![]() |
市場調査レポート
商品コード
1804717
再生可能エネルギーにおけるSCADA市場:コンポーネント、展開、通信技術、アプリケーション、エンドユーザー別-2025-2030年の世界予測SCADA in Renewable Energy Market by Component, Deployment, Communication Technology, Application, End User - Global Forecast 2025-2030 |
||||||
カスタマイズ可能
適宜更新あり
|
再生可能エネルギーにおけるSCADA市場:コンポーネント、展開、通信技術、アプリケーション、エンドユーザー別-2025-2030年の世界予測 |
出版日: 2025年08月28日
発行: 360iResearch
ページ情報: 英文 191 Pages
納期: 即日から翌営業日
|
再生可能エネルギーにおけるSCADA市場は、2024年に32億9,000万米ドルと評価され、2025年には36億2,000万米ドル、CAGR 10.18%で成長し、2030年には58億9,000万米ドルに達すると予測されています。
主な市場の統計 | |
---|---|
基準年2024 | 32億9,000万米ドル |
推定年2025 | 36億2,000万米ドル |
予測年2030 | 58億9,000万米ドル |
CAGR(%) | 10.18% |
監視制御およびデータ収集(SCADA)システムは、現代の再生可能エネルギー事業のバックボーンとして台頭し、利害関係者がより効率的な発電のためにリアルタイムのインテリジェンスを活用することを可能にしています。太陽光発電所が砂漠を横切って拡大し、風力タービンが沖合で上昇し、水力発電施設が水位の変動に適応するにつれて、統合監視と自動制御の必要性はかつてないほど高まっています。これらのプラットフォームは、単純な遠隔測定にとどまらず、多様な計測機器、デジタルツインモデル、高度な分析を統合し、プラント性能の包括的なビューを提供します。
再生可能エネルギーセクターは、デジタル化、分散化、そして進化する規制状況によって、大きな変革の中にあります。太陽光発電、風力発電、水力発電、地熱発電、バイオマス発電の各設備において、SCADAアーキテクチャはモノリシックなオンプレミス構成から、エッジコンピューティングノードとクラウドサービスを融合したハイブリッドフレームワークへと急速に移行しています。この動向は、分散型エネルギー資源との緊密な統合、柔軟なグリッド参加、リアルタイム適応性の必要性によって推進されています。
2025年、米国は輸入SCADA機器に関税を導入し、世界のサプライチェーンに波及効果をもたらしました。国内製造を強化し、重要インフラを保護することを目的としたこの政策イニシアチブは、海外から調達したコントローラ、ヒューマンマシンインターフェースパネル、リモートターミナルユニット、センサ、トランスデューサのコストを上昇させました。その結果、プロジェクト開発者やシステムインテグレーターは、資本支出の増加や新しい再生可能エネルギー設備の試運転の遅延の可能性に直面しています。
SCADA市場を詳細に調査すると、さまざまなセグメントで明確なパターンが明らかになります。コンポーネントの観点からは、ハードウェアが依然として最大のカテゴリーであり、分散型制御システムやプログラマブルロジックコントローラのようなコントローラ、ヒューマンマシンインターフェースパネル、リモートターミナルユニット、そしてセンサーやトランスデューサの数々を包含しています。このレイヤーを補完するサービスには、操作の習熟度を高めるために設計されたコンサルティングやトレーニングの取り組み、異種システムをまとめる統合と展開プロジェクト、稼働時間を守る継続的なサポートとメンテナンス契約が含まれます。ソフトウェア面では、高度な機械学習を活用した分析プラットフォーム、現場技術者が重要なアラートに対応できるモバイルアプリケーション、データ収集と制御ロジックを扱う包括的なSCADAプラットフォーム、侵入検知とアクセス管理に特化したセキュリティソフトウェアなどのソリューションがあります。
南北アメリカ全体では、成熟市場と新興市場の両方でSCADAの導入が加速しています。北米の事業者はグリッドの信頼性を重視し、太陽光発電や風力発電の高い普及率を統合するために高度な制御ロジックを活用しています。中南米の電力会社は、老朽化した水力発電インフラを近代化し、バイオマスコージェネレーションを拡大する機会を捉えており、サービスプロバイダーはターンキー近代化プロジェクトを提供するためにパートナーシップを結んでいます。メキシコの規制改革は投資をさらに刺激し、通信プロトコルとサイバーセキュリティの枠組みを標準化するための国境を越えた協力を促しています。
グローバルな技術リーダーは、強固な研究開発投資と戦略的提携を通じてその地位を固めています。シーメンスはAIを活用したアナリティクスとセキュアな通信レイヤーのイノベーションを推進し続け、ABBはオートメーションに関する専門知識と包括的なサービス提供を統合しています。シュナイダーエレクトリックは、オープンな相互運用性とサイバーセキュリティのコンプライアンスを重視するEcoStruxureプラットフォームを通じて差別化を図り、ゼネラルエレクトリックはデジタルツイン機能を活用してタービンとインバータの運用を最適化しています。
業界のリーダーは、リアルタイムの応答性と長期的なスケーラビリティの両方を達成するために、エッジとクラウドアーキテクチャの統合を優先する必要があります。迅速な異常検知のためにインテリジェントなエッジノードを配備し、高度な分析と履歴データ集約のためにクラウドリソースを活用することで、企業は全社的な可視性をサポートしながら待ち時間を短縮することができます。
この調査は、徹底的な2次調査と綿密な1次調査を組み合わせた厳格な手法に基づいています。そのプロセスは、再生可能エネルギーにおけるSCADA動向の基礎的な理解を確立するために、業界レポート、学術出版物、規制当局への届出、ベンダーのホワイトペーパーの包括的なレビューから始まりました。
総合的な洞察は、再生可能エネルギー事業におけるSCADAシステムの変革的影響を強調しています。リアルタイムの制御ループによるグリッドの安定性の強化から、予知保全によるコスト効率の向上まで、これらのプラットフォームは脱炭素化と回復力の目標を達成するための中心的な役割を果たしています。エッジコンピューティング、クラウドアーキテクチャ、強固なサイバーセキュリティ対策の相互作用は、システム性能と信頼性への期待を再構築しています。
The SCADA in Renewable Energy Market was valued at USD 3.29 billion in 2024 and is projected to grow to USD 3.62 billion in 2025, with a CAGR of 10.18%, reaching USD 5.89 billion by 2030.
KEY MARKET STATISTICS | |
---|---|
Base Year [2024] | USD 3.29 billion |
Estimated Year [2025] | USD 3.62 billion |
Forecast Year [2030] | USD 5.89 billion |
CAGR (%) | 10.18% |
Supervisory Control and Data Acquisition (SCADA) systems have emerged as the backbone of modern renewable energy operations, enabling stakeholders to harness real-time intelligence for more efficient power generation. As solar farms expand across deserts, wind turbines rise offshore, and hydropower facilities adapt to fluctuating water levels, the need for integrated monitoring and automated control has never been greater. Beyond simple telemetry, these platforms unify diverse instrumentation, digital twin models, and advanced analytics to provide a comprehensive view of plant performance.
In an environment driven by decarbonization targets and volatile market dynamics, decision-makers demand instantaneous insights into asset health, grid stability, and energy yield. SCADA architectures bridge the gap between remote field devices and centralized control centers, transforming raw sensor data into actionable information. Operators can identify emerging faults, optimize dispatch schedules, and orchestrate multi-site portfolios with unprecedented precision. Furthermore, the synergy between edge computing and cloud-based dashboards is enabling continuous improvement loops and predictive maintenance regimes.
Looking ahead, the convergence of artificial intelligence, cybersecurity frameworks, and interoperable communications will redefine expectations of resilience and scalability. Rapid advances in machine learning algorithms are unlocking pattern recognition capabilities previously reserved for high-performance computing environments, while stringent security protocols ensure system integrity in the face of evolving threats. As regulatory bodies intensify scrutiny of energy infrastructure, robust SCADA implementations will be instrumental in meeting compliance requirements and fostering stakeholder trust.
The renewable energy sector is undergoing a profound transformation fueled by digitalization, decentralization, and evolving regulatory landscapes. Across solar, wind, hydro, geothermal, and biomass installations, SCADA architectures are rapidly shifting from monolithic on-premise configurations to hybrid frameworks that fuse edge computing nodes with cloud services. This trend is driven by the need for tighter integration with distributed energy resources, flexible grid participation, and real-time adaptability.
Moreover, the proliferation of Internet of Things (IoT) devices has amplified data volumes, compelling developers to incorporate edge analytics capabilities. These decentralized processing engines reduce network latency, ensuring rapid anomaly detection and automated response. At the same time, heightened cybersecurity threats have prompted a move toward zero-trust network segmentation, secure communication channels, and continuous vulnerability assessments. As a result, resilience and uptime are being redefined at the architectural level.
Furthermore, as utilities and independent power producers embrace microgrids, virtual power plants, and peer-to-peer energy trading, SCADA systems must accommodate complex market signals and regulatory frameworks. The interplay between energy storage, demand response, and renewable intermittency demands seamless orchestration, driving vendors to enhance interoperability standards and open-source integrations. Consequently, stakeholders are positioned to unlock value through flexible contracts, dynamic pricing models, and predictive grid management strategies.
In 2025, the introduction of United States tariffs on imported SCADA equipment has created a ripple effect across the global supply chain. This policy initiative, aimed at bolstering domestic manufacturing and protecting critical infrastructure, has elevated costs for controllers, human-machine interface panels, remote terminal units, sensors, and transducers sourced from overseas. Consequently, project developers and system integrators face heightened capital expenditures and potential delays in commissioning new renewable installations.
As procurement budgets tighten, organizations are exploring localization strategies, fostering partnerships with regional suppliers and original equipment manufacturers. However, the transition toward domestic production often necessitates retooling facilities, retraining workforces, and establishing new quality-assurance protocols. These investments, while reinforcing supply chain security, may temporarily impact profit margins and extend lead times for critical hardware components.
Amid these shifts, agile vendors are innovating to mitigate cost pressures. Some have diversified their manufacturing footprints across neighboring countries to optimize tariff exposure, while others are accelerating adoption of software-driven architectures that minimize reliance on specialized hardware. At the same time, demand for subscription-based deployment models is rising, enabling end users to convert capital-intensive purchases into operational expenses, thereby smoothing budgetary cycles in the face of tariff-induced volatility.
A granular examination of the SCADA market reveals distinct patterns across disparate segments. From a component perspective, hardware remains the largest category, encompassing controllers such as distributed control systems and programmable logic controllers, human-machine interface panels, remote terminal units, as well as an array of sensors and transducers. Complementing this layer, services encompass consulting and training initiatives designed to bolster operational proficiency, integration and deployment projects that knit together disparate systems, and ongoing support and maintenance agreements that safeguard uptime. On the software front, solutions span analytics platforms that leverage advanced machine learning, mobile applications that enable field technicians to act on critical alerts, comprehensive SCADA platforms that handle data acquisition and control logic, and security software dedicated to intrusion detection and access management.
Deployment models are bifurcated between on-premise architectures maintained within the operator's firewall and cloud-based offerings provisioned through hybrid, private, or public environments. Hybrid cloud implementations have emerged as a popular compromise, offering the agility of cloud scalability with the predictability of localized processing. Meanwhile, pure private cloud deployments cater to organizations with stringent data sovereignty requirements, and public cloud options appeal to those prioritizing rapid provisioning and cost efficiency.
End use paints a mosaic of vertical applications across renewable energy. Biomass installations range from combined heat and power facilities to centralized power plants. Geothermal systems include binary cycle, dry steam, and flash steam plants. Hydropower is segmented into large reservoir facilities and small run-of-river projects. Solar operations encompass both concentrated solar power arrays and photovoltaic farms. Wind assets are classified by onshore and offshore configurations, each presenting unique environmental and regulatory considerations.
Communication technology underpins every segment. Wired infrastructures utilize Ethernet backbones, fiber-optic rings, and serial communication links, while wireless alternatives rely on cellular networks, radio frequency protocols, and satellite connectivity. Finally, application layers deliver functionalities in alarm management to prioritize critical events, asset performance management to optimize equipment lifecycles, control management for real-time setpoint adjustments, data acquisition and monitoring for continuous insight, and reporting and analytics to inform strategic decisions.
Across the Americas, SCADA implementations have ramped up in both mature and emerging markets. North American operators emphasize grid reliability, leveraging advanced control logic to integrate high penetrations of solar and wind capacity. Central and South American utilities are seizing opportunities to modernize aging hydropower infrastructure and expand biomass cogeneration, with service providers forging partnerships to deliver turnkey modernization projects. Mexico's regulatory reforms have further stimulated investment, prompting cross-border collaboration to standardize communication protocols and cybersecurity frameworks.
In Europe, the Middle East, and Africa region, stringent climate targets and decarbonization mandates are driving comprehensive digital overhauls. Western European nations focus on cross-border energy interconnectivity and advanced analytics to balance intermittent generation. In the Middle East, the race to develop utility-scale solar arrays has incentivized cloud-native SCADA deployments that can scale in step with project pipelines. Meanwhile, Africa's hydropower expansions and geothermal explorations are catalyzing demand for modular control systems that can operate in challenging environmental conditions and intermittent network coverage.
Asia-Pacific markets present a diverse tableau of growth trajectories. China continues to push the frontier of wind-solar hybrid plants, integrating AI-driven control loops to stabilize output. India's ambitious renewable targets are juxtaposed with grid modernization initiatives, wherein state-owned entities partner with international vendors to implement cybersecurity-hardened architectures. Japan and Australia are pioneering offshore wind and tidal energy SCADA use cases, and Southeast Asian nations are adopting scalable hybrid cloud solutions to leapfrog legacy infrastructure constraints.
Global technology leaders have cemented their positions through robust R&D investments and strategic alliances. Siemens continues to drive innovation in AI-powered analytics and secure communication layers, while ABB integrates its automation expertise with comprehensive service offerings. Schneider Electric differentiates through its EcoStruxure platform, which emphasizes open interoperability and cybersecurity compliance, and General Electric leverages its digital twin capabilities to optimize turbine and inverter operations.
Mid-market specialists are also carving out niches. Companies like Advantech and Inductive Automation have built reputations on modular, scalable SCADA platforms ideal for hybrid energy projects. Yokogawa and Mitsubishi Electric capitalize on their long-standing presence in industrial control, offering turnkey solutions tailored for high-temperature geothermal and large-scale hydro facilities. Meanwhile, Emerson focuses on asset performance management, integrating SCADA data with health monitoring systems to drive predictive maintenance.
Competition is intensifying around services and subscription models. Vendors are bundling consulting, integration, and support services into annual contracts, transitioning from one-off hardware sales to ongoing customer engagements. This shift enhances customer retention, provides continuous revenue streams, and aligns incentives around system performance rather than simple equipment throughput.
Industry leaders should prioritize the integration of edge and cloud architectures to achieve both real-time responsiveness and long-term scalability. By deploying intelligent edge nodes for rapid anomaly detection and leveraging cloud resources for advanced analytics and historical data aggregation, organizations can reduce latency while supporting enterprise-wide visibility.
Second, strengthening cybersecurity must remain paramount. Implementing zero-trust models, regularly updating firmware, and conducting continuous vulnerability assessments will safeguard control networks from increasingly sophisticated threats. Collaboration with trusted cybersecurity specialists and participation in industry information-sharing groups can further enhance resilience.
Third, forging cross-sector partnerships and contributing to open-source standards will accelerate innovation. By aligning with industry consortiums and academic institutions, stakeholders can establish interoperable frameworks that reduce integration overheads and foster a competitive vendor ecosystem. Standardized communication protocols and data schemas will serve as the foundation for seamless system expansions.
Finally, investing in advanced analytics and workforce development is critical. Equipping teams with training in machine learning, process optimization, and cybersecurity will empower organizations to capitalize on data insights. Coupling these capabilities with continuous improvement methodologies will ensure that SCADA implementations evolve in step with market demands and regulatory requirements.
This research is grounded in a rigorous methodology that combines exhaustive secondary research and in-depth primary engagements. The process began with a comprehensive review of industry reports, academic publications, regulatory filings, and vendor white papers to establish a foundational understanding of SCADA trends in renewable energy.
Subsequently, structured interviews were conducted with executives, system integrators, infrastructure operators, and technology vendors. These discussions provided qualitative insights into strategic priorities, deployment challenges, and next-generation feature requirements. Triangulation of quantitative data and interview findings ensured that conclusions were validated against multiple sources, reducing potential biases.
Data was further segmented along component, deployment model, end use, communication technology, and application lines to reveal nuanced adoption patterns. Each finding underwent a multi-layer verification process, incorporating feedback from subject matter experts and cross-referencing against proprietary project databases. The result is a set of insights that reflect the current state of the market, emerging innovations, and future growth enablers.
The collective insights underscore the transformative impact of SCADA systems on renewable energy operations. From enhancing grid stability through real-time control loops to driving cost efficiencies via predictive maintenance, these platforms are central to meeting decarbonization and resilience objectives. The interplay between edge computing, cloud architectures, and robust cybersecurity measures is reshaping expectations for system performance and reliability.
Looking forward, the market will be defined by an emphasis on interoperability, AI-driven automation, and flexible financing models. Vendors and end users alike will need to adapt to evolving regulatory frameworks and tariff landscapes, balancing the imperatives of localization with the efficiencies of global supply chains. Stakeholders who embrace collaboration, invest in talent development, and prioritize secure, scalable architectures will be best positioned to seize the opportunities of the energy transition.