表紙:廃棄物発電技術の世界市場2023-2030
市場調査レポート
商品コード
1296920

廃棄物発電技術の世界市場2023-2030

Global Waste to Energy Technologies Market 2023-2030


出版日
ページ情報
英文 125 Pages
納期
2~3営業日
カスタマイズ可能
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.96円
廃棄物発電技術の世界市場2023-2030
出版日: 2023年05月28日
発行: Orion Market Research
ページ情報: 英文 125 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の廃棄物発電技術市場は、予測期間中にCAGR 5.8%で成長すると予測されています。市場成長の要因は、廃棄物発生量の増加、厳しい廃棄物管理規制、技術の進歩などです。世界中の政府および環境機関は、埋立廃棄物を削減し、持続可能な廃棄物管理を促進するために、厳しい規制と政策を実施しています。米国エネルギー情報局(EIA)によると、一般廃棄物(MSW)は通常、特別な廃棄物発電所で燃やされ、その熱を利用して発電用蒸気を作ったり、建物を暖めたりします。2021年には、米国の64の発電所が、発電のために約2,800万トンの可燃性MSWを燃やし、約136億キロワット時の電力を生み出しました。バイオマス原料は可燃性MSWの重量の約61%を占め、発電量の約45%を占めました。残りの可燃ごみにはバイオマスは含まれておらず、主にプラスチックでした。多くの大規模な埋立地では、埋立地でバイオマスが分解して発生するメタンガスを利用して発電も行っています。多くの国では、廃棄物発電所を利用してMSWのエネルギーを回収しています。欧州の一部の国や日本では、ごみ焼却場の利用率が比較的高いが、その理由のひとつは、これらの国には埋め立て用の空き地がほとんどないためです。

セグメント別の展望

世界の廃棄物発電技術市場では、都市固形廃棄物(MSW)サブセグメントが大きなシェアを占めると予想されます。

廃棄物の種類の中でも、自治体固形廃棄物サブセグメントは、世界中で大量に発生する廃棄物と持続可能な廃棄物管理ソリューションの必要性から、世界の廃棄物エネルギー技術市場で突出したシェアを占めると予想されます。さらに、世界人口の増加、都市化、消費パターンの変化により、都市固形廃棄物の発生量が大幅に増加しています。廃棄物発電技術は、こうした廃棄物を管理し、貴重なエネルギー資源に変換するための効率的で持続可能なソリューションを提供します。廃棄物発電技術を可能にする雰囲気は、埋め立てゴミを減らし、温室効果ガスの排出を緩和することを目的とした、厳しい環境規則や政策によって作られてきました。世界中の政府は、奨励政策や財政的インセンティブを通じて、こうした技術の採用を奨励しています。

米国エネルギー省(DOE)は、バイオ燃料、バイオ電力、バイオ製品を改良・生産するためのインパクトの大きい研究開発を支援する11のプロジェクトに対し、約3,400万米ドルの資金提供を発表しました。これらのバイオマス資源(別称、原料)は、都市固形廃棄物(MSW)の流れや藻類によって生産され、低炭素燃料に変換することができ、航空や船舶など電化の障壁となっている輸送部門の脱炭素化に大きく貢献することができます。

地域別展望

北米が世界の廃棄物発電技術市場で顕著な成長を遂げると予測される

全地域の中でも北米は、有利な政府政策、先進技術の採用、エネルギー安全保障目標、有機廃棄物の有価化により、予測期間中に顕著な成長を遂げると予測されています。高度廃棄物エネルギー化技術には、高度焼却システム、バイオガス回収を伴う嫌気性消化、熱ガス化が含まれます。これらの技術は、高効率、低排出、廃棄物処理能力の向上を実現します。この地域では、政府が厳しい廃棄物管理規制と環境政策を実施しています。こうした取り組みは、埋め立てに代わる環境に優しい選択肢として、廃棄物発電技術の採用を促進しています。例えば2023年3月、米国エネルギー省のバイオエネルギー技術局(BETO)と国立再生可能エネルギー研究所(NREL)は、自治体向け有機廃棄物エネルギー化(WTE)技術支援の次の段階を開始します。この技術支援プログラムは、意思決定に役立つ最も関連性の高いデータを自治体に提供するものです。自治体は、この技術支援プログラムから得られた最も適切なデータを意思決定に役立てることができます。自治体は、このプログラムからのデータを活用して、廃棄物をオンサイトの熱/電力、輸送用燃料、肥料回収、その他の目的に再利用するなど、廃棄物の実用的な最終用途を評価することができます。

目次

第1章 レポート概要

  • 業界の現状分析と成長ポテンシャルの展望
  • 調査方法とツール
  • 市場内訳
    • セグメント別
    • 地域別

第2章 市場概要と洞察

  • 調査範囲
  • アナリストの洞察と現在の市場動向
    • 主な調査結果
    • 推奨事項
    • 結論

第3章 競合情勢

  • 主要企業分析
  • Abu Dhabi National Energy Co. Pjsc(Taqa)
    • 概要
    • 財務分析
    • SWOT分析
    • 最近の動向
  • Babcock & Wilcox Enterprises, Inc.
    • 会社概要
    • 財務分析
    • SWOT分析
    • 最近の動向
  • John Wood Group Plc
    • 概要
    • 財務分析
    • SWOT分析
    • 最近の動向
  • 主要戦略分析

第4章 市場セグメンテーション

  • 廃棄物発電技術の世界市場:用途別
    • 電気
  • 廃棄物発電技術の世界市場:技術別
    • 熱化学
    • 生物化学
  • 廃棄物発電技術の世界市場:廃棄物タイプ別
    • 都市固形廃棄物
    • プロセス廃棄物
    • 農業廃棄物
    • その他

第5章 地域分析

  • 北米
    • 米国
    • カナダ
  • 欧州
    • 英国
    • ドイツ
    • イタリア
    • スペイン
    • フランス
    • その他欧州
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • 韓国
    • その他アジア太平洋地域
  • 世界のその他の地域

第6章 企業プロファイル

  • China Jinjiang Environment Holding Co. Ltd
  • Hitachi Zosen Corp
  • MVV Energie AG
  • Martin GmbH
  • Veolia Environnement SA
  • Mitsubishi Heavy Industries Ltd
  • Waste Management Inc.
  • Suez Group
  • Martin GmbH
  • Xcel Energy Inc.
  • A2A S.p.A.
  • China Everbright Limited
  • Wheelabrator Technologies Holdings Inc.
  • Covanta Holding Corp.
  • Plasco Energy Group Inc
図表

LIST OF TABLES

  • 1. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY APPLICATION, 2022-2030 ($ MILLION)
  • 2. GLOBAL ELECTRICITY BY WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 3. GLOBAL HEAT BY WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 4. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY TECHNOLOGY, 2022-2030 ($ MILLION)
  • 5. GLOBAL THERMOCHEMICAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 6. GLOBAL BIOCHEMICAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 7. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY WASTE TYPE, 2022-2030 ($ MILLION)
  • 8. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR MUNICIPAL SOLID WASTE MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 9. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR PROCESS WASTE MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 10. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR AGRICULTURAL WASTE MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 11. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR OTHER WASTES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 12. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY REGION, 2022-2030 ($ MILLION)
  • 13. NORTH AMERICAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY COUNTRY, 2022-2030 ($ MILLION)
  • 14. NORTH AMERICAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY APPLICATION, 2022-2030 ($ MILLION)
  • 15. NORTH AMERICAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY TECHNOLOGY, 2022-2030 ($ MILLION)
  • 16. NORTH AMERICAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY WASTE TYPE, 2022-2030 ($ MILLION)
  • 17. EUROPEAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY COUNTRY, 2022-2030 ($ MILLION)
  • 18. EUROPEAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY APPLICATION, 2022-2030 ($ MILLION)

19. EUROPEAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY TECHNOLOGY, 2022-2030 ($MILLION)

  • 20. EUROPEAN WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY WASTE TYPE, 2022-2030 ($ MILLION)
  • 21. ASIA-PACIFIC WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY COUNTRY, 2022-2030 ($ MILLION)
  • 22. ASIA-PACIFIC WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY APPLICATION, 2022-2030 ($ MILLION)
  • 23. ASIA-PACIFIC WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY TECHNOLOGY, 2022-2030 ($ MILLION)
  • 24. ASIA-PACIFIC WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY WASTE TYPE, 2022-2030 ($ MILLION)
  • 25. REST OF THE WORLD WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY COUNTRY, 2022-2030 ($ MILLION)
  • 26. REST OF THE WORLD WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY APPLICATION, 2022-2030 ($ MILLION)
  • 27. REST OF THE WORLD WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY TECHNOLOGY, 2022-2030 ($ MILLION)
  • 28. REST OF THE WORLD WASTE-TO-ENERGY TECHNOLOGIES MARKET RESEARCH AND ANALYSIS BY WASTE TYPE, 2022-2030 ($ MILLION)

LIST OF FIGURES

  • 1. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY APPLICATION, 2022 VS 2030 (%)
  • 2. GLOBAL ELECTRICITY BY WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 3. GLOBAL HEAT BY WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY REGION, 2022 VS 2030 (%)

4. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY TECHNOLOGIES, 2022 VS 2030 (%/)

  • 5. GLOBAL THERMOCHEMICAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 6. GLOBAL BIOCHEMICAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 7. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY WASTE TYPE, 2022 VS 2030 (%)
  • 8. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR MUNICIPAL SOLID WASTE MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 9. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR PROCESS WASTE MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 10. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR AGRICULTURAL WASTE MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 11. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES FOR OTHER WASTES MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 12. GLOBAL WASTE-TO-ENERGY TECHNOLOGIES MARKET SHARE BY REGION, 2022 VS 2030 (%)
  • 13. US WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 14. CANADA WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 15. UK WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 16. FRANCE WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 17. GERMANY WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 18. ITALY WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 19. SPAIN WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 20. REST OF EUROPE WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 21. INDIA WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 22. CHINA WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 23. JAPAN WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 24. SOUTH KOREA WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 25. REST OF ASIA-PACIFIC WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
  • 26. REST OF THE WORLD WASTE-TO-ENERGY TECHNOLOGIES MARKET SIZE, 2022-2030 ($ MILLION)
目次
Product Code: OMR2026794

Title:Global Waste-to-Energy Technologies Market Size, Share & Trends Analysis Report by Application (Electricity and Heat), by Technology (Thermochemical and Biochemical), and by Waste type (Municipal Solid Waste, Process Waste, Agricultural Waste, and Others) Forecast Period (2023-2030).

The global waste-to-energy technologies market is anticipated to grow at a CAGR of 5.8% during the forecast period. The market growth is attributed to factors such as the increasing waste generation, stringent waste management regulations and technological advancements. Governments and environmental agencies across the globe are implementing stringent regulations and policies to reduce landfill waste and promote sustainable waste management practices. According to the US Energy Information Administration (EIA), municipal solid waste (MSW) is usually burned at special waste-to-energy plants that use the heat from the fire to make steam for generating electricity or to heat buildings. In 2021, 64 U.S. power plants generated about 13.6 billion kilowatt-hours of electricity from burning about 28 million tons of combustible MSW for electricity generation. Biomass materials accounted for about 61% of the weight of combustible MSW and for about 45% of the electricity generated. The remainder of the combustible MSW was no biomass combustible material, mainly plastics. Many large landfills also generate electricity by using the methane gas that is produced from decomposing biomass in landfills. Many countries use waste-to-energy plants to capture the energy in MSW. The use of waste-to-energy plants in some European countries and in Japan is relatively high, in part because those countries have little open space for landfills.

Segmental Outlook

The global waste-to-energy technologies market is segmented based on the application, technology, and waste type. Based on the application, the market is segmented into electricity and heat. Based on technology, the market is sub-segmented into thermochemical and biochemical. Further, based on waste type, the market is segmented into MSW, process waste, agricultural waste, and others). Among the application segment, the electricity sub-segment is expected to hold a prominent share of the global market owing to the growing demand for the electricity as it is being used for sustainable development globally.

The Municipal Solid Waste (MSW)Sub-Segment Is Anticipated to Hold Prominent Share in the Global Waste-To-Energy Technologies Market

Among the waste type, the municipal solid waste sub-segment is expected to hold a prominent share of the global waste-to-energy technologies market across the globe, owing to the large volume of waste generated across the globe and the need for sustainable waste management solutions. In addition, the global population's growth, urbanization, and changing consumption patterns have resulted in a significant increase in municipal solid waste generation. Waste-to-energy technologies offer an efficient and sustainable solution to manage and convert this waste into valuable energy resources. An enabling atmosphere for waste-to-energy technology has been created by stringent environmental rules and policies that aim to reduce landfill trash and mitigate greenhouse gas emissions. Governments all over the world are encouraging the adoption of these technologies through encouraging policies and financial incentives.

The US Department of Energy (DOE) announced nearly $34 million in funding for 11 projects that will support high-impact research and development to improve and produce biofuels, biopower, and bioproducts. These biomass resources, otherwise known as feedstocks, can be produced by municipal solid waste (MSW) streams and algae and converted into low-carbon fuels that can significantly contribute to the decarbonization of transportation sectors that face barriers to electrification, such as aviation and marine.

Regional Outlook

The global waste-to-energy technologies market is further segmented based on geography including North America (the US, and Canada), Europe (Italy, Spain, Germany, France, and Others), Asia-Pacific (India, China, Japan, South Korea, and Others), and the Rest of the World (the Middle East & Africa, and Latin America). Among these, the Asia-Pacific region is expected to hold a prominent growth over the forecast period owing to the increasing waste generation along with the supportive government policies and growing focus on renewable energy. Governments in the Asia-Pacific region are increasingly recognizing the importance of sustainable waste management and renewable energy sources. Many countries including India have implemented favorable policies, regulations, and financial incentives to promote waste-to-energy projects. For instance, the Indian government's Swachh Bharat Abhiyan (Clean India Mission) and the focus on renewable energy integration provide a conducive environment for the growth of the waste-to-energy market.

Global Waste-to-Energy Technologies Market Growth, by Region 2023-2030

Source: OMR Analysis

North America is Anticipated to Cater Prominent Growth in the Global Waste-to-Energy Technologies Market

Among all regions, North America is anticipated to cater prominent growth over the forecast period owing to the favorable government policies, advanced technology adoption, energy security goals, and organic waste valorization. Advanced waste-to-energy technologies includes advanced incineration systems, anaerobic digestion with biogas recovery, and thermal gasification. These technologies offer higher efficiency, lower emissions, and improved waste treatment capabilities. In this region, the governments have implemented stringent waste management regulations and environmental policies. These initiatives promote the adoption of waste-to-energy technologies as an environmentally friendly alternative to landfilling. For instance, in March 2023, The US Department of Energy's Bioenergy Technologies Office (BETO) and the National Renewable Energy Laboratory (NREL) are launching the next phase of the organic Waste-to-Energy (WTE) Technical Assistance for Local Governments. This technical assistance program provides municipalities with the most relevant data to help with decision making. Municipalities can use the most pertinent data from this technical assistance program to aid in decision-making. Communities can utilise the data from this program to assess the practical final uses for their waste, such as reusing it for on-site heat/power, transportation fuels, fertiliser recovery, or other purposes.

Market Players Outlook

The major companies serving the global Waste-to-Energy Technologies market include Abu Dhabi National Energy Company PJSC (TAQA), John Wood Group Plc, Babcock & Wilcox Enterprises, Inc., and others. The market players are considerably contributing to the market growth by the adoption of various strategies including mergers and acquisitions, partnerships, collaborations, funding, and new product launches, to stay competitive in the market. For instance, in June 2021, the Asian Development Bank (ADB) and China Everbright Environment Group Limited (CEEGL) signed a memorandum of understanding (MOU) to promote the development of enhanced solid waste management systems in Asia to encourage public-private partnerships (PPP) in waste collection, transportation, and recycling, and to reduce land-based sources of marine debris and related impacts to marine life, coastal livelihoods, and human health.

The Report Covers:

  • Market value data analysis of 2022 and forecast to 2030.
  • Annualized market revenues ($ million) for each market segment.
  • Country-wise analysis of major geographical regions.
  • Key companies operating in the global waste-to-energy technologies market. Based on the availability of data, information related to new product launches, and relevant news is also available in the report.
  • Analysis of business strategies by identifying the key market segments positioned for strong growth in the future.
  • Analysis of market-entry and market expansion strategies.
  • Competitive strategies by identifying 'who-stands-where' in the market.

Table of Contents

1. Report Summary

  • Current Industry Analysis and Growth Potential Outlook
  • 1.1. Research Methods and Tools
  • 1.2. Market Breakdown
    • 1.2.1. By Segments
    • 1.2.2. By Region

2. Market Overview and Insights

  • 2.1. Scope of the Report
  • 2.2. Analyst Insight & Current Market Trends
    • 2.2.1. Key Findings
    • 2.2.2. Recommendations
    • 2.2.3. Conclusion

3. Competitive Landscape

  • 3.1. Key Company Analysis
  • 3.2. Abu Dhabi National Energy Co. Pjsc (Taqa)
    • 3.2.1. Overview
    • 3.2.2. Financial Analysis
    • 3.2.3. SWOT Analysis
    • 3.2.4. Recent Developments
  • 3.3. Babcock & Wilcox Enterprises, Inc.
    • 3.3.1. Overview
    • 3.3.2. Financial Analysis
    • 3.3.3. SWOT Analysis
    • 3.3.4. Recent Developments
  • 3.4. John Wood Group Plc
    • 3.4.1. Overview
    • 3.4.2. Financial Analysis
    • 3.4.3. SWOT Analysis
    • 3.4.4. Recent Developments
  • 3.5. Key Strategy Analysis

4. Market Segmentation

  • 4.1. Global Waste-to-Energy Technologies Market by Application
    • 4.1.1. Electricity
    • 4.1.2. Heat
  • 4.2. Global Waste-to-Energy Technologies Market by Technology
    • 4.2.1. Thermochemical
    • 4.2.2. Biochemical
  • 4.3. Global Waste-to-Energy Technologies Market by Waste Type
    • 4.3.1. Municipal Solid Waste
    • 4.3.2. Process Waste
    • 4.3.3. Agricultural Waste
    • 4.3.4. Others

5. Regional Analysis

  • 5.1. North America
    • 5.1.1. United States
    • 5.1.2. Canada
  • 5.2. Europe
    • 5.2.1. UK
    • 5.2.2. Germany
    • 5.2.3. Italy
    • 5.2.4. Spain
    • 5.2.5. France
    • 5.2.6. Rest of Europe
  • 5.3. Asia-Pacific
    • 5.3.1. China
    • 5.3.2. India
    • 5.3.3. Japan
    • 5.3.4. South Korea
    • 5.3.5. Rest of Asia-Pacific
  • 5.4. Rest of the World

6. Company Profiles

  • 6.1. China Jinjiang Environment Holding Co. Ltd
  • 6.2. Hitachi Zosen Corp
  • 6.3. MVV Energie AG
  • 6.4. Martin GmbH
  • 6.5. Veolia Environnement SA
  • 6.6. Mitsubishi Heavy Industries Ltd
  • 6.7. Waste Management Inc.
  • 6.8. Suez Group
  • 6.9. Martin GmbH
  • 6.10. Xcel Energy Inc.
  • 6.11. A2A S.p.A.
  • 6.12. China Everbright Limited
  • 6.13. Wheelabrator Technologies Holdings Inc.
  • 6.14. Covanta Holding Corp.
  • 6.15. Plasco Energy Group Inc