デフォルト表紙
市場調査レポート
商品コード
1661878

GPUaaS (GPU as a Service) 市場レポート:動向、予測、競合分析 (2031年まで)

GPU as a Service Market Report: Trends, Forecast and Competitive Analysis to 2031


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

GPUaaS (GPU as a Service) 市場レポート:動向、予測、競合分析 (2031年まで)
出版日: 2025年02月21日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界のGPUaaS (GPU as a Service) 市場の将来は、医療、BFSI、製造、IT・通信、自動車アプリケーションにおける機会で有望視されています。世界のGPUaaS (GPU as a Service) 市場は、2025年から2031年までのCAGRが26.8%で、2031年までに219億米ドルに達すると推定されます。この市場の主な促進要因は、ゲームおよびデザイン分野における研究開発の重視の高まり、さまざまな業界における機械学習およびAIベースのアプリケーションの採用の拡大、高度なデータ分析に対する需要の高まりです。

  • Lucintelの予測では、展開モデルのカテゴリーでは、プライベート型が予測期間中に最も高い成長を遂げる見込みです。
  • 地域別では、北米が予測期間中最大の地域であり続けます。

GPUaaS (GPU as a Service) 市場の戦略的成長機会

GPUaaS (GPU as a Service) 市場における成長機会の展望は、技術の進歩と市場のニーズにより、さまざまな重要なアプリケーションで進化しています。

  • AIと機械学習:人工知能と機械学習の用途でGPUaaSを利用することは、これらの技術が学習と推論の両方の段階で計算集約的であるため、計り知れない成長の可能性を示します。
  • データ分析とビッグデータ:膨大な量のデータが利用可能になったことで、金融、医療、小売業などでは、データ処理や集中的な分析ワークロードの実行にGPUaaSを利用する業界が増加しています。
  • ゲームとバーチャルリアリティ:そのため、GPUaaSはゲーム制作や鮮明なコンテンツ取得に必要なギャップを埋めます。
  • エッジコンピューティング:GPUaaSとエッジコンピューティングの組み合わせは、リアルタイムのデータ処理と分析を強化することができ、モノのインターネットやスマートシティなどの垂直分野で機会を提供します。
  • ハイブリッドクラウドソリューション:GPUaaSプロバイダーは、オンプレミスや他のクラウドインフラと統合するコスト効率の高いGPUaaSソリューションを提供することで、移行を促進することができます。
  • 研究開発:新しいGPUテクノロジーとサービスモデルを構築するための研究開発への投資が徐々に増加し、GPUaaSの新たな収益と地理的な地平が開かれます。

GPUaaS市場は、AIと機械学習、ビッグデータと分析、ゲームと仮想現実、エッジコンピューティング、ハイブリッドクラウドソリューション、研究開発など、さまざまな複合的機会において成長する態勢が整っています。

GPUaaS (GPU as a Service) 市場の促進要因・課題

GPUaaS (GPU as a Service) 市場は、その成長と開拓に影響を与える促進要因と課題の両方に直面しています。

GPUaaS市場を牽引する要因には、以下のようなものがある:

  • 高性能コンピューティングに対する需要の高まり:AI、機械学習、データ分析のための高性能コンピューティングに対するニーズの高まりが、GPUaaSに対する需要の高まりに寄与しています。
  • GPU技術の進歩:GPU技術の継続的な進歩により、GPUaaSソリューションが強化され、その受容性が向上し続けています。
  • 拡張性と柔軟性:企業は、ワークロードの量に基づいてGPUaaSに参入し、調整することができます。
  • コスト効率:企業は、従量課金モデルや予約インスタンス・モデルを通じて、低コストでGPUaaSにアクセスできます。
  • クラウド・コンピューティングの採用拡大:ハイブリッド・クラウドの拡大は、クラウド・コンピューティングの利用の増加により、GPUaaSの成長を後押ししています。

GPUaaS市場における課題は以下のとおり:

  • 高度なGPUリソースの高コスト:高度なGPUとサービスにかかる大きなコスト負担は、特定の企業にとって障壁となる可能性があります。
  • 統合の複雑さ:GPUaaSを既存の情報技術システムやアプリケーションに組み込むことは困難です。
  • データのセキュリティとプライバシーに関する懸念:クラウド上のデータのセキュリティとプライバシーの確保は、ほとんどのGPUaaSプロバイダーにとって重要な課題です。
  • パフォーマンスのばらつき:GPUaaSソリューションの有効性は、共有クラウドリソースによるパフォーマンスのばらつきによって影響を受ける可能性があります。
  • 規制コンプライアンス:多くのGPUaaSプロバイダーにとって、コンプライアンス問題やデータ保護規制への対応は複雑です。
  • スキルと専門知識の要件:GPUaaSソリューションのセットアップと管理には、追加のスキルと専門知識が必要になる場合があり、組織によってはハードルとなる場合があります。

高い演算能力に対するニーズの高まり、GPU技術の変化、市場拡大能力、低コスト、クラウド・ソリューションへの移行、セキュリティの向上などがGPUaaS市場を牽引しています。しかし、高価格、統合の複雑さ、セキュリティリスク、パフォーマンス問題、コンプライアンスリスク、専門スキルの必要性などの課題は依然として解決されておらず、さらなる開発と普及の妨げとなっています。

目次

第1章 エグゼクティブサマリー

第2章 世界のGPUaaS (GPU as a Service) 市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 市場動向と予測分析 (2019年~2031年)

  • マクロ経済動向 (2019~2024年) と予測 (2025~2031年)
  • 世界のGPUaaS (GPU as a Service) 市場の動向 (2019~2024年) と予測 (2025~2031年)
  • 世界のGPUaaS (GPU as a Service) 市場:展開方式
    • プライベートGPUクラウド
    • パブリックGPUクラウド
    • ハイブリッドGPUクラウド
  • 世界のGPUaaS (GPU as a Service) 市場:用途別
    • 医療
    • BFSI
    • 製造業
    • IT・通信
    • 自動車
    • その他

第4章 地域別の市場動向と予測分析 (2019年~2031年)

  • 世界のGPUaaS (GPU as a Service) 市場:地域別
  • 北米のGPUaaS (GPU as a Service) 市場
  • 欧州のGPUaaS (GPU as a Service) 市場
  • アジア太平洋のGPUaaS (GPU as a Service) 市場
  • その他地域のGPUaaS (GPU as a Service) 市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 運用統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 世界のGPUaaS (GPU as a Service) 市場の成長機会:展開方式別
    • 世界のGPUaaS (GPU as a Service) 市場の成長機会:用途別
    • 世界のGPUaaS (GPU as a Service) 市場の成長機会:地域別
  • 世界のGPUaaS (GPU as a Service) 市場の新たな動向
  • 戦略的分析
    • 新製品の開発
    • 世界のGPUaaS (GPU as a Service) 市場の生産能力拡大
    • 世界のGPUaaS (GPU as a Service) 市場における企業合併・買収 (M&A)、合弁事業
    • 認証とライセンシング

第7章 主要企業のプロファイル

  • Alibaba Cloud
  • Vultr
  • Linode
  • Amazon Web Services
  • Google
  • IBM
  • OVH
  • Lambda
  • Hewlett Packard Enterprise Development
  • CoreWeave
目次

The future of the global GPU as a service market looks promising with opportunities in the healthcare, BFSI, manufacturing, IT & telecommunication, and automotive applications. The global GPU as a service market is expected to reach an estimated $21.9 billion by 2031 with a CAGR of 26.8% from 2025 to 2031. The major drivers for this market are the growing emphasis on research and development within the gaming and design sectors, the escalating adoption of machine learning and AI-based applications among various industries, and the rising demand for advanced data analytics.

  • Lucintel forecasts that, within the deployment model category, private is expected to witness the highest growth over the forecast period.
  • In terms of regions, North America will remain the largest region over the forecast period.

Gain valuable insights for your business decision with our comprehensive 150+ page report.

Emerging Trends in the GPU as a Service Market

The changes occurring in the GPU as a Service (GPUaaS) market can be traced to the evolution of technology, the growing need for computational power, and changing customer preferences.

  • AI and Machine Learning Integration: Experts predict that GPUaaS will be highly utilized to improve AI and machine learning initiatives with the capability to train models faster and process more data in real time.
  • Edge Computing and IoT: The use of GPUaaS in conjunction with edge computing and IoT devices is improving the quality of real-time data analysis and decision-making.
  • Hybrid and Multi-Cloud Environments: Organizations are moving towards a hybrid and multi-cloud approach, wherein multiple GPUaaS solutions are deployed on different cloud platforms to enhance performance and minimize costs.
  • Enhanced Security and Compliance: The growing need for security and compliance, including data protection legislation, poses challenges for providers in delivering such services.
  • Customizable and Scalable Solutions: There is also rising interest in GPUaaS offerings that are dynamic in nature and adaptable to various use cases and business requirements.
  • Increased Focus on Cost Efficiency: Service providers are structuring their pricing to encourage the use of GPUaaS and its variants, including pay-as-you-go and reserved instance pricing.

Recent trends in the GPUaaS market include deeper synergies with artificial intelligence and machine learning, the use of edge computing and IoT, hybrid and multi-cloud environments, improved security, flexible offerings, and greater cost efficiency-all responding to advancing technologies and customer needs.

Recent Developments in the GPU as a Service Market

Recent developments in the GPU as a Service (GPUaaS) market focus on advancing new technologies, expanding service offerings, and growing subscriber bases in various sectors.

  • New Advanced GPU Models: Major players in the cloud computing market have been releasing new high-computation task-optimized GPU models, including those for AI and machine learning.
  • Cloud Provider Offerings Expansion: Prominent GPUaaS providers, such as AWS, Azure, and Google Cloud, have expanded their GPUaaS portfolios beyond merely assembling GPUs into boxes and offering them with limited configurations.
  • Data Security Measures Enhancement: Service providers are developing advanced protective measures to help maintain data safety and legal compliance.
  • Growth of GPUaaS in Emerging Economies: The expansion of GPUaaS in developing markets, such as India and China, addresses the desire for computational resources across various industries.
  • Development of Hybrid and Multi-Cloud Solutions: The integration of GPU as a Service (GPUaaS) in hybrid and multi-cloud models is helping with performance optimization and efficient cost management within organizations.
  • Investment in Research and Development: High levels of research and development activities are creating new, innovative technologies and GPU models, improving the efficiency of the GPU as a Service model.

Other recent changes in the GPUaaS market include the deployment of new GPU models, an expanding portfolio of services, increasing security measures in various regions, the development of hybrid and multi-cloud solutions, and rising research and development expenditures indicating continuous improvements in the marketplace.

Strategic Growth Opportunities for GPU as a Service Market

The landscape of growing opportunities in the GPU as a Service (GPUaaS) market is evolving across various critical applications due to technological advancements and market needs.

  • AI and Machine Learning: Tapping into GPUaaS for artificial intelligence and machine learning applications presents immense growth potential, as these technologies are computationally intensive during both training and inference stages.
  • Data Analytics and Big Data: With the availability of vast amounts of data, many industries are increasingly relying on GPUaaS for data processing and executing intensive analytic workloads in finance, healthcare, and retail.
  • Gaming and Virtual Reality: The gaming and virtual reality sectors constantly require efficient GPUs; therefore, GPUaaS fills the gap needed for game creation and vivid content acquisition.
  • Edge Computing: The combination of GPUaaS and edge computing can enhance real-time data processing and analysis, providing opportunities in verticals such as the Internet of Things and smart cities.
  • Hybrid Cloud Solutions: GPUaaS providers can facilitate transitions by offering cost-effective GPUaaS solutions that integrate with on-premise and other cloud infrastructures.
  • Research and Development: A gradual increase in investment in research and development to build new GPU technologies and service models opens new revenue and geographical horizons for GPUaaS.

The GPUaaS market is poised for growth in various complex opportunities, including AI and machine learning, big data and analytics, gaming and virtual reality, edge computing, hybrid cloud solutions, and research and development.

GPU as a Service Market Driver and Challenges

The GPU as a Service (GPUaaS) market faces both driving factors and challenges that impact its growth and development.

The factors driving the GPUaaS market include:

  • Growing Demand for High-Performance Computing: The increasing need for high-performance computing for AI, machine learning, and data analysis contributes to rising demands for GPUaaS.
  • Advancements in GPU Technologies: Ongoing advancements in GPU technologies continue to enhance GPUaaS solutions and improve their acceptance.
  • Scalability and Flexibility: Businesses can enter and adjust GPUaaS based on the volume of their workloads.
  • Cost Efficiency: Businesses can access GPUaaS at lower costs through pay-as-you-go and reserved instance models.
  • Increased Adoption of Cloud Computing: The expansion of hybrid clouds is boosting the growth of GPUaaS due to the increasing use of cloud computing.

Challenges in the GPUaaS market include:

  • High Cost of Advanced GPU Resources: The major cost burden of advanced GPUs and services can be a dealbreaker for certain enterprises.
  • Complexity of Integration: Incorporating GPUaaS into existing information technology systems and applications can be challenging.
  • Data Security and Privacy Concerns: Ensuring security and privacy for data in the cloud presents a significant challenge for most GPUaaS providers.
  • Performance Variability: The efficacy of GPUaaS solutions can be affected by performance variability due to shared cloud resources.
  • Regulatory Compliance: Navigating compliance issues and data protection regulations can be complicated for many GPUaaS providers.
  • Skill and Expertise Requirements: Setting up and managing GPUaaS solutions may require additional skills and expertise, which can be a hurdle for some organizations.

The growing need for high computing power, changes in GPU technology, the ability to expand the market, low costs, the transition to cloud solutions, and improved security are driving the GPUaaS market. However, challenges such as high prices, complexity of integration, security risks, performance issues, compliance risks, and the need for specialized skills remain unresolved, hindering further development and adoption.

List of GPU as a Service Companies

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. Through these strategies GPU as a service companies cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the GPU as a service companies profiled in this report include-

  • Alibaba Cloud
  • Vultr
  • Linode
  • Amazon Web Services
  • Google
  • IBM
  • OVH
  • Lambda
  • Hewlett Packard Enterprise Development
  • CoreWeave

GPU as a Service by Segment

The study includes a forecast for the global GPU as a service market by deployment model, application, and region.

GPU as a Service Market by Deployment Model [Analysis by Value from 2019 to 2031]:

  • Private GPU Cloud
  • Public GPU Cloud
  • Hybrid GPU Cloud

GPU as a Service Market by Application [Analysis by Value from 2019 to 2031]:

  • Healthcare
  • BFSI
  • Manufacturing
  • IT & Telecommunication
  • Automotive
  • Others

GPU as a Service Market by Region [Analysis by Value from 2019 to 2031]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the GPU as a Service Market

Major players in the GPUaaS market are expanding operations and forming strategic partnerships to strengthen their positions. Recent developments by major GPUs as a service producer in key regions include the USA, China, India, and Japan.

  • USA: The GPU as a Service (GPUaaS) market in the USA is rising due to improvements in cloud computing and artificial intelligence (AI). Companies such as Amazon Web Services, Microsoft Azure, and Google Cloud have added GPUaaS capabilities, offering high scalability and speedy GPU devices for machine learning, data analysis, video rendering, and more. NVIDIA has also released new generations of GPUs specifically designed for use in cloud services, expected to elevate the level of GPUaaS. The GPUaaS market in the US is rapidly being adopted by both tech startups and large corporations for heavy computing workloads.
  • China: The GPUaaS market potential in China is growing rapidly, driven by policies that increasingly embrace cloud computing and AI investments. Companies including Alibaba Cloud and Tencent Cloud are leaders in the GPUaaS industry, providing solutions for finance, healthcare, entertainment, and other sectors. Current prospects in this field include offering more powerful GPUs and upgrading infrastructure to accommodate high computational processes in the cloud. Government policies aimed at innovation and technology development are further advancing GPUaaS, focusing on building reusable infrastructure for AI and big data ecosystems.
  • India: The GPUaaS market in India is supporting businesses and emerging companies as more organizations turn to cloud-based solutions for computing tasks. Early adopters of this service, including AWS and Microsoft Azure, have introduced GPUaaS offerings in sectors like finance, e-commerce, and technology. The Indian government's initiatives toward digitalization and innovation adoption have increased the consumption of GPUaaS. Specifically, Indian IT companies and research institutions are harnessing GPUaaS for AI and R&D, leading to greater availability of high-performance computing in the market and subsequently driving growth in the GPUaaS sector.
  • Japan: The rising application areas of robotics, gaming, and AI are driving growth in the GPUaaS market in Japan. Companies like NEC and Fujitsu are exploring diverse scenarios by proposing GPUaaS solutions to enhance their cloud service offerings. Recent developments include GPU-offload solutions and global cloud partnerships aimed at expanding GPUaaS capacity. The Japanese government is also working on integrating GPUaaS and other high-performance computing features as part of a national communications and information structure policy to foster innovation and maintain global market leadership in technology.

Features of the Global GPU as a Service Market

Market Size Estimates: GPU as a service market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2019 to 2024) and forecast (2025 to 2031) by various segments and regions.

Segmentation Analysis: GPU as a service market size by deployment model, application, and region in terms of value ($B).

Regional Analysis: GPU as a service market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different deployment models, applications, and regions for the GPU as a service market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the GPU as a service market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the GPU as a service market by deployment model (private GPU cloud, public GPU cloud, and hybrid GPU cloud), application (healthcare, BFSI, manufacturing, IT & telecommunication, automotive, and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global GPU as a Service Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2019 to 2031

  • 3.1. Macroeconomic Trends (2019-2024) and Forecast (2025-2031)
  • 3.2. Global GPU as a Service Market Trends (2019-2024) and Forecast (2025-2031)
  • 3.3: Global GPU as a Service Market by Deployment Model
    • 3.3.1: Private GPU Cloud
    • 3.3.2: Public GPU Cloud
    • 3.3.3: Hybrid GPU Cloud
  • 3.4: Global GPU as a Service Market by Application
    • 3.4.1: Healthcare
    • 3.4.2: BFSI
    • 3.4.3: Manufacturing
    • 3.4.4: IT & Telecommunication
    • 3.4.5: Automotive
    • 3.4.6: Others

4. Market Trends and Forecast Analysis by Region from 2019 to 2031

  • 4.1: Global GPU as a Service Market by Region
  • 4.2: North American GPU as a Service Market
    • 4.2.1: North American Market by Deployment Model: Private GPU Cloud, Public GPU Cloud, and Hybrid GPU Cloud
    • 4.2.2: North American Market by Application: Healthcare, BFSI, Manufacturing, IT & Telecommunication, Automotive, and Others
  • 4.3: European GPU as a Service Market
    • 4.3.1: European Market by Deployment Model: Private GPU Cloud, Public GPU Cloud, and Hybrid GPU Cloud
    • 4.3.2: European Market by Application: Healthcare, BFSI, Manufacturing, IT & Telecommunication, Automotive, and Others
  • 4.4: APAC GPU as a Service Market
    • 4.4.1: APAC Market by Deployment Model: Private GPU Cloud, Public GPU Cloud, and Hybrid GPU Cloud
    • 4.4.2: APAC Market by Application: Healthcare, BFSI, Manufacturing, IT & Telecommunication, Automotive, and Others
  • 4.5: ROW GPU as a Service Market
    • 4.5.1: ROW Market by Deployment Model: Private GPU Cloud, Public GPU Cloud, and Hybrid GPU Cloud
    • 4.5.2: ROW Market by Application: Healthcare, BFSI, Manufacturing, IT & Telecommunication, Automotive, and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global GPU as a Service Market by Deployment Model
    • 6.1.2: Growth Opportunities for the Global GPU as a Service Market by Application
    • 6.1.3: Growth Opportunities for the Global GPU as a Service Market by Region
  • 6.2: Emerging Trends in the Global GPU as a Service Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global GPU as a Service Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures in the Global GPU as a Service Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: Alibaba Cloud
  • 7.2: Vultr
  • 7.3: Linode
  • 7.4: Amazon Web Services
  • 7.5: Google
  • 7.6: IBM
  • 7.7: OVH
  • 7.8: Lambda
  • 7.9: Hewlett Packard Enterprise Development
  • 7.10: CoreWeave