表紙:造船におけるロボット工学市場の2030年までの予測- タイプ別、リフティング能力別、用途別、地域別の世界分析
市場調査レポート
商品コード
1324199

造船におけるロボット工学市場の2030年までの予測- タイプ別、リフティング能力別、用途別、地域別の世界分析

Robotics in Shipbuilding Market Forecasts to 2030 - Global Analysis By Type, Lifting Capacity, Application and By Geography

出版日: | 発行: Stratistics Market Research Consulting | ページ情報: 英文 175+ Pages | 納期: 2~3営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
造船におけるロボット工学市場の2030年までの予測- タイプ別、リフティング能力別、用途別、地域別の世界分析
出版日: 2023年08月01日
発行: Stratistics Market Research Consulting
ページ情報: 英文 175+ Pages
納期: 2~3営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

Stratistics MRCによると、世界の造船におけるロボット工学市場は2023年に13億8,000万米ドルに達し、予測期間中に6.4%のCAGRで成長し、2030年までに19億3,000万米ドルに達すると予測されています。 ロボット工学は、生産、品質、作業員の安全性を向上させるために造船で使用されており、ロボット工学の統合は海事セクターを完全に再構築しています。

ロボットは、反復的で肉体的に負担のかかる雑用を自動化することで、人間の従業員をより困難で熟練した作業に集中させることができます。この技術が進歩し続ければ、造船業はより効率的で費用対効果の高いものになると考えられています。

クルーズ・インダストリー・ニュースの年次報告書によると、北欧は第4位のクルーズ市場で、トラフィックは前年比4.4%増となっています。

市場力学:

効率的で正確な作業プロセスへの需要の高まり

造船業界では、切断、溶接、塗装などの作業に熟練工が必要とされてきました。これらの作業を標準的な技術で行うには時間がかかります。造船業者は、時間とコストを節約するために、結果としてロボット技術を利用しています。造船会社は、面倒で危険な作業を行いながら、より少ない人的労働力を求めており、現代のロボット工学の利点を認識しています。さらに、効果的なロボット技術は造船業における労働力の必要性をカバーしています。その正確さ、故障率の低さ、優れた品質、一貫性が市場の需要の背景にあります。

高い初期投資

ロボットシステムの最初の導入は、購入、統合、付属品の追加、プログラミングなど、いくつかのステップを含みます。特定の企業にとっては、最初の多額の設備投資が問題となる可能性があります。造船で使用される産業用ロボットシステムの価格は、5万米ドルから15万米ドルに及ぶかもしれないです。生産量が少なく、ROIが低迷しているため、多くの中小造船会社は多額の資金を蓄えるのに苦労しています。その結果、投資要素が市場の拡大を妨げています。

協働作用ロボットの人気上昇

造船分野では、協働ロボット(コボット)が単体ロボットに取って代わりつつあります。コボットは人と一緒に働いて産業効率を向上させる。協働作用ロボットは工場内を移動し、作業員の手助けをします。コボットはまた、小さな部品も大きな部品も、迅速かつ効率的に組立エリアに移動させることができます。多くのロボットメーカーが洗練された協働ロボットの開発に注力しています。これらのロボットに搭載されている高度なセンサーには、ビジョンシステム、近接センサー、深度センサーなどがあります。接合、組み立て、切断の自動化ソリューションを提供し、市場拡大を促進しています。

過剰なメンテナンスコスト

海事産業におけるロボットの導入には、ロボット機器の使用と保守を行うための作業員の訓練が必要です。正確な成果を得るためには、高い能力を持つ人材と一緒に作業する必要があります。さらに、ロボットは、人間の労働力では長期間にわたって常に維持することが困難なレベルの品質と精度を提供します。経営陣は、精度レベルを高く維持するために多額の費用を費やさなければならないです。したがって、高いレベルの運用・保守費用が市場の拡大を妨げています。

COVID-19影響:

COVID-19の流行により世界経済は大きなダメージを受けた。造船会社、造船所、その他のサプライヤーは法的要件を遵守するために作業手順を修正する必要があり、その結果、造船活動は一時中断しました。旅客数の減少により、クルーズ船は停泊や停泊を余儀なくされました。このため、一部の購入がキャンセルされ、クルーズの引き渡しが遅れました。このように、パンデミックの間、産業活動の減少の結果、造船活動におけるロボットの必要性は減少しました。

予測期間中、1000kg超セグメントが最大になる見込み

1000kg超のセグメントは有利な成長を遂げると推定されます。1000kgを超える持ち上げ能力を持つロボットは、マテリアルハンドリング、溶接、検査などの用途に使用されます。この容量のロボットは、鋳造や鍛造の金属部品に人気があり、機械式工具で使用される従来のリフトや搬送システムが不要になります。このような用途の増加により、重可搬質量のロボットの使用は増加すると予想されます。

予測期間中、ハンドリング分野のCAGRが最も高くなる見込み

ハンドリング分野は、予測期間中に最も速いCAGRの成長が見込まれます。ロボット工学は、均一性と優れた品質を保証することで、ハンドリング手順を改善しました。造船所全体で物資、ツール、機器を移動させる自律移動ロボット(AMR)やロボットアームの使用を通じて、この技術はマテリアルハンドリングも効率的に処理することができます。反復作業を自動化することで、ロボット工学は造船業者の業務合理化にも役立ちます。自動化システムを造船施設に組み込むことで、安全なマテリアルハンドリング手順、高い生産性、安全性を提供することができます。このカテゴリーは、安全性への関心の高まりから、今後数年間は市場を独占すると予想されます。

最大のシェアを占める地域

予測期間中、アジア太平洋地域が最大の市場シェアを占めると予測されます。中国、韓国、日本は、造船所におけるロボット工学の利用が最も拡大しています。大手企業による船舶修理施設や造船能力の拡張への投資が増加していることが、この地域市場の成長に関連している可能性があります。ロボット密度で世界をリードするのは韓国とシンガポールで、ドイツと日本がこれに続く。この分野での市場拡大は、サルコス・ロボットシステムの人気上昇によって後押しされています。

CAGRが最も高い地域:

欧州は、造船活動やドライドック容量の増加により、予測期間中に最も高いCAGRを示すと予測されます。多様な貨物航路の結果、北欧は世界のコンテナ船事業者にとって手ごわいライバルとなっています。バルト海外からの新規顧客の獲得に加え、この地域は既存顧客へのサービス提供の幅も広げています。こうした理由から、この地域は予測期間を通じて大きな成長を遂げると予測されます。

無料カスタマイズサービス:

本レポートをご購読のお客様には、以下のいずれかの無料カスタマイズオプションをご提供いたします:

  • 企業プロファイル
    • 追加市場プレイヤーの包括的プロファイリング(3社まで)
    • 主要企業のSWOT分析(3社まで)
  • 地域セグメンテーション
    • 顧客の関心に応じた主要国の市場推計・予測・CAGR(注:フィージビリティチェックによる)
  • 競合ベンチマーキング
    • 製品ポートフォリオ、地理的プレゼンス、戦略的提携に基づく主要企業のベンチマーキング

目次

第1章 エグゼクティブサマリー

第2章 序文

  • 概要
  • ステークホルダー
  • 調査範囲
  • 調査手法
    • データマイニング
    • データ分析
    • データ検証
    • 調査アプローチ
  • 調査ソース
    • 1次調査ソース
    • 2次調査ソース
    • 前提条件

第3章 市場動向分析

  • 促進要因
  • 抑制要因
  • 機会
  • 脅威
  • アプリケーション分析
  • 新興市場
  • 新型コロナウイルス感染症(COVID-19)の影響

第4章 ポーターのファイブフォース分析

  • 供給企業の交渉力
  • 買い手の交渉力
  • 代替品の脅威
  • 新規参入業者の脅威
  • 競争企業間の敵対関係

第5章 世界の造船におけるロボット工学市場:タイプ別

  • スカラロボット
  • 多関節ロボット
  • 円筒形ロボット
  • デカルトロボット
  • その他のタイプ

第6章 世界の造船におけるロボット工学市場:リフティング能力別

  • 500kg未満
  • 500~1000kg
  • 1000kg以上

第7章 世界の造船におけるロボット工学市場:用途別

  • 検査
  • 取り扱い
  • 溶接
  • 組み立て
  • その他の用途

第8章 世界の造船におけるロボット工学市場:地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • イタリア
    • フランス
    • スペイン
    • その他欧州
  • アジア太平洋地域
    • 日本
    • 中国
    • インド
    • オーストラリア
    • ニュージーランド
    • 韓国
    • その他アジア太平洋地域
  • 南米
    • アルゼンチン
    • ブラジル
    • チリ
    • その他南米
  • 中東とアフリカ
    • サウジアラビア
    • アラブ首長国連邦
    • カタール
    • 南アフリカ
    • その他中東とアフリカ

第9章 主な発展

  • 契約、パートナーシップ、コラボレーション、合弁事業
  • 買収と合併
  • 新製品の発売
  • 事業拡大
  • その他の主要戦略

第10章 企業プロファイル

  • Yaskawa America, Inc.
  • Universal Robots
  • ABB
  • Epson
  • The Fanuc Corporation
  • Daewoo Shipbuilding & Marine Engineering
  • Staubli International AG
  • Comau
  • Kawasaki Robotics
  • Novarc Technologies Inc.
  • Fincantieri
  • Sarcos Technology And Robotics Corp.
  • Kuka AG
図表

List of Tables

  • Table 1 Global Robotics in Shipbuilding Market Outlook, By Region (2021-2030) ($MN)
  • Table 2 Global Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 3 Global Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 4 Global Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 5 Global Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 6 Global Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 7 Global Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 8 Global Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 9 Global Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 10 Global Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 11 Global Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 12 Global Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 13 Global Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 14 Global Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 15 Global Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 16 Global Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 17 Global Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 18 North America Robotics in Shipbuilding Market Outlook, By Country (2021-2030) ($MN)
  • Table 19 North America Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 20 North America Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 21 North America Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 22 North America Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 23 North America Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 24 North America Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 25 North America Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 26 North America Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 27 North America Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 28 North America Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 29 North America Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 30 North America Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 31 North America Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 32 North America Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 33 North America Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 34 North America Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 35 Europe Robotics in Shipbuilding Market Outlook, By Country (2021-2030) ($MN)
  • Table 36 Europe Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 37 Europe Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 38 Europe Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 39 Europe Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 40 Europe Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 41 Europe Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 42 Europe Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 43 Europe Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 44 Europe Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 45 Europe Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 46 Europe Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 47 Europe Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 48 Europe Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 49 Europe Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 50 Europe Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 51 Europe Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 52 Asia Pacific Robotics in Shipbuilding Market Outlook, By Country (2021-2030) ($MN)
  • Table 53 Asia Pacific Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 54 Asia Pacific Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 55 Asia Pacific Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 56 Asia Pacific Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 57 Asia Pacific Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 58 Asia Pacific Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 59 Asia Pacific Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 60 Asia Pacific Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 61 Asia Pacific Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 62 Asia Pacific Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 63 Asia Pacific Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 64 Asia Pacific Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 65 Asia Pacific Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 66 Asia Pacific Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 67 Asia Pacific Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 68 Asia Pacific Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 69 South America Robotics in Shipbuilding Market Outlook, By Country (2021-2030) ($MN)
  • Table 70 South America Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 71 South America Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 72 South America Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 73 South America Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 74 South America Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 75 South America Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 76 South America Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 77 South America Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 78 South America Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 79 South America Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 80 South America Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 81 South America Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 82 South America Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 83 South America Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 84 South America Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 85 South America Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
  • Table 86 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Country (2021-2030) ($MN)
  • Table 87 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Type (2021-2030) ($MN)
  • Table 88 Middle East & Africa Robotics in Shipbuilding Market Outlook, By SCARA Robots (2021-2030) ($MN)
  • Table 89 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Articulated Robots (2021-2030) ($MN)
  • Table 90 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Cylindrical Robots (2021-2030) ($MN)
  • Table 91 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Cartesian Robots (2021-2030) ($MN)
  • Table 92 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Other Types (2021-2030) ($MN)
  • Table 93 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Lifting Capacity (2021-2030) ($MN)
  • Table 94 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Less than 500 kg (2021-2030) ($MN)
  • Table 95 Middle East & Africa Robotics in Shipbuilding Market Outlook, By 500 to 1000 kg (2021-2030) ($MN)
  • Table 96 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Over 1000 kg (2021-2030) ($MN)
  • Table 97 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Application (2021-2030) ($MN)
  • Table 98 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Inspection (2021-2030) ($MN)
  • Table 99 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Handling (2021-2030) ($MN)
  • Table 100 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Welding (2021-2030) ($MN)
  • Table 101 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Assembling (2021-2030) ($MN)
  • Table 102 Middle East & Africa Robotics in Shipbuilding Market Outlook, By Other Applications (2021-2030) ($MN)
目次
Product Code: SMRC23477

According to Stratistics MRC, the Global Robotics in Shipbuilding Market is accounted for $1.38 billion in 2023 and is expected to reach $1.93 billion by 2030 growing at a CAGR of 6.4% during the forecast period. to carry out the procedure efficiently. Robotics are used in shipbuilding for increasing production, quality, and worker safety, robotics integration has completely reshaped the maritime sector. Robots free up human employees to concentrate more on difficult and skilled activities by automating repetitive and physically taxing chores. It is believed that as this technology continues to progress, the shipbuilding industry will become more efficient and cost-effective.

According to Cruise Industry News' annual report, Northern Europe is the fourth largest cruise market, with traffic up 4.4% year-on-year.

Market Dynamics:

Driver:

Growing demand for efficient and accurate work process

The shipbuilding industry has required expert manpower for tasks like cutting, welding, and painting. Using standard techniques to carry out these tasks is time-consuming. Shipbuilders are using robot technology as a consequence to save time and money. Shipbuilders are seeking to use less human labour while doing tedious and dangerous tasks and recognising the benefits of contemporary robotics. Additionally, effective robot technology is covering the labour need in the shipbuilding industry. Its accuracy, low failure rate, great quality, and consistency are the reasons behind the market's demand.

Restraint:

High initial investment

A robotic system's first installation encompasses several steps, such as purchasing, integrating, adding accessories, and programming. For certain businesses, the initial significant capital investment may be a problem. The price of an industrial robotic system used in shipbuilding might range from USD 50,000 to USD 150,000. Due to low production volumes and sluggish ROI, a number of small and medium-sized shipbuilders struggle to accumulate significant sums of money. As a result, the investment element is impeding market expansion.

Opportunity:

Raising popularity of collaborative robotics

Collaborative robots, or cobots, are quickly replacing standalone robots in the shipbuilding sector. The cobots work alongside people to improve industrial efficiency. Collaborative mobile robots may travel around factories and help the workers. Cobots can also move both tiny and big components to the assembly areas quickly and effectively. A lot of robot manufacturers are concentrating on creating sophisticated collaboration robots. Advanced sensors on these robots include vision systems, proximity sensors, and depth sensors. It offers automated solutions for joining, assembling, and cutting, which are promoting market expansion.

Threat:

Excessive maintenance cost

The deployment of robotics in the maritime industry must include training the workers to use and maintain robotic equipment. For precise outcomes, they must operate with highly competent personnel. Additionally, robots provide a level of quality and accuracy that human labour is difficult to constantly maintain over an extended length of time. The management must spend a lot of money to keep the accuracy level high. Therefore, the high level of operating and maintenance expenses are impeding market expansion.

COVID-19 Impact:

The world economy has been severely damaged by the COVID-19 epidemic. Shipbuilding activities were put on hold as a result of the necessity for shipbuilding firms, shipyards, and other suppliers to modify their working procedures to comply with legal requirements. Due to the drop in passenger flow, cruise ships were docked and anchored. Due of this, some purchases were cancelled and cruise delivery were delayed. Thus, during the pandemic, the need for robots in shipbuilding activities reduced as a result of the decline in industrial operations.

The over 1000 kg segment is expected to be the largest during the forecast period

The over 1000 kg segment is estimated to have a lucrative growth. Robotics with lifting capacities over 1000 kg are used for applications such as material handling, welding, inspection, and others. This capacity robots are popular for cast and forged metal parts, and they eliminate the need for conventional lift and transfer systems used in mechanical tooling. The use of heavy payload robots is anticipated to increase due to the rise in such applications.

The handling segment is expected to have the highest CAGR during the forecast period

The handling segment is anticipated to witness the fastest CAGR growth during the forecast period. Robotics has improved handling procedures by guaranteeing uniformity and excellent quality. Through the use of autonomous mobile robots (AMRs) and robotic arms, which move supplies, tools, and equipment across the shipyard, this technology may also efficiently handle material handling. By automating repetitive jobs, robotics can also assist shipbuilders in streamlining their operations. Automated systems may be integrated into shipbuilding facilities to provide secure material handling procedures, high productivity, and security. The category is expected to rule the market in the upcoming years due to rising safety concerns.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period. China, South Korea, and Japan have the most extensive use of robotics in shipyards. The increasing investment by major companies in the expansion of ship repair facilities and shipbuilding capabilities might be linked to the growth of the regional market. Global leaders in robot density are Korea and Singapore, followed by Germany and Japan. The market expansion in this area is being fueled by the increasing popularity of Sarcos robotics systems.

Region with highest CAGR:

Europe is projected to have the highest CAGR over the forecast period, owing to increased shipbuilding activity and drydock capacity in the region. As a result of a variety of cargo trade routes, Northern Europe has become a formidable rival for container shipping businesses worldwide. In addition to attracting new clients from outside the Baltic Sea, the area is also broadening the range of services it offers to current clients. It is projected that the region would experience significant growth throughout the projection period as a result of these reasons.

Key players in the market:

Some of the key players profiled in the Robotics in Shipbuilding Market include: Yaskawa America, Inc., Universal Robots, ABB, Epson, The Fanuc Corporation, Daewoo Shipbuilding & Marine Engineering, Staubli International AG, Comau, Kawasaki Robotics, Novarc Technologies Inc., Fincantieri , Sarcos Technology And Robotics Corp. and Kuka AG.

Key Developments:

In January 2023, South Korean shipbuilding company Daewoo Shipbuilding & Marine Engineering announced that it developed a collaborative robot (cobot) to improve productivity. Cobots are robots designed for direct human-robot interaction in shared spaces or where humans and robots that work together in close proximity.

In October 2022, Sarcos conducted USN field trials at the Ventura County Naval Station, California, using the Guardian DX remote operator robot, the Sapien 6M dexterous robot, the Sapien Sea Class underwater robot, and the Guardian remote visual inspection robot.

In August 2021, Novarc Technologies Inc. announced that it would be showcasing its new spool welding robot + HyperFill technology at next month's FABTECH event in Chicago. Dual torch systems can increase productivity in heavy-duty manufacturing to 350-500 factor inches (FDI) per shift by increasing weld build rates.

In May 2021, Italian company Fincantieri signed an agreement with Italian robotics company Comau to develop robots and other solutions for shipbuilding and other heavy construction applications. The two companies would work together to develop and test new applications at the Fincantieri shipyard.

Types Covered:

  • SCARA Robots
  • Articulated Robots
  • Cylindrical Robots
  • Cartesian Robots
  • Other Types

Lifting Capacities Covered:

  • Less than 500 kg
  • 500 to 1000 kg
  • Over 1000 kg

Applications Covered:

  • Inspection
  • Handling
  • Welding
  • Assembling
  • Other Applications

Regions Covered:

  • North America
    • US
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • Italy
    • France
    • Spain
    • Rest of Europe
  • Asia Pacific
    • Japan
    • China
    • India
    • Australia
    • New Zealand
    • South Korea
    • Rest of Asia Pacific
  • South America
    • Argentina
    • Brazil
    • Chile
    • Rest of South America
  • Middle East & Africa
    • Saudi Arabia
    • UAE
    • Qatar
    • South Africa
    • Rest of Middle East & Africa

What our report offers:

  • Market share assessments for the regional and country-level segments
  • Strategic recommendations for the new entrants
  • Covers Market data for the years 2021, 2022, 2023, 2026, and 2030
  • Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
  • Strategic recommendations in key business segments based on the market estimations
  • Competitive landscaping mapping the key common trends
  • Company profiling with detailed strategies, financials, and recent developments
  • Supply chain trends mapping the latest technological advancements

Free Customization Offerings:

All the customers of this report will be entitled to receive one of the following free customization options:

  • Company Profiling
    • Comprehensive profiling of additional market players (up to 3)
    • SWOT Analysis of key players (up to 3)
  • Regional Segmentation
    • Market estimations, Forecasts and CAGR of any prominent country as per the client's interest (Note: Depends on feasibility check)
  • Competitive Benchmarking
    • Benchmarking of key players based on product portfolio, geographical presence, and strategic alliances

Table of Contents

1 Executive Summary

2 Preface

  • 2.1 Abstract
  • 2.2 Stake Holders
  • 2.3 Research Scope
  • 2.4 Research Methodology
    • 2.4.1 Data Mining
    • 2.4.2 Data Analysis
    • 2.4.3 Data Validation
    • 2.4.4 Research Approach
  • 2.5 Research Sources
    • 2.5.1 Primary Research Sources
    • 2.5.2 Secondary Research Sources
    • 2.5.3 Assumptions

3 Market Trend Analysis

  • 3.1 Introduction
  • 3.2 Drivers
  • 3.3 Restraints
  • 3.4 Opportunities
  • 3.5 Threats
  • 3.6 Application Analysis
  • 3.7 Emerging Markets
  • 3.8 Impact of Covid-19

4 Porters Five Force Analysis

  • 4.1 Bargaining power of suppliers
  • 4.2 Bargaining power of buyers
  • 4.3 Threat of substitutes
  • 4.4 Threat of new entrants
  • 4.5 Competitive rivalry

5 Global Robotics in Shipbuilding Market, By Type

  • 5.1 Introduction
  • 5.2 SCARA Robots
  • 5.3 Articulated Robots
  • 5.4 Cylindrical Robots
  • 5.5 Cartesian Robots
  • 5.6 Other Types

6 Global Robotics in Shipbuilding Market, By Lifting Capacity

  • 6.1 Introduction
  • 6.2 Less than 500 kg
  • 6.3 500 to 1000 kg
  • 6.4 Over 1000 kg

7 Global Robotics in Shipbuilding Market, By Application

  • 7.1 Introduction
  • 7.2 Inspection
  • 7.3 Handling
  • 7.4 Welding
  • 7.5 Assembling
  • 7.6 Other Applications

8 Global Robotics in Shipbuilding Market, By Geography

  • 8.1 Introduction
  • 8.2 North America
    • 8.2.1 US
    • 8.2.2 Canada
    • 8.2.3 Mexico
  • 8.3 Europe
    • 8.3.1 Germany
    • 8.3.2 UK
    • 8.3.3 Italy
    • 8.3.4 France
    • 8.3.5 Spain
    • 8.3.6 Rest of Europe
  • 8.4 Asia Pacific
    • 8.4.1 Japan
    • 8.4.2 China
    • 8.4.3 India
    • 8.4.4 Australia
    • 8.4.5 New Zealand
    • 8.4.6 South Korea
    • 8.4.7 Rest of Asia Pacific
  • 8.5 South America
    • 8.5.1 Argentina
    • 8.5.2 Brazil
    • 8.5.3 Chile
    • 8.5.4 Rest of South America
  • 8.6 Middle East & Africa
    • 8.6.1 Saudi Arabia
    • 8.6.2 UAE
    • 8.6.3 Qatar
    • 8.6.4 South Africa
    • 8.6.5 Rest of Middle East & Africa

9 Key Developments

  • 9.1 Agreements, Partnerships, Collaborations and Joint Ventures
  • 9.2 Acquisitions & Mergers
  • 9.3 New Product Launch
  • 9.4 Expansions
  • 9.5 Other Key Strategies

10 Company Profiling

  • 10.1 Yaskawa America, Inc.
  • 10.2 Universal Robots
  • 10.3 ABB
  • 10.4 Epson
  • 10.5 The Fanuc Corporation
  • 10.6 Daewoo Shipbuilding & Marine Engineering
  • 10.7 Staubli International AG
  • 10.8 Comau
  • 10.9 Kawasaki Robotics
  • 10.10 Novarc Technologies Inc.
  • 10.11 Fincantieri
  • 10.12 Sarcos Technology And Robotics Corp.
  • 10.13 Kuka AG