![]() |
市場調査レポート
商品コード
1453876
レドックスフロー電池の2030年までの市場予測: タイプ別、容量別、用途別、地域別の世界分析Redox Flow Battery Market Forecasts to 2030 - Global Analysis By Type, Capacity, Application and By Geography |
||||||
カスタマイズ可能
|
レドックスフロー電池の2030年までの市場予測: タイプ別、容量別、用途別、地域別の世界分析 |
出版日: 2024年03月03日
発行: Stratistics Market Research Consulting
ページ情報: 英文 200+ Pages
納期: 2~3営業日
|
Stratistics MRCによると、レドックスフロー電池の世界市場は2023年に2億5,070万米ドルを占め、2030年には7億4,360万米ドルに達すると予測されています。
レドックスフロー電池と呼ばれる電気化学的蓄電装置は、電気エネルギーが化学エネルギーをマスクすることを可能にします。レドックスフロー電池は、主に充放電に使用される電気化学セル電池を通過する液体電解質溶液にエネルギーを貯蔵します。これらの電池は、最小限のコストで信頼性の高い長期使用のために電気エネルギーを貯蔵するように設計されています。これらの電池は、常温で使用すると発火や爆発が頻繁に起こる。
AMG Advanced Metallurgical Group NVが発表した声明によると、バナジウム電解液の目標容量は6,000 m3です。
エネルギー貯蔵ソリューションへの需要
世界のエネルギー消費量の増加に伴い、太陽光や風力といった断続的な再生可能エネルギー源の統合が進む中、効率的なエネルギー貯蔵技術の必要性が最も高まっています。レドックスフロー電池は、需要の少ない時期に発生した余剰エネルギーを貯蔵し、需要のピーク時や再生可能エネルギー源が利用できないときに放出するための、汎用的で拡大可能なソリューションを提供します。さらに、送電網の近代化への取り組みが強化され、輸送の電化が進むにつれて、信頼性が高く弾力性のあるエネルギー貯蔵システムへの需要が高まっています。
高い初期資本投資
レドックスフロー電池システムを導入するには、機器の購入、設置、インフラ整備に多額の初期投資が必要です。リチウムイオン電池のような他のエネルギー貯蔵技術と比べると、レドックスフロー電池は複雑な設計、特殊な部品、製造における規模の経済性が比較的低いため、一般的に初期費用が高くなります。これらの初期費用は、特に予算が限られている市場や、競合するエネルギー貯蔵ソリューションがより低い初期資本要件を提供している場合、潜在的な投資家にとって抑止力になる可能性があります。
電池技術の進歩
レドックスフロー電池の性能、効率、費用対効果の向上を目指した継続的な研究開発は、その用途を拡大し、エネルギー貯蔵市場における競合を高めることに貢献しています。電極材料、電解液配合、スタック設計の改善などの技術革新は、レドックスフロー電池システムの高エネルギー密度、長サイクル寿命、効率改善につながります。さらに、製造プロセスの進歩や生産能力の拡大がコスト削減に貢献し、レドックスフロー電池は従来のエネルギー貯蔵技術と比べて経済的に実行可能なものとなっています。
複雑さとシステム統合の課題
レドックスフロー電池システムは複雑な設計を必要とし、パワーエレクトロニクス、制御システム、グリッドインフラなどの補助コンポーネントと綿密に統合する必要があります。この複雑さはエンジニアリング・コストを増加させるだけでなく、配備や運用の際に技術的なハードルをもたらし、遅延やコスト超過につながる可能性があります。既存のグリッド・インフラとのシームレスな統合を確保し、互換性の問題に対処することは特に困難であり、さまざまな用途でのレドックスフロー電池の普及を妨げています。しかし、システムの設計、設置、メンテナンスに必要な専門的知識と専門知識は、運用コストをさらに上昇させ、十分な技術能力を持つ組織への市場参入を制限する可能性があります。
当初、世界のサプライチェーンの混乱、プロジェクトの遅延、資金調達の不確実性が市場の成長を鈍化させました。封鎖措置や建設活動の制限は、特に商業・産業セグメントにおいて、様々なプロジェクトでのレドックスフロー電池システムの展開を妨げました。パンデミックはまた、回復力と信頼性の高いエネルギー・インフラの重要性を浮き彫りにし、送電網の安定性を高め、遠隔操作をサポートするエネルギー貯蔵ソリューションへの関心を高める原動力となりました。しかし、世界がパンデミックから徐々に回復するにつれて、景気刺激策やグリーン復興イニシアティブへの投資が、特に再生可能エネルギーの統合や送電網の近代化を優先するセグメントにおいて、レドックスフロー電池の採用を後押しすると予想されます。
予測期間中はハイブリッドレドックスフロー電池セグメントが最大になる見込み
ハイブリッドレドックスフロー電池セグメントは、予測期間中、市場の最大シェアを占めました。ハイブリッドシステムは、従来のレドックスフロー電池の長所をキャパシタやリチウムイオン電池などの他のエネルギー貯蔵技術と組み合わせることで、限界に対処し、全体的な性能を高める。レドックスフロー電池の高いエネルギー密度と長時間の貯蔵能力を、他のエネルギー貯蔵技術の高い電力密度と高速応答時間に活用することで、ハイブリッドシステムは効率、柔軟性、信頼性を向上させます。これらのシステムは、送電網の安定化、再生可能エネルギーの統合、電気自動車の充電インフラなど、高い電力とエネルギーの両方を必要とするアプリケーションに特に適しています。
無停電電源装置(UPS)セグメントは予測期間中に最も高いCAGRが見込まれる
無停電電源装置(UPS)セグメントは、特にデータセンター、病院、IT・通信、産業施設など、無停電電源供給が重要なセグメントでのUPSアプリケーションに独自の利点を提供するため、予測期間中に最も高いCAGRが見込まれます。長時間のエネルギー貯蔵が可能で、高い信頼性と安全性があるレドックスフロー電池は、UPSシステムにとって理想的な選択肢です。さらに、従来の鉛蓄電池やリチウムイオン電池とは異なり、レドックスフロー電池は劣化することなく事実上無制限のサイクル寿命を提供し、長期間にわたって安定した信頼性の高いバックアップ電力を確保します。
アジア太平洋がレドックスフロー電池市場で大きな成長を遂げているのは、同地域の急速な工業化と都市化がエネルギー需要の増加につながり、レドックスフロー電池のような信頼性と拡大性の高いエネルギー貯蔵ソリューションの必要性を高めているためです。再生可能エネルギーの統合と送電網の近代化を促進することを目的とした政府の支援政策とイニシアチブは、レドックスフロー電池の採用に有利な規制環境を育成しています。さらに、持続可能性と環境保全への注目の高まりは、エネルギー利用を最適化し、二酸化炭素排出量を削減するためにエネルギー貯蔵システムに投資することを産業界や公益企業に促しています。
欧州地域は、レドックスフロー電池技術の研究、開発、展開に対する官民両セグメントからの投資が増加しており、予測期間を通じて急成長が見込まれています。再生可能エネルギー設備の急速な導入は、エネルギー利用を最適化し、グリッドの安定性を確保するために、レドックスフロー電池のような柔軟でスケーラブルなエネルギー貯蔵ソリューションの必要性を生み出しています。レドックスフロー電池は、マイクログリッド、オフグリッド電化、電気自動車充電インフラ、産業用途など、従来のエネルギー貯蔵以外の新たな用途を見出しており、同地域の市場成長をさらに促進しています。これらの要素がこの地域の成長を後押ししています。
According to Stratistics MRC, the Global Redox Flow Battery Market is accounted for $250.7 million in 2023 and is expected to reach $743.6 million by 2030 growing at a CAGR of 16.8% during the forecast period. An electrochemical storage device termed a redox flow battery enables electrical energy to mask chemical energy. A redox flow battery stores energy in liquid electrolyte solutions that pass through an electrochemical cell battery that is mostly used for charging and discharging. These batteries are designed to store electrical energy for dependable, long-term use at a minimal cost. These batteries fail to ignite or explode as frequently when used at room temperature.
According to a statement released by AMG Advanced Metallurgical Group NV 6,000 m3 of vanadium electrolyte is the goal capacity.
Demand for energy storage solutions
As global energy consumption continues to rise, coupled with the increasing integration of intermittent renewable energy sources like solar and wind, the need for efficient energy storage technologies becomes paramount. Redox flow batteries offer a versatile and scalable solution for storing surplus energy generated during periods of low demand and releasing it during peak demand periods or when renewable energy sources are unavailable. Moreover, as grid modernization efforts intensify and the electrification of transportation advances, the demand for reliable and resilient energy storage systems grows.
High initial capital investment
Implementing redox flow battery systems requires substantial upfront expenditure for purchasing equipment, installation, and infrastructure development. Compared to other energy storage technologies like lithium-ion batteries, redox flow batteries typically involve higher initial costs due to their complex design, specialized components, and relatively low economies of scale in manufacturing. These upfront expenses can be a deterrent for potential investors, especially in markets with constrained budgets or where competing energy storage solutions offer lower initial capital requirements.
Advancements in battery technology
Continuous research and development efforts aimed at enhancing the performance, efficiency, and cost-effectiveness of redox flow batteries contribute to expanding their applications and increasing their competitiveness in the energy storage market. Innovations such as improvements in electrode materials, electrolyte formulations and stack designs lead to higher energy density, longer cycle life, and improved efficiency of redox flow battery systems. Additionally, advancements in manufacturing processes and scaling up production capabilities contribute to cost reductions, making redox flow batteries more economically viable compared to traditional energy storage technologies.
Complexity and system integration challenges
Redox flow battery systems entail intricate designs and necessitate meticulous integration with auxiliary components such as power electronics, control systems, and grid infrastructure. This complexity not only increases engineering costs but also introduces technical hurdles during deployment and operation, potentially leading to delays and cost overruns. Ensuring seamless integration with existing grid infrastructure and addressing compatibility issues can be particularly challenging, hindering widespread adoption of redox flow batteries in various applications. However, the specialized knowledge and expertise required for system design, installation, and maintenance further elevate operational costs and may limit market accessibility to organizations with sufficient technical capabilities.
Initially, disruptions in global supply chains, project delays, and uncertainties in financing slowed down the market growth. Lockdown measures and restrictions on construction activities hampered the deployment of redox flow battery systems in various projects, particularly in the commercial and industrial sectors. The pandemic also highlighted the importance of resilient and reliable energy infrastructure, driving increased interest in energy storage solutions to enhance grid stability and support remote operations. However, as the world gradually recovers from the pandemic, stimulus packages and investments in green recovery initiatives are expected to boost the adoption of redox flow batteries, especially in sectors prioritizing renewable energy integration and grid modernization.
The hybrid redox flow battery segment is expected to be the largest during the forecast period
Hybrid Redox Flow Battery segment dominated the largest share of the market over the estimation period. Hybrid systems combine the advantages of traditional redox flow batteries with other energy storage technologies, such as capacitors or lithium-ion batteries, to address limitations and enhance overall performance. By leveraging the high energy density and long-duration storage capabilities of redox flow batteries with the high power density and fast response times of other energy storage technologies, hybrid systems offer improved efficiency, flexibility, and reliability. These systems are particularly well-suited for applications requiring both high power and energy requirements, such as grid stabilization, renewable energy integration, and electric vehicle charging infrastructure.
The uninterruptible power supply (UPS) segment is expected to have the highest CAGR during the forecast period
Uninterruptible Power Supply (UPS) segment is expected to have the highest CAGR during the forecast period as it offers unique advantages for UPS applications, particularly in sectors where uninterrupted power supply is critical, such as data centers, hospitals, telecommunications, and industrial facilities. Their ability to provide long-duration energy storage, coupled with high reliability and safety, makes redox flow batteries an ideal choice for UPS systems. Furthermore, unlike traditional lead-acid or lithium-ion batteries, redox flow batteries offer virtually unlimited cycle life without degradation, ensuring consistent and reliable backup power over extended periods.
The Asia Pacific region is experiencing substantial growth in the Redox Flow Battery Market due to region's rapid industrialization and urbanization have led to increased energy demand, driving the need for reliable and scalable energy storage solutions like redox flow batteries. Supportive government policies and initiatives aimed at promoting renewable energy integration and grid modernization are fostering a favorable regulatory environment for the adoption of redox flow batteries. Additionally, the growing focus on sustainability and environmental conservation is encouraging industries and utilities to invest in energy storage systems to optimize energy utilization and reduce carbon emissions.
Europe region is expected to grow at a rapid pace throughout the forecast period as growing investments from both public and private sectors in research, development and deployment of redox flow battery technologies. The rapid deployment of renewable energy installations is creating a need for flexible and scalable energy storage solutions like redox flow batteries to optimize energy utilization and ensure grid stability. Redox flow batteries are finding new applications beyond traditional energy storage, including microgrids, off-grid electrification, electric vehicle charging infrastructure, and industrial applications, further driving market growth in the region. These elements are boosting the regional growth.
Key players in the market
Some of the key players in Redox Flow Battery market include Australian Vanadium Limited, Avalon Battery Corporation, Dalian Rongke Power Co., Ltd, Energy Storage Systems, Inc, HydraRedox, Prudent Energy Corporation, redT Energy Plc, StorEn Technologies Inc, UniEnergy Technologies, VFlowTech and Vionx Energy.
In November 2023, a strategic collaboration between KEMIWATT and MANN+HUMMEL was launched to create a new range of Redox Flow Batteries. The long-duration stationary energy storage business and KEMIWATT see great benefit from their collaboration at a time when global use of renewable energy sources is accelerating.
In October 2023, the PowerCube 50-250, a new vanadium redox flow battery, is the newest model in the PowerCube series from VFlowTech, a sustainable energy storage solutions company with headquarters in Singapore. Three PowerCube 50-250 units can easily power 108 HDB apartments for a whole year, in addition to supporting the deployment of solar energy while functioning independently inside the microgrid.
In July 2023, a 50 kWh vanadium redox flow battery made by German battery firm VoltStorage was invented to maximize self-consumption in commercial and industrial PV systems. With a system voltage of 48 V, the VoltStorage VDIUM C50 is an AC-coupled battery. The electrolyte is guaranteed for 20 years by the manufacturer, who also states that the annual degradation rate will not exceed 0.3%.
In January 2023, the building of a vanadium electrolyte factory at its subsidiary, AMG Titanium, in Nuremberg, Germany, was authorized by the Management Board, according to a statement released by AMG Advanced Metallurgical Group NV 6,000 m3 of vanadium electrolyte is the goal capacity.