![]() |
市場調査レポート
商品コード
1617109
車載用パワー半導体の2030年までの市場予測:電気タイプ、車種、コンポーネント、地域別の世界分析Automotive Power Semiconductor Market Forecasts to 2030 - Global Analysis By Electric Type, Vehicle Type, Component and By Geography |
||||||
カスタマイズ可能
|
車載用パワー半導体の2030年までの市場予測:電気タイプ、車種、コンポーネント、地域別の世界分析 |
出版日: 2024年12月11日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、車載用パワー半導体の世界市場は2024年に642億8,000万米ドルを占め、2030年には1,042億9,000万米ドルに達すると予測され、予測期間中のCAGRは8.4%です。
車載用パワー半導体は、最新の自動車の電気・電子システムに使用される重要な部品であり、電力の効率的な管理と制御を可能にします。これらの半導体は通常、シリコン(Si)や炭化ケイ素(SiC)などの材料から作られており、電気自動車(EV)のパワートレイン、バッテリー管理システム、モーター制御、配電などの用途で重要な役割を果たしています。車載用パワー半導体は、信頼性と耐久性を確保するため、高温、振動、電磁干渉などの過酷な条件に耐えるように設計されています。
国際エネルギー機関(IEA)が提供した乗用車の世界販売台数データによると、2023年には約1,380万台の乗用車が販売され、前年の2022年と比較して35.3%の販売増となった。インテルによると、世界の自動車販売台数は2030年には約1億140万台に達すると予想されており、2030年には自律走行車が自動車登録台数の約12%を占めると推定されています。
電気自動車の需要増加
パワー半導体は、バッテリー、モーター、その他のコンポーネント間の電気エネルギーの流れを効率的に管理することで、電気自動車において重要な役割を果たしています。EVの普及が加速するにつれて、より高い電力密度に対応し、効率を向上させ、エネルギー損失を削減できる高性能パワーエレクトロニクスの必要性が高まっています。IGBT(絶縁ゲートバイポーラトランジスタ)やMOSFET(金属-酸化膜-半導体電界効果トランジスタ)などのパワー半導体は、モーター駆動、インバーター、バッテリー管理システムの制御に不可欠であり、自動車の性能や航続距離に直接影響します。
高い製造設備投資
車載用パワー半導体業界にとって、製造への高い設備投資は大きな課題です。特に車載用半導体の製造には、高度な設備と技術を必要とする複雑で高精度な工程が含まれます。製造工場(ファブ)の初期セットアップには、特殊な設備、クリーンルーム、熟練した労働力への多額の資金投資が必要であり、中小企業の市場参入を困難にしています。自動車産業には厳しい品質・信頼性基準があり、継続的な研究開発と技術革新が求められるため、コスト負担はさらに重くなります。
ADAS(先進運転支援システム)の採用拡大
アダプティブ・クルーズ・コントロール、レーン・キーピング・アシスト、自動緊急ブレーキなどのADAS技術は、さまざまなセンサー、カメラ、レーダー・システムに依存しており、効率的な電源管理ソリューションが求められています。パワートランジスタやダイオードを含む車載用パワー半導体は、さまざまな電子部品への電力供給を調整することで、これらのシステムが適切に機能するために重要な役割を果たしています。自動車メーカーが安全基準や規制基準を満たすために、より多くのADAS機能を自動車に統合するにつれて、高性能でエネルギー効率の高い半導体の必要性が高まっています。パワー半導体は、さまざまな走行条件下で安定した電力性能を必要とするこれらの複雑なシステムの効率、信頼性、および熱管理の強化に役立ちます。
信頼性と耐久性の課題
車載用パワー半導体の信頼性と耐久性の課題は、最新の自動車に広く採用されるための大きな障壁となっています。これらの半導体は、電気自動車(EV)のパワートレイン、バッテリー管理システム、先進運転支援システム(ADAS)において重要な役割を果たしています。しかし、車載環境で一般的な高温、電気的ストレス、振動などの過酷な条件下で効率的に動作する必要があります。不適切な熱管理とパッケージングは早期故障につながり、これらの部品の寿命を縮める可能性があります。
COVID-19の流行は、生産と需要の両面で車載用パワー半導体市場に大きな影響を与えました。パンデミックの初期段階で、半導体製造施設は操業停止、サプライチェーンの混乱、労働力不足に直面し、生産と納品の遅れにつながった。その結果、電気自動車(EV)のパワートレイン、先進運転支援システム(ADAS)、その他の電子機能に不可欠な車載用半導体が世界的に不足しました。同時に、自動車メーカー各社は自動車需要の減少や販売店の閉鎖により一時的に減産し、半導体の供給不足をさらに悪化させています。
予測期間中、バッテリー駆動電気自動車分野が最大になる見込み
バッテリー駆動電気自動車セグメントが予測期間中最大のシェアを占める見込み。パワー半導体は、バッテリー、モーター、その他のコンポーネント間の電気の流れを制御し、エネルギーが効率的に分配されるようにします。EVの普及に伴い、より高い電圧、電流、温度に対応できる高性能半導体の需要が高まっています。このため、炭化ケイ素(SiC)や窒化ガリウム(GaN)のような、従来のシリコン系半導体よりも高効率で高速スイッチングを実現し、熱性能にも優れた、より高度な材料の開発が進んでいます。これらの技術革新により、EVの走行距離の延長、充電時間の短縮、全体的なエネルギー効率の向上が可能になります。
予測期間中、電圧サプレッサ分野のCAGRが最も高くなる見込み
電圧サプレッサ分野は予測期間中に急成長すると予測されます。電圧サプレッサは、動作中に発生する可能性のある電圧スパイクや過渡現象から車載パワー半導体を保護することで、車載パワー半導体を強化する上で重要な役割を果たしています。最新の自動車では、パワー半導体が電気ドライブトレイン、バッテリー管理、ADAS(先進運転支援システム)などの重要なシステムを制御しています。これらのコンポーネントは電圧変動に非常に敏感で、損傷したり性能を低下させたりする可能性があります。過渡電圧抑制(TVS)ダイオードやバリスタのような電圧サプレッサは、過大な電圧を吸収・放散し、半導体に電圧が到達するのを防ぐように設計されています。この保護機能により、電力サージや静電気放電による電圧の急激な変化を含む過酷な車両運用環境においても、車載電子機器の信頼性の高い機能が保証されます。
欧州地域は、より高い効率性、燃費の改善、マイルドハイブリッド車、電気自動車、自律走行車を含む先進的な車両電動化の需要の高まりの必要性により、予測期間を通じて市場で最大のシェアを占めると予想されます。48Vシステムは、従来の12Vアーキテクチャと高電圧パワートレインの間のバランスを提供し、電動ターボチャージャー、エアコン、パワーステアリングなどのコンポーネントの電力供給を強化します。この移行により、自動車メーカーは費用対効果を維持しながら、よりエネルギー効率の高い技術を統合することができます。
北米地域は、技術革新の促進、能力の拡大、サプライチェーンの強化により、予測期間中に最も高いCAGRを記録すると推定されます。自動車大手と半導体企業が手を組むことで、電力管理、エネルギー効率、高性能コンピューティングなどの分野で互いの専門知識を活用することができます。パートナーシップはまた、自動車業界特有の要件を満たす最先端のソリューションを生み出すための共同研究開発を可能にします。さらに、こうした協力関係は、製造プロセスの最適化、半導体部品の信頼性向上、新製品開発の加速にも役立っています。
According to Stratistics MRC, the Global Automotive Power Semiconductor Market is accounted for $64.28 billion in 2024 and is expected to reach $104.29 billion by 2030 growing at a CAGR of 8.4% during the forecast period. Automotive power semiconductors are critical components used in the electrical and electronic systems of modern vehicles, enabling the efficient management and control of electrical power. These semiconductors, typically made from materials like silicon (Si) or silicon carbide (SiC), play a key role in applications such as electric vehicle (EV) powertrains, battery management systems, motor control, and power distribution. Automotive power semiconductors are designed to withstand harsh conditions, including high temperatures, vibrations, and electromagnetic interference, to ensure reliability and durability.
According to the data provided by the International Energy Agency for the sales of passenger cars sold globally, around 13.8 million passenger cars were sold in 2023, which reflected a rise in sales of 35.3% as compared to the previous year, 2022. According to Intel, global car sales are anticipated to reach around 101.4 million units in 2030, and autonomous vehicles are estimated to account for around 12% of car registrations by 2030.
Increasing demand for electric vehicles
Power semiconductors play a crucial role in EVs by efficiently managing the flow of electrical energy between the battery, motor, and other components. As the adoption of EVs accelerates, the need for high-performance power electronics that can handle higher power densities, improve efficiency, and reduce energy losses becomes more critical. Power semiconductors, such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), are essential in controlling motor drives, inverters, and battery management systems, directly impacting the vehicle's performance and range.
High capital investment for fabrication
High capital investment in fabrication is a significant challenge for the automotive power semiconductor industry. Semiconductor manufacturing, especially for automotive applications, involves complex, high-precision processes that require advanced facilities and technology. The initial setup of fabrication plants (fabs) demands substantial financial investment in specialized equipment, clean rooms, and skilled labor, making it difficult for smaller players to enter the market. The automotive sector has stringent quality and reliability standards, demanding continuous R&D and innovation, which further adds to the cost burden.
Increased adoption of advanced driver assistance systems
ADAS technologies, such as adaptive cruise control, lane-keeping assist, and automatic emergency braking, rely on a range of sensors, cameras, and radar systems, which demand efficient power management solutions. Automotive power semiconductors, including power transistors and diodes, play a critical role in ensuring the proper functioning of these systems by regulating power delivery to various electronic components. As automakers integrate more ADAS features into their vehicles to meet safety and regulatory standards, the need for high-performance, energy-efficient semiconductors has risen. Power semiconductors help in enhancing the efficiency, reliability, and thermal management of these complex systems, which require consistent power performance under varying driving conditions.
Reliability and durability issues
Reliability and durability challenges in automotive power semiconductors are significant barriers to their widespread adoption in modern vehicles. These semiconductors play a crucial role in electric vehicle (EV) powertrains, battery management systems, and advanced driver-assistance systems (ADAS). However, they must operate efficiently under extreme conditions such as high temperatures, electrical stress, and vibrations, which are common in automotive environments. Inadequate thermal management and packaging can lead to premature failure, reducing the lifespan of these components.
The COVID-19 pandemic significantly impacted the automotive power semiconductor market, both in terms of production and demand. During the early stages of the pandemic, semiconductor manufacturing facilities faced shutdowns, supply chain disruptions, and labor shortages, leading to delays in production and delivery. This resulted in a global shortage of critical automotive semiconductors, which are essential for electric vehicle (EV) powertrains, advanced driver-assistance systems (ADAS), and other electronic features. At the same time, automakers temporarily reduced production due to lower vehicle demand and the closure of dealerships, further exacerbating the semiconductor supply crunch.
The Battery Operated Electric Vehicle segment is expected to be the largest during the forecast period
Battery Operated Electric Vehicle segment is expected to dominate the largest share over the estimated period. Power semiconductors control the flow of electricity between the battery, motor, and other components, ensuring that energy is distributed efficiently. With the rising adoption of EVs, there is a growing demand for high-performance semiconductors that can handle higher voltages, currents, and temperatures. This has led to the development of more advanced materials like silicon carbide (SiC) and gallium nitride (GaN), which offer greater efficiency, faster switching, and better thermal performance compared to traditional silicon-based semiconductors. These innovations enable EVs to have longer driving ranges, faster charging times, and improved overall energy efficiency.
The Voltage Suppressor segment is expected to have the highest CAGR during the forecast period
Voltage Suppressor segment is estimated to grow at a rapid pace during the forecast period. Voltage suppressors are playing a crucial role in enhancing automotive power semiconductors by protecting them from voltage spikes and transients that can occur during operation. In modern vehicles, power semiconductors control critical systems such as electric drivetrains, battery management, and advanced driver-assistance systems (ADAS). These components are highly sensitive to voltage fluctuations, which can damage or degrade their performance. Voltage suppressors, like transient voltage suppression (TVS) diodes or varistors, are designed to absorb and dissipate excessive voltage, preventing it from reaching the semiconductor. This protection ensures the reliable functioning of automotive electronics, even in the harsh environment of vehicle operations, which includes sudden changes in voltage due to power surges or electrostatic discharge.
Europe region is poised to hold the largest share of the market throughout the extrapolated period, driven by the need for higher efficiency, improved fuel economy, and the growing demand for advanced vehicle electrification, including mild-hybrid, electric, and autonomous vehicles. The 48V system provides a balance between the traditional 12V architecture and higher-voltage powertrains, offering enhanced power delivery for components like electric turbochargers, air conditioning, and power steering. This transition allows automakers to integrate more energy-efficient technologies while maintaining cost-effectiveness.
North America region is estimated to witness the highest CAGR during the projected time frame, by fostering innovation, expanding capabilities, and strengthening the supply chain. By joining forces, automotive giants and semiconductor firms can leverage each other's expertise in areas such as power management, energy efficiency, and high-performance computing. Partnerships also enable joint research and development efforts to produce cutting-edge solutions that meet the unique requirements of the automotive industry. Additionally, these collaborations help optimize manufacturing processes, improve the reliability of semiconductor components, and accelerate the development of new products.
Key players in the market
Some of the key players in Automotive Power Semiconductor market include Infineon Technologies, Microchip Technologies Inc, Mitsubishi Electric Corporation, NXP Semiconductors, Qualcomm Corporation, Renesas Electronics Corporation, Rohm Semiconductors, Samsung Electronics, Schunk Sonosystems GmbH, ST Microelectronics, Toshiba Corporation, Vitesco Technologies, Yageo Corporation, Dallas Semiconductor and Dynex Semiconductor.
In February 2024, Infineon Technologies and Honda Motor Co. signed a Memorandum of Understanding (MoU) to build a strategic collaboration for automotive semiconductor solutions. Honda has selected Infineon as its semiconductor partner to enhance the development of competitive and advanced vehicles. The collaboration will leverage Infineon's expertise in power semiconductors, Advanced Driver Assistance Systems (ADAS), and Electrical/Electronic (E/E) architectures.
In June 2023, Nidec Corporation and Renesas Electronics Corporation collaborated to develop semiconductor solutions for an advanced E-Axle (X-in-1 system) combining an EV drive motor and power electronics for electric vehicles (EVs).
In May 2023, Infineon Technologies AG and Hon Hai Technology Group forged a long-term partnership in electric vehicles (EV), aiming to pioneer advanced electromobility with enhanced efficiency and intelligence. The Memorandum of Understanding (MoU) prioritizes silicon carbide (SiC) development, combining Infineon's automotive SiC advancements with Foxconn's automotive systems expertise.
In February 2023, Wolfspeed Inc., a Silicon Carbide technology leader, and ZF, a global mobility technology company, unveiled a strategic partnership. This collaboration featured a joint innovation lab aimed at advancing Silicon Carbide systems for mobility, industrial, and energy applications. ZF also tends to make a substantial investment to aid in constructing one of the world's most advanced and largest 200mm Silicon Carbide device factories in Ensdorf, Germany.