デフォルト表紙
市場調査レポート
商品コード
1616957

風力エネルギー用織物市場レポート:2030年までの動向、予測、競合分析

Woven Textile in Wind Energy Market Report: Trends, Forecast and Competitive Analysis to 2030


出版日
発行
Lucintel
ページ情報
英文 150 Pages
納期
3営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=146.82円

ご注意: DRM (デジタル著作権管理システム) 付PDFになります。
制限内容は、上記ライセンスの[詳細]アイコンをクリックしてご確認ください。

風力エネルギー用織物市場レポート:2030年までの動向、予測、競合分析
出版日: 2024年12月02日
発行: Lucintel
ページ情報: 英文 150 Pages
納期: 3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

風力エネルギー用織物の動向と予測

世界の風力エネルギー用織物市場の将来は、風車ブレード市場での機会で有望視されています。世界の風力エネルギー用織物市場は、2024年から2030年にかけてCAGR 6.1%で成長すると予測されます。この市場の主な促進要因は、風力タービンの需要増加、繊維工学の技術進歩、再生可能エネルギーの重視の高まりです。

  • Lucintelでは、製品タイプ別では織糸が予測期間中に高い成長を遂げると予測しています。
  • 用途別では、風車用ブレードが高い成長が見込まれます。
  • 地域別では、APACが予測期間中に最も高い成長が見込まれます。

風力エネルギー用織物市場の戦略的成長機会

風力エネルギー産業における織物は、多くの拡大機会を提供しています。そのような機会は、再生可能エネルギー消費の増加、技術の成長、効率性と持続可能性のキャンペーンの開始などの要因によって影響されます。以下の段落では、市場を形成すると思われる5つの機会について詳しく説明します。

  • 洋上風力エネルギーの開発:洋上風力発電の開発は急速に進んでおり、腐食、極端な天候、海洋環境などに対応した織物の消費に道を開いています。洋上タービンのブレード用テキスタイルは、優れた機械的特性を備え、非常に軽量でなければならないです。欧州、日本、米国などの主要地域で洋上風力産業が発展するにつれて、こうした高度な織物ソリューションが求められ続け、市場の革新と成長の機会は無限に広がっていくと思われます。
  • リサイクル素材と持続可能素材の採用:風力タービンの新しいブレードがより環境に優しい方法で設計され続ける中、リサイクル織物の使用は大きな機会となります。リサイクル可能で環境に優しい原材料を使用することで、メーカーは風力タービンを製造する際に二酸化炭素排出量を増やすことなく、持続可能性の要件を満たすことができます。環境に優しい複合材料の製造を意図する企業は、よりクリーンなエネルギー生産ソリューションと使用済みブレードの廃棄を求める業界の動向から恩恵を受けると思われます。
  • 生産方式における技術開発:風力タービンの建設は、オートメーションとデジタル技術の導入により、織物製品の需要を増大させる。その一例として、3Dプリンティングを含むスマート製造技術、自動製織技術、ターボプロップ・ブレードの製造をサポートする技術の登場が挙げられ、ブレードの効率向上、コスト削減、リードタイム短縮を実現しています。このような進歩により、風力タービン部品市場でますます要求が高まっている、複雑で高性能な織物を大量かつ低コストで生産することが可能になります。
  • 設計およびBeg製造に使用されるエンジニアードまたはトップパフォーマーの需要が増加している:風力タービンの大型化に伴い、より強く、より軽く、より耐久性のあるブレードへのニーズも高まっています。風力タービンブレードの機械的特性を強化できる織物は、大きな成長の可能性を秘めています。ハイブリッド繊維の開発と炭素繊維やガラス繊維の混入により、産業界は大型タービンの技術的要求を満たすことができるようになります。これは特に陸上・洋上両方の市場において、より大型で効率的なタービンは例外ではなく、むしろ標準になりつつあります。
  • 新興諸国における風力エネルギー分野の確立への注目:インドのような地域に加え、風力エネルギー用織物用途のさらなる成長地域には、ブラジルや東南アジアも含まれます。これらの国々は、再生可能エネルギーの容量を増やすことに熱心であるため、風力タービン用の織物素材の生産に実用性と手頃な価格への意欲を生み出しています。こうした市場は、特に十分な風力発電の可能性がありながら、最新の風力タービン用素材のマーケティングが進んでいない地域にとって、企業の存在感を高めるチャンスとなります。

こうした成長機会は、風力エネルギー市場における織物市場の効果的な成長に役立つと思われます。これらの産業は、新素材、新製造技術、持続可能性の育成を活用することができ、再生可能エネルギーへのシフトを提唱するだけでなく、風力タービンの改善とコスト削減にも貢献します。

風力エネルギーの織物市場促進要因・課題

経済、技術、規制のいずれにせよ、風力エネルギー市場における織物の位置づけを決める重要な要因があります。これらの市場促進要因・課題は、全体的な環境を規定し、技術進歩の速度と市場の成長率を決定づけます。推進力と課題のいくつかを以下に示します。

風力エネルギー分野における織物市場の促進要因には、以下のようなものがある:

  • 材料科学の技術進歩:材料科学の技術進歩:材料科学、特に高強度で軽量の織物の新しい用途のおかげで、風力エネルギー分野は拡大しています。風力タービンブレードの開発により、より軽量で優れたブレードが製造されるため、発電効率が向上し、エネルギーコストが削減されます。織物複合材料の継続的な進歩は、特に洋上風力タービンや大型風力タービンの用途において、最新の風力タービンの性能基準を満たすために決定的に重要です。
  • 再生可能エネルギー源の消費増加:排出削減と再生可能エネルギーへの移行を目標とする世界の政策は、風力タービン生産における織物使用の重要な推進力となっています。風力エネルギーに投資する政府が増えるにつれ、タービンの有効性と効率を高める高度な素材に対する需要が高まっています。持続可能性への注目が高まっているため、風力エネルギー分野での織物の獲得に向けられる資金も増えています。
  • 生産コストの削減:風力エネルギー市場内の競合は激しく、風力によるエネルギーコストを下げることが重要な目標となっています。織物はタービンブレードを軽量化し、輸送・設置コストを削減することでこれに貢献しています。織物素材の費用対効果は、これらの織物を製造する技術の進歩により改善され、風力エネルギー産業での使用増加につながった。
  • 拡大する洋上風力エネルギー分野:洋上風力発電プロジェクトが急増しているため、海洋暴露に耐えるよう設計された織物素材に機会が生まれています。これらの織物は、効果的な洋上配備のために軽量で耐久性があり、耐腐食性のタービンブレードを製造するために不可欠です。特に欧州とアジア市場における洋上風力発電プロジェクトの着実な増加により、織物メーカーにとっての市場潜在力は大きいです。
  • 環境規制と持続可能性目標:環境影響に関する政策や協定の軟化は、風力エネルギー産業がより環境に優しくなるよう促しています。こうした生態学的に持続可能でリサイクル可能な織物素材の開発は、産業が規制を遵守し、汚染やカーボンフットプリントとの闘いに貢献するのに役立ちます。持続可能性がより重要になるにつれて、こうした織物の需要は拡大すると予想されます。税制や公害規制が容認されれば、産業界はより環境に優しい素材を採用するようになると思われます。

風力エネルギー分野における織物市場の課題は以下の通り:

  • 初期投資コストの高さ:織物には大きな汎用性があるが、その初期生産コストは従来の代替素材よりも高いです。このため、特に資金力の乏しい地域や市場では、普及の妨げになる可能性があります。製造工程が改善されれば、時間とともにコストは下がることが期待されるが、初期設備投資は依然として大きな障害となっています。
  • サプライチェーンの制約:政治、貿易問題、自然災害は、炭素繊維やガラスといった織物用原材料の国際的な調達を中断させる可能性があります。こうした中断は原料不足と価格上昇につながり、風力タービンブレードの生産を遅らせ、風力エネルギー市場に影響を与える可能性があります。
  • 生産規模の拡大における技術的課題:風力エネルギー市場の需要増に対応するための高性能織物の増産は困難であることが判明しています。メーカーは、大量かつ高品質で安定した量を効率的に生産するための大量生産技術の調整に苦慮しています。生産規模を拡大する能力を開発するには、これらの素材をより自動化された方法で製造するなど、多大な努力が必要です。

風力エネルギー用織物市場はいくつかの強力な促進要因に支えられているが、同時に大きな課題にも直面しています。技術開発と世界の再生可能エネルギーの役割の拡大が大きな推進力である一方、高コストとサプライチェーンの問題が障壁となっています。これらの課題を克服することは、風力エネルギー市場における織物の将来を決定する上で極めて重要です。

風力エネルギー市場における織物企業のリスト

同市場の企業は、提供する製品の品質で競争しています。この市場の主要企業は、製造施設の拡大、研究開発投資、インフラ開拓、バリューチェーン全体にわたる統合機会の活用に注力しています。これらの戦略を通じて、風力発電市場の織物企業は需要の増加に対応し、競争力を確保し、革新的な製品と技術を開発し、生産コストを削減し、顧客基盤を拡大しています。本レポートで紹介する風力発電向け織物企業は以下の通りです。

  • オーエンズコーニング
  • Jushi Group
  • 重慶ポリコンプ・インターナショナル・コーポレーション
  • 泰山ファイバーグラス
  • 台湾ガラスグループ
  • 日本電気硝子
  • 四川微博
  • 3Bザ・ファイバーグラス・カンパニー( ゴア・グラスファイバー)
  • ジョンズ・マンヴィル・コーポレーション
  • 日東紡績

目次

第1章 エグゼクティブサマリー

第2章 世界の風力エネルギー用織物市場:市場力学

  • イントロダクション、背景、分類
  • サプライチェーン
  • 業界の促進要因と課題

第3章 2018年から2030年までの市場動向と予測分析

  • マクロ経済動向(2018年~2023年)と予測(2024年~2030年)
  • 世界の風力エネルギー用織物市場の動向(2018年~2023年)と予測(2024年~2030年)
  • 世界の風力エネルギー用織物市場:製品タイプ別
    • 織りロービング
    • 織り糸
  • 世界の風力エネルギー用織物市場:用途別
    • 風車の羽根
    • その他

第4章 2018年から2030年までの地域別市場動向と予測分析

  • 地域別の世界の風力エネルギー用織物市場
  • 北米の風力エネルギー用織物市場
  • 欧州の風力エネルギー用織物市場
  • アジア太平洋の風力エネルギー用織物市場
  • その他地域の風力エネルギー用織物市場

第5章 競合分析

  • 製品ポートフォリオ分析
  • 業務統合
  • ポーターのファイブフォース分析

第6章 成長機会と戦略分析

  • 成長機会分析
    • 製品タイプ別の世界の風力エネルギー用織物市場の成長機会
    • 世界の風力エネルギー用織物市場の成長機会(用途別)
    • 地域別の世界の風力エネルギー用織物市場の成長機会
  • 風力エネルギー市場における世界の織物の新たな動向
  • 戦略分析
    • 新製品開発
    • 世界の風力エネルギー用織物市場の生産能力拡大
    • 世界の風力エネルギー用織物市場の合併、買収、合弁事業
    • 認証とライセンシング

第7章 主要企業の企業プロファイル

  • Owens Corning
  • Jushi Group
  • Chongqing Polycomp International Corporation
  • Taishan Fiberglass
  • Taiwan Glass Group
  • Nippon Electric Glass
  • Sichuan Weibo
  • 3B the Fiber Glass Company(Goa Glass Fiber)
  • Johns Manville Corporation
  • Nitto Boseki
目次

Woven Textile in Wind Energy Trends and Forecast

The future of the global woven textile in the wind energy market looks promising with opportunities in the windmill blade markets. The global woven textile in wind energy market is expected to grow with a CAGR of 6.1% from 2024 to 2030. The major drivers for this market are the increasing demand for wind turbines, technological advancements in textile engineering, and the growing emphasis on renewable energy.

  • Lucintel forecasts that, within the product type category, woven yarn is expected to witness higher growth over the forecast period.
  • Within the application category, windmill blade is expected to witness higher growth.
  • In terms of regions, APAC is expected to witness the highest growth over the forecast period.

Gain valuable insights for your business decisions with our comprehensive 150+ page report.

Emerging Trends in the Woven Textile in Wind Energy Market

The woven textile market in the wind energy market is moving at a rapid pace, with significant changes driven by factors such as improvements in materials science, enhancements in sustainability, and the development of manufacturing optimization, including digital technologies. The following five trends are emerging and provide evidence of how this market will grow in the future:

  • Incorporation of Carbon Fiber in Woven Textiles: Wind turbine blade manufacturers are increasingly using woven textiles that include carbon fiber composites. These materials offer high strength-to-weight ratios, enabling higher turbine efficiency by reducing the weight of the blades without compromising strength. This trend is especially noticeable in high-end wind turbines, where carbon fiber blades help achieve greater length and improved aerodynamic parameters.
  • Sustainable Practices Enable Circular Textile Manufacturing: With the growing emphasis on sustainability, the wind energy sector is adopting environmentally safe and recyclable woven textiles. This involves the search for composites and other materials that are environmentally responsible at every stage of a product's life cycle, including packaging. Other companies are exploring textile recycling solutions as part of waste management in support of the circular economy. These eco-friendly materials help reduce the environmental impact of wind power generation and support the global transition to greener energy production.
  • Advancements in Hybrid Fiber Technology: The incorporation of natural fibers with synthetic ones has led to the development of hybrid fibers, which are gaining traction in the wind energy sector. These composite materials enhance the properties of woven fabrics, offering better performance than composites made from individual fibers alone. The use of hybrid fiber technology is on the rise, as wind turbine blades made from hybrid fibers provide reasonable performance and cost benefits, while also reducing their environmental impact.
  • Smart Textile Integration for Performance Monitoring: The use of smart textiles, which incorporate monitoring systems and sensors, has gained traction as one of the key trends in the wind energy sector. These textiles can cover turbine blades, providing real-time information on operational parameters such as stress, wear, and fatigue, and indicating when the material is nearing damaging levels. Recent innovations in textile technology have also reduced the maintenance needs of wind turbines.
  • Automation and 3D Printing in Textile Manufacturing: Automation and 3D printing technologies are improving productivity and lowering costs in the production of woven textiles for wind energy. Automated weaving and knitting technologies, along with 3D printing, allow for the fast production of textile parts for wind turbine prototypes. The Final Assembly System Integrated Non-Destructive Testing Unit is an example of how these technologies are evolving.

These new developments in woven textiles in the wind energy market mark a turning point toward more eco-friendly, cost-effective, and innovative materials. The growing use of carbon structures, hybrid textiles, smart materials, and complex manufacturing techniques is reshaping wind energy systems in a way that maintains performance while minimizing environmental impact.

Recent Developments in the Woven Textile in Wind Energy Market

There are several developmental shifts in the woven textile in the wind energy market that need to be considered in the future of turbine development and production. The goals of these developments include higher efficiency, lower cost, and greater sustainability of the wind energy systems. Below are five key developments in the sector.

  • Development of Advanced Composite Blades: Durability is one quality that has been improved. The manufacturers of wind turbine blades are also improving on recent woven textile composites for high-performance wind turbines. More resources are being committed to the designing and construction of atmospheric wind turbines. The advancements so far are combining advanced woven fabric and carbon and glass in turbine blades. These developments lead to blades that have higher efficiency and can produce more energy. As the dimensions of wind turbine generators enlarge to enclose more forceful airflow this becomes important for optimization of the performance.
  • Enhanced Allocation Towards Waste Management Technologies: The wind energy industry is very much oriented towards finding solutions to the environmental problem of turbine blades, especially towards the end of life of the blades. Woven textile manufacturers are investing in recycling technologies that are aimed at the production of stronger and more efficient wind turbine blades. Some companies are also developing processes that aid in handling waste composite structures and fiber reuse, supporting the wind industry's efforts towards a circular economy. Such a transition towards green manufacturing is very significant because it helps the industry to achieve its environmental aspirations.
  • Partnerships between Wind Energy and Woven Textile Companies: Companies engaged in the wind energy sector collaborate with research universities to develop innovative woven textile technologies. The research aims to obtain novel next-generation materials, which are stronger, more eco-friendly, and more durable than conventional materials. Such partnerships lead to advances in textile science, the new materials developed making wind turbines more efficient in energy conversion as well as more eco-friendly. This type of applied research is important in sustaining the long-term development and viability of the wind energy industry.
  • Striving for An Increment in Offshore Wind Development: The offshore wind farm textile requires the use of specialty woven textile materials which are largely demanding for advanced woven textile technologies. Japanese, European, and American firms are at the forefront of producing corrosion-resistant, lightweight, and durable offshore textile composite materials. Such development is paramount since offshore wind energy areas have proven to be one of the best clean energy sources for most coastal towns due to their constant and regular flow rates.
  • Deployment of Modern Technologies in the Manufacturing Process of Textile: The use of automatons in the production of woven fabrics for wind energy projects is increasing efficiency and decreasing cost at a fast rate. Prototypes of the above-mentioned cicada systems allow composite materials of turbine blades to be manufactured in a shorter time and with greater accuracy. Such reconstructions are also possible due to the design of the woven textiles that will fit any turbine thus, productivity will increase. This development is critical for the fulfillment of the requirements that accompany the prospects for large-scale and efficient manufacturing within short time frames and low cost, thus making renewable energy options economically viable.

All these developments once incorporated the wind energy will promote a change in the woven textile industry within the wind energy sector through technology enhancement, climate change mitigation and performance as well as affordability of wind turbines. These advancements will promote the sustainability of renewable energy usage in the wind energy region and beyond.

Strategic Growth Opportunities for Woven Textile in Wind Energy Market

The woven textile in the wind energy industry offers a multitude of expansion opportunities. Such opportunities are influenced by factors such as the increase in renewable energy consumption, growth in technology, and initiation of efficiency and sustainability campaigns. In the paragraphs that follow, the five such opportunities that are likely to shape the market have been elaborated.

  • Development of offshore wind energy: Offshore wind energy is developing rapidly and it paves the way for the consumption of woven textiles that are built for corrosion, extreme weather, marine environment, and so on. The blade textiles for offshore turbines must provide great mechanical properties and be very lightweight. These advanced textile solutions will continue to be in demand as the offshore wind industry develops in key regions such as Europe, Japan, and the USA and there will be an unlimited flow of opportunities for innovation and growth of the market.
  • Incorporating Recycled and Sustainable Materials: As new blades for wind turbines continue to be designed in a more environmentally friendly manner, the use of recycled woven textiles presents a significant business opportunity. Using recyclable and eco-friendly raw materials, manufacturers can fulfill the requirements of sustainability without increasing the carbon emission level when producing wind turbines. Firms intending to manufacture environment-friendly composite materials will benefit from the industry trend that seeks cleaner energy production solutions and disposal of end-of-life blades.
  • Technological Development in Production Mode: The construction of wind turbines increases the demand for woven textile products due to the introduction of automation and digital technologies. A few examples include smart manufacturing technologies including 3D printing, automated weaving technologies, and the advent of technologies that support turboprop blade manufacturing thus enhancing efficiency, cutting costs, and reducing lead time for blades. Such advances enable the production of complex, high-performance textiles with high volumes and lower costs which are increasingly required by the market for wind turbine components.
  • Engineered or Top-Performers Used In Design and Beg Manufacturing Demand is Increasing: With the growing size of wind turbines, the need for stronger, lighter, and more durable blades increases as well. Woven textiles that can enhance the mechanical properties of wind turbine blades present a huge growth potential. With the development of hybrid textiles and their inclusion of carbon and glass fibers, the industries will be able to satisfy the technical demands of the bigger turbines. This especially crosses over to both onshore and offshore markets, where bigger and more efficient turbines are becoming more of a standard rather than an exception.
  • Attention to Establishing Wind Energy Sectors in Developing Countries: Additional regions like India rendering additional growth regions for woven textiles applications in wind energy include Brazil and Southeast Asia. The countries, since they are eager to increase their renewable energy capacity, create an appetite for practicality and affordability in the production of textile materials for wind turbines. Such markets offer opportunities for businesses to increase their presence especially where there is adequate wind potential but the marketing of modern wind turbine materials is low.

These growth opportunities will help in the effective growth of the woven textile market within the wind energy market. These industries can take advantage of new materials, new manufacturing technologies, and fostering sustainability practices, which will not only advocate a shift to renewable energy but also help improve and reduce costs of the wind turbines.

Woven Textile in Wind Energy Market Driver and Challenges

There are certain key factors, whether economic, technological, or regulatory, that help position woven textiles in the wind energy market. These drivers and challenges dictate the overall environment and define the rate of technological advancement and growth of the market. Some of the driving forces and challenges are listed below.

The factors responsible for driving the woven textile market in the wind energy sector include:

  • Technological Advancements in Materials Science: Thanks to materials science, particularly the new applications of high-strength, lightweight woven textiles, the wind energy sector is expanding. These developments in wind turbine blades result in higher efficiencies and lower energy generation costs since superior, lighter blades are produced. The continuous advancement of woven composite materials is critically important for meeting the performance criteria of modern wind turbines, especially in offshore and large-scale wind turbine applications.
  • Rising Consumption of Renewable Sources: Global policies targeting emissions reduction and the shift to renewable energy are significant drivers for the use of woven textiles in wind turbine production. As more governments invest in wind energy, there is a growing demand for advanced materials that would increase turbine effectiveness and efficiency. Due to the increasing focus on sustainability, more funds are being directed toward the acquisition of woven textiles in the wind energy sector.
  • Cost Reductions in Production: Competition within the wind energy market is intense, and lowering the cost of energy from wind is a key goal. Woven textiles contribute to this by making turbine blades lighter, which reduces transportation and installation costs. The cost-effectiveness of textile materials has improved due to advancements in the technologies used to manufacture these textiles, leading to their increased use in the wind energy industry.
  • Expanding Offshore Wind Energy Sector: There has been a rapid increase in offshore wind energy projects, creating opportunities for woven textiles designed to withstand marine exposure. These textiles are essential for producing lightweight, durable, and corrosion-resistant turbine blades for effective offshore deployment. The market potential for woven textile manufacturers is significant, driven by the steady increase in offshore wind energy projects, especially in Europe and Asian markets.
  • Environmental Regulation and Sustainability Objectives: The softening of environmental impact policies and agreements is driving the wind energy industry to become more eco-friendly. The development of these ecologically sustainable, recyclable woven materials helps industries comply with regulations and contributes to the fight against pollution and carbon footprints. The demand for these textiles is expected to grow as sustainability becomes more critical. Accepted taxation and pollution restrictions will encourage industries to adopt greener materials.

Challenges in the woven textile market in the wind energy sector include:

  • High Cost of Initial Investment: Although woven textiles offer significant versatility, the initial production costs of these materials are higher than traditional alternatives. This may hinder widespread adoption, especially in regions or markets with limited financial resources. While there are expectations that costs will decrease over time due to improvements in the manufacturing process, the initial capital investment remains a major obstacle.
  • Supply Chain Constraints: Politics, trade issues, and natural disasters can disrupt the international sourcing of raw materials for woven textiles, such as carbon fibers and glass. These interruptions can lead to material shortages and price increases, delaying the production of wind turbine blades and affecting the wind energy market.
  • Technical Challenges in Scaling Production: Increasing the production of high-performance woven textiles to meet the growing demand in the wind energy market has proven challenging. Manufacturers are struggling to adjust mass production techniques to efficiently produce large, high-quality, and consistent volumes. Developing capabilities to scale production will require significant effort, including the use of more automated methods for fabricating these materials.

The woven textile market in wind energy is supported by several strong drivers, but it also faces significant challenges. Technological development and the growing role of renewable energy worldwide are major drivers, while high costs and supply chain issues are barriers. Overcoming these challenges will be critical in determining the future of woven textiles in the wind energy market.

List of Woven Textile Companies in Wind Energy Market

Companies in the market compete on the basis of product quality offered. Major players in this market focus on expanding their manufacturing facilities, R&D investments, infrastructural development, and leverage integration opportunities across the value chain. Through these strategies woven textile companies in wind energy market cater increasing demand, ensure competitive effectiveness, develop innovative products & technologies, reduce production costs, and expand their customer base. Some of the woven textile companies in wind energy market profiled in this report include-

  • Owens Corning
  • Jushi Group
  • Chongqing Polycomp International Corporation
  • Taishan Fiberglass
  • Taiwan Glass Group
  • Nippon Electric Glass
  • Sichuan Weibo
  • 3B the Fiber Glass Company ( Goa Glass Fiber)
  • Johns Manville Corporation
  • Nitto Boseki

Woven Textile in Wind Energy by Segment

The study includes a forecast for the global woven textile in wind energy by product type, application, and region.

Woven Textile in Wind Energy Market by Product Type [Analysis by Value from 2018 to 2030]:

  • Woven Roving
  • Woven Yarn

Woven Textile in Wind Energy Market by Application [Analysis by Value from 2018 to 2030]:

  • Windmill Blades
  • Others

Woven Textile in Wind Energy Market by Region [Analysis by Value from 2018 to 2030]:

  • North America
  • Europe
  • Asia Pacific
  • The Rest of the World

Country Wise Outlook for the Woven Textile in Wind Energy Market

The demand for woven textiles in the wind energy market is growing steadily due to the need for renewable energy, advancements in materials engineering, and the quest for new technology to improve wind turbines. Woven textiles, especially woven fabrics for wind turbine blades and composites, are also becoming important elements in weight reduction, structural reinforcement, and performance enhancement. In major global markets including the United States, China, Germany, India, and Japan, there are interesting trends in the use of woven textiles for wind energy purposes, showing progress in material science as well as changing energy technology. The gradually evolving statement should be contextualized with a systematic assessment of current achievements in these countries.

  • United States: Americans are employing woven textiles to help make wind turbines, especially lightweight, high-strength materials, more efficient. The United States Department of Energy (US DoE) has also pursued research on advanced composite materials, such as woven textiles, to improve blade performance while lowering manufacturing expenses. GE Renewable Energy, Siemens Gamesa, and other companies are working on the implementation of these materials in future wind turbine blades. Furthermore, the potential for blades to be made from recovered textiles is being explored, aligning with broader trends of environmentally friendly manufacturing in the wind energy sector.
  • China: As the largest country in terms of wind power turbine manufacturing in the world, China is focused on advancing its wind energy industry through investment in woven textile technologies. Advanced woven composites for turbine blades have been embraced by manufacturers in China to improve production efficiency. Almost all of them emphasize the importance of frame-out laminate programs, which focus on improving the tensile strength and durability of textiles.
  • Germany: Germany is at the forefront of using the latest technology to develop renewable energy options, including wind energy. Over the past few years, German companies have been exploring innovative woven composites that make it possible to manufacture lightweight yet sturdy wind turbine blades capable of enduring extreme conditions. Hybrid woven composites under development incorporate advanced fibers such as carbon and glass with conventional fabrics to enhance functionality. The main objective of these developments is to increase blade sizes and improve efficiency.
  • India: Wind power generation in India is growing quickly, and woven textile technology is expected to play an important role in this expansion. Industrial firms in India are utilizing woven composites to create more streamlined wind turbine blades capable of withstanding the tough wind regimes experienced in coastal areas. Collaborations between private companies and universities in the region are fostering creativity in this sector. At the same time, promoting the use of woven textile materials within the country, in line with the "Make in India" campaign, will reduce the reliance on foreign woven composites.
  • Japan: Japan is leading the way in the adaptation of woven materials in the wind energy industry, particularly in offshore wind farms. Woven materials are essential in such applications to create lightweight, corrosion-proof materials that can withstand extreme ocean conditions. Japanese companies are also focusing on using woven materials in the internal structure of turbine blades to reduce weight without compromising strength. The market for such advanced textile composites is becoming increasingly important for Japan as it pursues larger offshore wind energy capacity to meet its ambitious renewable energy goals.

Features of the Global Woven Textile in Wind Energy Market

Market Size Estimates: Woven textile in wind energy market size estimation in terms of value ($B).

Trend and Forecast Analysis: Market trends (2018 to 2023) and forecast (2024 to 2030) by various segments and regions.

Segmentation Analysis: Woven textile in wind energy market size by product type, application, and region in terms of value ($B).

Regional Analysis: Woven textile in wind energy market breakdown by North America, Europe, Asia Pacific, and Rest of the World.

Growth Opportunities: Analysis of growth opportunities in different product types, applications, and regions for the woven textile in wind energy market.

Strategic Analysis: This includes M&A, new product development, and competitive landscape of the woven textile in wind energy market.

Analysis of competitive intensity of the industry based on Porter's Five Forces model.

If you are looking to expand your business in this or adjacent markets, then contact us. We have done hundreds of strategic consulting projects in market entry, opportunity screening, due diligence, supply chain analysis, M & A, and more.

This report answers following 11 key questions:

  • Q.1. What are some of the most promising, high-growth opportunities for the woven textile in wind energy market by product type (woven roving and woven yarn), application (windmill blades and others), and region (North America, Europe, Asia Pacific, and the Rest of the World)?
  • Q.2. Which segments will grow at a faster pace and why?
  • Q.3. Which region will grow at a faster pace and why?
  • Q.4. What are the key factors affecting market dynamics? What are the key challenges and business risks in this market?
  • Q.5. What are the business risks and competitive threats in this market?
  • Q.6. What are the emerging trends in this market and the reasons behind them?
  • Q.7. What are some of the changing demands of customers in the market?
  • Q.8. What are the new developments in the market? Which companies are leading these developments?
  • Q.9. Who are the major players in this market? What strategic initiatives are key players pursuing for business growth?
  • Q.10. What are some of the competing products in this market and how big of a threat do they pose for loss of market share by material or product substitution?
  • Q.11. What M&A activity has occurred in the last 5 years and what has its impact been on the industry?

Table of Contents

1. Executive Summary

2. Global Woven Textile in Wind Energy Market : Market Dynamics

  • 2.1: Introduction, Background, and Classifications
  • 2.2: Supply Chain
  • 2.3: Industry Drivers and Challenges

3. Market Trends and Forecast Analysis from 2018 to 2030

  • 3.1. Macroeconomic Trends (2018-2023) and Forecast (2024-2030)
  • 3.2. Global Woven Textile in Wind Energy Market Trends (2018-2023) and Forecast (2024-2030)
  • 3.3: Global Woven Textile in Wind Energy Market by Product Type
    • 3.3.1: Woven Roving
    • 3.3.2: Woven Yarn
  • 3.4: Global Woven Textile in Wind Energy Market by Application
    • 3.4.1: Windmill Blades
    • 3.4.2: Others

4. Market Trends and Forecast Analysis by Region from 2018 to 2030

  • 4.1: Global Woven Textile in Wind Energy Market by Region
  • 4.2: North American Woven Textile in Wind Energy Market
    • 4.2.1: North American Market by Product Type: Woven Roving and Woven Yarn
    • 4.2.2: North American Market by Application: Windmill Blades and Others
  • 4.3: European Woven Textile in Wind Energy Market
    • 4.3.1: European Market by Product Type: Woven Roving and Woven Yarn
    • 4.3.2: European Market by Application: Windmill Blades and Others
  • 4.4: APAC Woven Textile in Wind Energy Market
    • 4.4.1: APAC Market by Product Type: Woven Roving and Woven Yarn
    • 4.4.2: APAC Market by Application: Windmill Blades and Others
  • 4.5: ROW Woven Textile in Wind Energy Market
    • 4.5.1: ROW Market by Product Type: Woven Roving and Woven Yarn
    • 4.5.2: ROW Market by Application: Windmill Blades and Others

5. Competitor Analysis

  • 5.1: Product Portfolio Analysis
  • 5.2: Operational Integration
  • 5.3: Porter's Five Forces Analysis

6. Growth Opportunities and Strategic Analysis

  • 6.1: Growth Opportunity Analysis
    • 6.1.1: Growth Opportunities for the Global Woven Textile in Wind Energy Market by Product Type
    • 6.1.2: Growth Opportunities for the Global Woven Textile in Wind Energy Market by Application
    • 6.1.3: Growth Opportunities for the Global Woven Textile in Wind Energy Market by Region
  • 6.2: Emerging Trends of the Global Woven Textile in Wind Energy Market
  • 6.3: Strategic Analysis
    • 6.3.1: New Product Development
    • 6.3.2: Capacity Expansion of the Global Woven Textile in Wind Energy Market
    • 6.3.3: Mergers, Acquisitions, and Joint Ventures for the Global Woven Textile in Wind Energy Market
    • 6.3.4: Certification and Licensing

7. Company Profiles of Leading Players

  • 7.1: Owens Corning
  • 7.2: Jushi Group
  • 7.3: Chongqing Polycomp International Corporation
  • 7.4: Taishan Fiberglass
  • 7.5: Taiwan Glass Group
  • 7.6: Nippon Electric Glass
  • 7.7: Sichuan Weibo
  • 7.8: 3B the Fiber Glass Company ( Goa Glass Fiber)
  • 7.9: Johns Manville Corporation
  • 7.10: Nitto Boseki