表紙:光無線通信(OWC)の実用的側面 - 技術、用途、市場
市場調査レポート
商品コード
1507979

光無線通信(OWC)の実用的側面 - 技術、用途、市場

Practical Aspects of Optical Wireless Communications - Technologies, Applications and Markets

出版日: | 発行: PracTel, Inc. | ページ情報: 英文 151 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=153.16円
光無線通信(OWC)の実用的側面 - 技術、用途、市場
出版日: 2024年07月03日
発行: PracTel, Inc.
ページ情報: 英文 151 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 図表
  • 目次
概要

光無線通信(OWC)システムは、送信機と受信機間の自由空間光リンク(空気または真空)を利用してデータを伝送します。OWC技術は、さまざまな要因によってRF技術よりも優位に立っています。この要因には、高いエネルギー効率、規制のない広範な帯域幅、本来的な安全性、低い経済的コストなどが含まれますが、これらに限定されるものではありません。

OWC技術は5G無線通信を補完し、強化します。利用可能なスペクトルが広い光を利用することで、大量のデータを高速かつ高セキュリティで送信することができます。

超高帯域幅、長い通信距離、強力なデータプライバシーといった固有の利点を持つ光無線システムは、将来の通信ネットワークインフラの不可欠な構成要素となります。光無線通信は、6G、WLAN、AR/VR、そしてその先のネットワーク運用において重要な役割を果たすことが見込まれます。光無線システムの設計と調整もまた、未解決のテーマです。

当レポートでは、光無線通信(OWC)について調査分析し、各技術の詳細、標準化、関連する特許、企業などの情報を提供しています。

目次

第1章 イントロダクション

  • レポートの目標
    • 電磁光スペクトル
    • OWCクラス
  • OWC技術
  • 範囲
  • 調査手法
  • 対象読者

第2章 LEDの特性

  • 概要
  • スペクトル
  • LEDの種類
  • LED変調
    • 制限
  • LEDの進化
    • 概要
    • 利点
    • 市場の特徴
    • 要因:新しい規制

第3章 可視光通信(VLC)

  • 概要
    • VLCの促進要因
    • 組織 - 例
  • 詳細
    • 通信チャネル
    • 送信機
    • 受信機
    • 主な特徴
    • 利用例
  • 課題

第4章 Light Fidelity(LiFi)

  • 概要
  • 違い - LiFiとVLC
  • LiFiコンソーシアム
  • Light Communications Alliance
  • LiFiの制限

第5章 光カメラ通信(OCC)

  • 概要
  • 促進要因
  • 原理
  • イメージセンサー
    • 詳細
  • 用途
    • ディープラーニングベースの光カメラ通信

第6章 フリースペースファイバー

  • 概要
    • 背景
  • 主な特徴
  • 保護
  • 主なユースケース
    • 要件
    • 衛星間リンク
    • 建物内通信
    • 建物間通信
    • サマリー
  • FSF通信の利点と制限:サマリー
    • 天候要因
    • 建物の揺れ
    • 大気減衰
  • 設計上の問題点
    • 方向
    • 主なユースケース
    • 機能強化
  • 多様化

第7章 OWCの標準化

  • VLC/LiFi/OCC/FSF標準の開発
    • IEEE - 802.15.7-2018
    • IEEE - 802.11bb
    • IEEE- 802.15.13-2023
    • IEEE 802.15.7m - OCC OCCの標準化
    • JEITA(電子情報技術産業協会)標準
    • 可視光通信協会(VLCA)
    • ECMA 397-2010
    • ITU G.9991
    • ITU Report ITU-R SM.2422-0(2018年6月)
    • FSF ITU G.640
    • FSF ITU-R P.1814-2007
    • FSF ARIB STD-T50(光無線LANシステム)v4-2009

第8章 OWC産業

  • VLC/LiFi/OCC産業
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • Global LiFI Tech
    • Lightbee
    • Nakagawa Laboratories
    • NEC
    • OptiPulse
    • Outstanding Technology
    • Oledcomm
    • PureVLC-PureLiFi
    • Qualcomm
    • Renesas
    • Signify (Philips Lighting)
    • Supreme Architecture
    • VLNComm
    • Zero1
  • FSF産業
    • AIRLINX Communications
    • BridgeComm
    • CableFree
    • CBL
    • Collinear
    • Dailianxu Engineering Company
    • fSONA
    • Guilin
    • Plaintree
    • SA Photonics (a CASI Company)
    • Tesat
    • Transcelestial
    • Taara

第9章 OWC市場

  • 要因
  • 推計 - VLC/LiFi/OCC市場
  • FSF市場
    • 概要
    • 市場促進要因とユースケース
    • 市場セグメント
    • 競合
    • 予測
  • VLCとFSF

第10章 問題点

第11章 5Gの見通し

  • アトセル
    • セル構造
    • ハイブリッド:OWC/RF
  • OWCネットワークの利点
    • OWCと自動運転車

第12章 結論

添付資料1:OWC関連特許調査(2018年~2024年)

図表

List of Figures

  • Figure 1: Diagram of Electromagnetic Spectrum
  • Figure 2: Visible Light Spectrum
  • Figure 3: OWC Illustration
  • Figure 4: Illustration - Use Cases - OWC
  • Figure 5: OWC Technologies
  • Figure 6: LED Structure
  • Figure 7: LED Spectrum
  • Figure 8: White LED Properties Illustration
  • Figure 9: Estimate: Lighting LED Market - Global ($B)
  • Figure 10: LED Price Factor ($/W)
  • Figure 11: Cost and Brightness- Light Sources (Illustration)
  • Figure 12: Illustration: VLC Place
  • Figure 13: Illustration-VLC Channel
  • Figure 14: VLC Applications - Examples
  • Figure 15: OWC Applications in ITS
  • Figure 16: Simplified FSF Channel Diagram
  • Figure 17: PHY Types
  • Figure 18: Topologies
  • Figure 19: OWC Market Categories
  • Figure 20: Estimate: OWC Technologies Projected Market Size - Global ($B)
  • Figure 21: OWC Market Geography (2024)
  • Figure 22: FSF Market Segments
  • Figure 23: Estimate: FSF Global Market Value ($B)
  • Figure 24: FSF Market Geography
  • Figure 25: Hybrid VLC/RF System
  • Figure 26: Hybrid Structures

List of Tables

  • Table 1: LED Wavelengths (nm)
  • Table 2: Properties - Laser vs. LED
  • Table 3: Light Sources Characteristics
  • Table 4: VLC vs RF Properties
  • Table 5: VLC, IR and RF Communications - ITS Applications Comparison
  • Table 6: Locations Technologies
  • Table 7: Atmospheric Attenuation
  • Table 8: VLC Use Cases
  • Table 9: Devices and Characteristics
  • Table 10: Comparison: Position Use Cases
  • Table 11: Frequency Plan
  • Table 12: OCC Types of Modulation
  • Table 13: OCC Performance Characteristics
  • Table 14: VLC vs FSF
目次

Optical Wireless Communications (OWC) systems utilize the free-space optical links (air or vacuum) between the transmitter and the receiver to transmit data. OWC technology has an edge over the RF technology due to various factors. These factors include but are not limited to high energy efficiency, widely spread bandwidth, which is free from regulation, intrinsic security, and low economical costs.

OWC technologies complement and enhance 5G wireless communications. By utilizing its greater available spectrum, light can be used to deliver large amounts of data at fast speeds and with high security.

With the inherent advantages, such as ultra-high bandwidth, long communication distance, and strong data privacy, optical wireless systems will become an essential building block of the future communication network infrastructure. Optical wireless communications will play an important role in network operations for 6G, WLANs, AR/VR, and beyond. Optical wireless system design and coordination is also an open topic.

The report researches a wide spectrum of OWC - related subjects and concentrates on:

  • VLC - Visible Light Communication
  • LiFi - Light Fidelity
  • OCC - Optical Camera Communications
  • FSF - Free Space Fiber
  • Other.

The differences among these technologies are very specific. The unique characteristic of VLC is the use of visible light as communication media. A LiFi system must support seamless mobility, bidirectional communication, and point-to-multipoint, as well as multipoint-to-point communications. Only the OCC system uses camera or image sensor as a receiver among all the OWC technologies. Due to the narrow beams of focused light from a LD transmitter, a FSF system can form a very long distance as well as a high-data-rate communication link.

  • The report addresses Light Emitting Diodes (LEDs) technologies and markets. LEDs, in the near future, will be a dominate source of illumination; and used also as a transmitting device. The OWC LED-based channels promise to deliver high-speed data in office, home and other environments with high signal-to-noise ratio, and minimum infrastructure expenses.
  • The report is analyzing the emerging OWC, and particular:

Industry

The survey of more than 40 companies' profiles shows the industry strength and growth.

Economics

The markets specifics of VLC/LiFi/OCC and FSF are evaluated (2024-2028).

Technologies

The detailed analysis of OWC technologies, their strengths and weaknesses, including the latest developments is provided. The report is addressing the specifics of each OWC technology and compare their functionalities.

Standardization

An important prerequisite for the large-scale adoption of OWC technologies is the availability of standards. In this context, IEEE 802.15, IEEE 802.11, ITU-R as well as other organizations are working to standardize OWC technology. Multiple OWC standards are analyzed in this report to create a diverse picture of the industry directions.

Applications

The report emphasizes that the spectrum of OWC applications is increasing with each year to support such developments as Intelligent Transportation Systems, Localization and other. Both indoor and outdoor users can appreciate OWC features in multiple instances when compare them with RF transmission.

The report also surveys OWC-related patents.

This report is important to a wide population of researches, technical and sales staff involved in the developing of advanced Optical Wireless Communications systems. It is recommended for both service providers and vendors that are working with related technologies.

Table of Contents

1.0. Introduction

  • 1.1. Report Goals
    • 1.1.1. Electromagnetic Optical Spectrum
    • 1.1.2. OWC Classes
  • 1.2. OWC Technologies
  • 1.3. Scope
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. LED Properties

  • 2.1. General
  • 2.2. Spectrum
  • 2.3. LED Types
  • 2.4. LED Modulation
    • 2.4.1. Limitations
  • 2.5. LED Evolution
    • 2.5.1. General
    • 2.5.2. Benefits
    • 2.5.3. Market Characteristics
    • 2.5.4. Factors: New Regulations

3.0. Visible Light Communication (VLC)

  • 3.1. General
    • 3.1.1. VLC Drivers
    • 3.1.2. Organizations - Examples
      • 3.1.2.1. UC-Light Center
  • 3.2. Details
    • 3.2.1. Communication Channel
    • 3.2.2. Transmitter
    • 3.2.3. Receiver
    • 3.2.4. Major Characteristics
      • 3.2.4.1. General
      • 3.2.4.2. Modulation
      • 3.2.4.3. VLC Channel: Characteristics Summary
    • 3.2.5. Applications Examples
      • 3.2.5.1. Intelligent Transportation Systems
      • 3.2.5.2. Optical Wireless LAN
      • 3.2.5.3. Medical
      • 3.2.5.4. Visible Light Positioning
      • 3.2.5.5. City Wide Wireless Network
      • 3.2.5.6. Summary
  • 3.3. Challenges

4.0. Light Fidelity (LiFi)

  • 4.1. General
  • 4.2. Differences - LiFi and VLC
  • 4.3. LiFi Consortium
  • 4.4. Light Communications Alliance
  • 4.5. LiFi Limitations

5.0. Optical Camera Communications (OCC)

  • 5.1. General
  • 5.2. Driving Forces
  • 5.3. Principles
  • 5.4. Image Sensors
    • 5.4.1. Specifics
  • 5.5. Applications
    • 5.5.1. Deep Learning-Based Optical Camera Communications

6.0. Free Space Fiber

  • 6.1. General
    • 6.1.1. Background
  • 6.2. Major Characteristics
  • 6.3. Protection
  • 6.4. Major Use Cases
    • 6.4.1. Requirements
    • 6.4.2. Inter-satellite Links
      • 6.4.2.1. Commercialization
    • 6.4.3. Intra-building Communications
      • 6.4.3.1. New Applications
    • 6.4.4. Inter-building Communications
    • 6.4.5. Summary
  • 6.5. FSF Communications Benefits and Limitations: Summary
    • 6.5.1. Weather Factor
    • 6.5.2. Building Swaying
    • 6.5.3. Atmospheric Attenuation
  • 6.6. Design Issues
    • 6.6.1. Directions
    • 6.6.2. Major Use Cases
    • 6.6.3. Enhancements
  • 6.7. Diversification

7.0. OWC Standardization

  • 7.1. VLC/LiFi/OCC/FSF Standards Development
    • 7.1.1. IEEE - 802.15.7-2018
      • 7.1.1.1. Considerations
        • 7.1.1.1.1. Purpose
        • 7.1.1.1.2. New Communications Media
      • 7.1.1.2. Project
        • 7.1.1.2.1. Coexistence
        • 7.1.1.2.2. Essence
        • 7.1.1.2.3. Base
        • 7.1.1.2.4. Use Cases and Devices
        • 7.1.1.2.5. Physical Layer
          • 7.1.1.2.5.1. General
          • 7.1.1.2.5.2. Responsibilities
          • 7.1.1.2.5.3. Types
          • 7.1.1.2.5.4. Error Correction
          • 7.1.1.2.5.5. Rates
          • 7.1.1.2.5.6. Frequency Plan
          • 7.1.1.2.5.7. PHY Services
          • 7.1.1.2.5.8. Regulations
        • 7.1.1.2.6. MAC Layer
          • 7.1.1.2.6.1. Topologies
          • 7.1.1.2.6.2. Responsibilities
          • 7.1.1.2.6.3. Functionalities
          • 7.1.1.2.6.4. Channel Access
        • 7.1.1.2.7. Security
    • 7.1.2. IEEE - 802.11bb
      • 7.1.2.1. Differences
    • 7.1.3. IEEE- 802.15.13-2023
    • 7.1.4. IEEE 802.15.7m - OCC Standardization
      • 7.1.4.1. Background
      • 7.1.4.2. Process
      • 7.1.4.3. Modulation
        • 7.1.4.3.1. Directions: From 5G-to-6G
      • 7.1.4.4. OCC Performance Requirements
      • 7.1.4.5. Physical Layer
    • 7.1.5. Jeita (Japan Electronics and Information Technology Industries Association) Standards
      • 7.1.5.1. JEITA CP-1221
      • 7.1.5.2. JEITA CP-1222
      • 7.1.5.3. JEITA CP-1223
    • 7.1.6. Visible Light Communications Association (VLCA)
    • 7.1.7. ECMA 397-2010
    • 7.1.8. ITU G.9991
    • 7.1.9. ITU Report ITU-R SM.2422-0 (06/2018)
    • 7.1.10. FSF ITU G.640
    • 7.1.11. FSF ITU-R P.1814-2007
    • 7.1.12. FSF ARIB STD-T50 (OPTICAL WIRELESS LAN SYSTEM) v4-2009

8.0. OWC Industry

  • 8.1. VLC/LiFi/OCC Industry
    • Casio
    • Firefly
    • Fraunhofer IPMS
    • Global LiFI Tech
    • Lightbee
    • Nakagawa Laboratories
    • NEC
    • OptiPulse
    • Outstanding Technology
    • Oledcomm
    • PureVLC-PureLiFi
    • Qualcomm
    • Renesas
    • Signify (Philips Lighting)
    • Supreme Architecture
    • VLNComm
    • Zero1
  • 8.2. FSF Industry
    • AIRLINX Communications
    • BridgeComm
    • CableFree
    • CBL
    • Collinear
    • Dailianxu Engineering Company
    • fSONA
    • Guilin
    • Plaintree
    • SA Photonics (a CASI Company)
    • Tesat
    • Transcelestial
    • Taara

9.0. OWC Market

  • 9.1. Factors
  • 9.2. Estimate - VLC/LiFi/OCC Markets
  • 9.3. FSF Market
    • 9.3.1. General
    • 9.3.2. Market Drivers and Use Cases
    • 9.3.3. Market Segments
    • 9.3.4. Competition
      • 9.3.4.1. Fiber Optics Systems
      • 9.3.4.2. Microwave
      • 9.3.4.3. PONs
    • 9.3.5. Forecast
      • 9.3.5.1. General
      • 9.3.5.2. Model Assumptions
      • 9.3.5.3. Structure
      • 9.3.5.4. Market Characteristics
  • 9.4. VLC and FSF

10.0. Issues

  • 11.0 5G View
  • 11.1. Attocell
    • 11.1.1. Cell Structures
      • 11.1.1.1. Attocells Specifics
    • 11.1.2. Hybrid: OWC/RF
  • 11.2. Advantages of OWC Networking
    • 11.1.3. OWC and Self-driven Car

12.0. Conclusions

Attachment I: OWC - related Patents Survey (2018-2024)