (2024-2032) ($MN)
  • Table 117 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Propellant Type (2024-2032) ($MN)
  • Table 118 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Chemical Propellants (2024-2032) ($MN)
  • Table 119 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Electric Propellants (2024-2032) ($MN)
  • Table 120 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Refueling Technology Type (2024-2032) ($MN)
  • Table 121 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Cryogenic Refueling (2024-2032) ($MN)
  • Table 122 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Non-Cryogenic Refueling (2024-2032) ($MN)
  • Table 123 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Capability (2024-2032) ($MN)
  • Table 124 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Propellant Transfer (2024-2032) ($MN)
  • Table 125 Middle East & Africa Space In-Orbit Refueling Market Outlook, By In-Orbit Rendezvous (2024-2032) ($MN)
  • Table 126 Middle East & Africa Space In-Orbit Refueling Market Outlook, By In-Orbit Propellant Storage (2024-2032) ($MN)
  • Table 127 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Platform (2024-2032) ($MN)
  • Table 128 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Satellites (2024-2032) ($MN)
  • Table 129 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Space Stations (2024-2032) ($MN)
  • Table 130 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Space Exploration Probes (2024-2032) ($MN)
  • Table 131 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Application (2024-2032) ($MN)
  • Table 132 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Communication (2024-2032) ($MN)
  • Table 133 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Satellite Servicing (2024-2032) ($MN)
  • Table 134 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Deep Space Missions (2024-2032) ($MN)
  • Table 135 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Other Applications (2024-2032) ($MN)
  • Table 136 Middle East & Africa Space In-Orbit Refueling Market Outlook, By End User (2024-2032) ($MN)
  • Table 137 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Government Agencies (2024-2032) ($MN)
  • Table 138 Middle East & Africa Space In-Orbit Refueling Market Outlook, By Private Space Companies (2024-2032) ($MN)
目次
Product Code: SMRC29370

According to Stratistics MRC, the Global Space In-Orbit Refueling Market is accounted for $1532.66 million in 2025 and is expected to reach $3930.32 million by 2032 growing at a CAGR of 14.4% during the forecast period. Space in-orbit refueling is an emerging technology that enables spacecraft to be refueled while in space, significantly extending their operational lifespans and expanding mission capabilities. This method lowers the need for launching completely new systems and promotes more sustainable space operations by enabling satellites, space telescopes, and even crewed missions to refuel without going back to Earth

According to the European Space Agency (ESA), the ASSIST (Autonomous and SpacE Interface for Satellite Servicing and Transfer) project involves 6 partner organizations across 4 European countries, aiming to create a standardized docking mechanism that allows multiple refuelings during a satellite's 15-year lifetime.

Market Dynamics:

Driver:

Growing interest in satellite life extension

A communication satellite's lifespan is usually between 10 and 15 years, depending mostly on the availability of fuel for maneuvering and station-keeping. Nonetheless, even after their fuel runs out, a large number of these satellites maintain fully operational subsystems, including payloads, solar arrays, and processors. Additionally, a game-changing solution is space in-orbit refueling, which delays decommissioning and replacement launches by allowing fuel replenishment while in orbit. With high-value satellites in GEO, where every extra year of operation can result in tens of millions of dollars in increased revenue generation, this is extremely beneficial.

Restraint:

High start-up costs for development and operations

Even though in-orbit space refueling has long-term advantages, it necessitates a large initial investment in mission execution, testing, and technology development. It often costs hundreds of millions of dollars to design spacecraft that can manage robotic servicing, fluid transfer, and precise docking in microgravity. This requires advanced engineering and stringent space qualification procedures. Furthermore, expenses are incurred when these servicing vehicles are launched into orbit, particularly for missions that are deep space or outside of low Earth orbit. The broad adoption of in-orbit refueling solutions is being slowed down by these capital requirements, which present a significant barrier to entry for many commercial operators, especially smaller players.

Opportunity:

Development of serviceable and modular satellite designs

A growing number of new satellites are being designed with servicing and refueling in mind as the space industry shifts toward standardization and modular architecture. This change makes way for the creation of industry-wide docking and refueling guidelines, like those found in ESA's SPACECRAFT program and NASA's Cooperative Servicing Aids (CSA). Moreover, modular parts that can be upgraded or maintained in orbit, such as plug-and-play power modules or replaceable propulsion units, are starting to be used by manufacturers. As regular maintenance, upgrades, and fuel top-ups become commonplace rather than extraordinary occurrences, this trend offers in-orbit refueling providers a huge chance to integrate into a broader on-orbit servicing ecosystem.

Threat:

High mission complexity and technical risk

Extremely precise docking, fluid transfer, leak detection, and thermal management are all necessary for in-orbit refueling because these tasks must be completed in the vacuum of space, where repairs are practically impossible. Any mechanical malfunctions or minor misalignments could put the entire mission in danger. Additionally, technologies need to take into consideration the fluid dynamics in zero gravity, which necessitates specially designed pumps and valves that are very different from those found in Earth-based systems. In-space validation is costly and time-consuming, and there is little ground testing available for these systems.

Covid-19 Impact:

Due to supply chain interruptions, postponed important missions, and delayed research and development efforts, the COVID-19 pandemic initially slowed down progress in the space in-orbit refuelling market. New technology testing and deployment were hampered by lockdowns and restrictions, and funds for some space projects were diverted to more pressing requirements. To guarantee satellite longevity and lower the frequency of new launches, the pandemic also highlighted the need for more resilient space infrastructure and longer-lasting satellite constellations. Furthermore, the market was positioned for growth in the post-pandemic era as a result of this change in focus, renewed investment, and strategic partnerships brought about by the growing demand for autonomous space operations.

The chemical propellants segment is expected to be the largest during the forecast period

The chemical propellants segment is expected to account for the largest market share during the forecast period. These propellants, which include hydrazine, liquid hydrogen, and hydrazine derivatives, are commonly used in spacecraft for a variety of orbital maneuvers, including attitude control, station-keeping, and orbital changes. Chemical propellants are still the best option for refueling missions in the near future due to their well-understood technology, high thrust capabilities, and reliable performance in a range of space environments, even with advances in electric propulsion. Moreover, the market is anticipated to remain dominated by this segment, particularly for low-Earth orbit and geostationary satellites.

The non-cryogenic refueling segment is expected to have the highest CAGR during the forecast period

Over the forecast period, the non-cryogenic refueling segment is predicted to witness the highest growth rate because they are easier to handle and store than cryogenic fuels, which need extremely cold temperatures to be stored, non-cryogenic propellants like hydrazine, green propellants, and electric propulsion systems are becoming more and more popular. These propellants are especially appealing for constellations and smaller satellites that need to have minimal infrastructure and longer mission lifespans. Additionally, the development of green propellant technologies, which provide safer handling and a lower environmental impact, is also fueling this expansion. Commercial space operators and low Earth orbit (LEO) satellites favor non-cryogenic refueling because it offers greater flexibility and cost-effectiveness.

Region with largest share:

During the forecast period, the North America region is expected to hold the largest market share, driven by the strong presence of important private companies like SpaceX and Blue Origin, as well as important space agencies like NASA. With large investments in satellite maintenance and refueling technologies, the United States is leading the way in technological developments for space infrastructure, including in-orbit refueling. Additionally, the development and implementation of in-orbit refueling technologies are made possible by North America's sophisticated space policies, regulatory frameworks, and established commercial space ecosystem.

Region with highest CAGR:

Over the forecast period, the Asia Pacific region is anticipated to exhibit the highest CAGR. The swift expansion of space exploration and satellite launches in the region, fueled by nations such as China, India, and Japan, is creating a notable need for space infrastructure technologies, such as in-orbit refueling. Growth is primarily driven by China's ambitious space programs, such as its plans for orbital space stations and lunar exploration, as well as India's growing fleet of communication and remote sensing satellites. The private sector is also getting involved in space activities, and the region is witnessing significant investments in space innovation.

Key players in the market

Some of the key players in Space In-Orbit Refueling Market include Altius Space Machines, Inc, SpaceX, Lockheed Martin Corporation, Tethers Unlimited, Inc, Maxar Technologies Inc, Northrop Grumman Corporation, ClearSpace Inc, Astroscale Holdings Inc, Obruta Space Solutions Crop, D-Orbit SpA, Eta Space, Thales, Momentus Space Inc and LMO Space.

Key Developments:

In April 2025, SpaceX and United Launch Alliance are expected to each win a US Space Force rocket launch contract worth billions of dollars over the next several years to send some of the Pentagon's most sensitive satellites into space.

In December 2024, Maxar Intelligence and Satellogic, Inc. have announced a tasking, data licensing and distribution agreement (the "Agreement") that enhances Maxar's ability to deliver monitoring and change detection insights in near real-time for the U.S. government and the government's partners around the world.

In September 2024, Lockheed Martin and Tata Advanced Systems Limited have entered into a teaming agreement to expand upon the companies' business relationship through the C-130J Super Hercules tactical airlifter. This announcement marks a significant step in enhancing India's defence and aerospace capabilities while also deepening India-U.S. strategic ties

Propellant Types Covered:

  • Chemical Propellants
  • Electric Propellants

Refueling Technology Types Covered:

  • Cryogenic Refueling
  • Non-Cryogenic Refueling

Capabilities Covered:

  • Propellant Transfer
  • In-Orbit Rendezvous
  • In-Orbit Propellant Storage

Platforms Covered:

  • Satellites
  • Space Stations
  • Space Exploration Probes

Applications Covered:

  • Communication
  • Satellite Servicing
  • Deep Space Missions
  • Other Applications

End Users Covered:

  • Government Agencies
  • Private Space Companies

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2024, 2025, 2026, 2028, and 2032
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 End User Analysis
  • 3.8 Emerging Markets
  • 3.9 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Space In-Orbit Refueling Market, By Propellant Type

  • 5.1 Introduction
  • 5.2 Chemical Propellants
  • 5.3 Electric Propellants

6 Global Space In-Orbit Refueling Market, By Refueling Technology Type

  • 6.1 Introduction
  • 6.2 Cryogenic Refueling
  • 6.3 Non-Cryogenic Refueling

7 Global Space In-Orbit Refueling Market, By Capability

  • 7.1 Introduction
  • 7.2 Propellant Transfer
  • 7.3 In-Orbit Rendezvous
  • 7.4 In-Orbit Propellant Storage

8 Global Space In-Orbit Refueling Market, By Platform

  • 8.1 Introduction
  • 8.2 Satellites
  • 8.3 Space Stations
  • 8.4 Space Exploration Probes

9 Global Space In-Orbit Refueling Market, By Application

  • 9.1 Introduction
  • 9.2 Communication
  • 9.3 Satellite Servicing
  • 9.4 Deep Space Missions
  • 9.5 Other Applications

10 Global Space In-Orbit Refueling Market, By End User

  • 10.1 Introduction
  • 10.2 Government Agencies
  • 10.3 Private Space Companies

11 Global Space In-Orbit Refueling Market, By Geography

  • 11.1 Introduction
  • 11.2 North America
    • 11.2.1 US
    • 11.2.2 Canada
    • 11.2.3 Mexico
  • 11.3 Europe
    • 11.3.1 Germany
    • 11.3.2 UK
    • 11.3.3 Italy
    • 11.3.4 France
    • 11.3.5 Spain
    • 11.3.6 Rest of Europe
  • 11.4 Asia Pacific
    • 11.4.1 Japan
    • 11.4.2 China
    • 11.4.3 India
    • 11.4.4 Australia
    • 11.4.5 New Zealand
    • 11.4.6 South Korea
    • 11.4.7 Rest of Asia Pacific
  • 11.5 South America
    • 11.5.1 Argentina
    • 11.5.2 Brazil
    • 11.5.3 Chile
    • 11.5.4 Rest of South America
  • 11.6 Middle East & Africa
    • 11.6.1 Saudi Arabia
    • 11.6.2 UAE
    • 11.6.3 Qatar
    • 11.6.4 South Africa
    • 11.6.5 Rest of Middle East & Africa

12 Key Developments

  • 12.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 12.2 Acquisitions & Mergers
  • 12.3 New Product Launch
  • 12.4 Expansions
  • 12.5 Other Key Strategies

13 Company Profiling

  • 13.1 Altius Space Machines, Inc
  • 13.2 SpaceX
  • 13.3 Lockheed Martin Corporation
  • 13.4 Tethers Unlimited, Inc
  • 13.5 Maxar Technologies Inc
  • 13.6 Northrop Grumman Corporation
  • 13.7 ClearSpace Inc
  • 13.8 Astroscale Holdings Inc
  • 13.9 Obruta Space Solutions Crop
  • 13.10 D-Orbit SpA
  • 13.11 Eta Space
  • 13.12 Thales
  • 13.13 Momentus Space Inc
  • 13.14 LMO Space