デフォルト表紙
市場調査レポート
商品コード
1714739

eコマース不正検知・防止市場:ソリューション別、不正タイプ別、用途別、エンドユーザー別、導入形態別、組織規模別-2025-2030年世界予測

eCommerce Fraud Detection & Prevention Market by Solution, Fraud Type, Application, End User, Deployment Mode, Organization Size - Global Forecast 2025-2030


出版日
発行
360iResearch
ページ情報
英文 198 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
eコマース不正検知・防止市場:ソリューション別、不正タイプ別、用途別、エンドユーザー別、導入形態別、組織規模別-2025-2030年世界予測
出版日: 2025年04月01日
発行: 360iResearch
ページ情報: 英文 198 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

eコマース不正検知・防止市場は、2024年には575億1,000万米ドルとなり、2025年にはCAGR 21.69%で691億2,000万米ドルに成長し、2030年には1,868億2,000万米ドルに達すると予測されています。

主な市場の統計
基準年 2024 575億1,000万米ドル
推定年 2025 691億2,000万米ドル
予測年 2030 1,868億2,000万米ドル
CAGR(%) 21.69%

電子商取引における不正行為の検知と防止の現状は、デジタル脅威の進化とテクノロジーの絶え間ない進歩により、急速な革新の時期を迎えています。近年、サイバー犯罪や不正行為の複雑さに伴い、デジタル空間で事業を展開する企業には強固なアプローチが必要となっています。組織は、不正行為が財務上および風評上の重大な損害を与える前に検知し、軽減するために、洗練されたツールや手法を活用するようになってきています。この業界の特徴として、人工知能、機械学習、ビッグデータ解析の導入に向けた絶え間ない推進があり、これらによって、異常な行動をリアルタイムで特定するシステムの能力が強化されています。

このダイナミックな環境では、利害関係者の協力が最も重要です。企業、テクノロジー・プロバイダー、規制機関は連携して、新たなリスクに積極的に対処するフレームワークを構築します。強化された分析ツールと業界横断的な専門知識の統合は、より強靭なエコシステムを育みます。デジタル取引が増加し続ける中、企業は詐欺師の先を行くためにイノベーションに多額の投資を行っています。この概要では、eコマースの不正検知・防止分野を形成しつつある市場動向、変革的シフト、重要な洞察について詳細に分析し、意思決定者や業界専門家にとって有益な方向性を提供します。

eコマース不正検知・防止市場の変革

近年、eコマース詐欺のエコシステムを再定義する変革的な変化が起きています。新たなテクノロジー、巧妙化する攻撃手法、そして進化し続ける規制状況が、常に流動的な状況を生み出しています。人工知能や機械学習と組み合わされた高度なアナリティクスは、隠れたパターンを明らかにし、潜在的な詐欺行為を予測するためにますます導入されるようになっています。クラウドベースのプラットフォームの登場は、拡張性を向上させただけでなく、リアルタイムのモニタリングと検知システムの迅速な展開を可能にしました。

行動バイオメトリクスやリアルタイムのデータストリーム分析などの技術革新は、今や不正行為との戦いにおいて極めて重要なものとなっています。これと並行して、企業はレガシーシステムを再評価する一方で、進化する脅威に適応する、より俊敏なソリューションを導入しています。モバイル・コマースやデジタル・ウォレットの台頭は新たな脆弱性をもたらし、より高度なセキュリティ・プロトコルの必要性を促しています。このような背景から、企業は強固な不正インテリジェンスと戦略的パートナーシップに投資し、ベストプラクティスと最先端技術を活用することが求められています。このような変化を巧みに乗り切ることは、デジタルファーストの世界で企業収益を守り、消費者の信頼を維持しようとする企業にとって不可欠です。

市場力学を牽引する主要セグメンテーションの洞察

市場セグメンテーションを深く掘り下げると、不正検知・防止における戦略的意思決定を支える重要な洞察が見えてくる。ソリューションに基づくセグメンテーションを検討する場合、市場はサービスとソフトウェアのプリズムを通して分析されます。サービス部門はさらに、戦略的イニシアチブを導くコンサルティング・サービス、シームレスなテクノロジー導入を保証するインテグレーション・サービス、システムを最適な状態に保つサポート・メンテナンス・サービスに分類されます。同様に、ソフトウェア・セグメントは、不正検知と不正防止という2つの焦点に集中しており、それぞれがeコマース不正の異なる側面を軽減するように調整されています。

さらに、不正行為の種類に基づく分析により、アカウント乗っ取り、カード詐欺、友好的詐欺、なりすまし、加盟店詐欺、フィッシング、還付金詐欺など、さまざまな課題を包括的に把握することができます。これらの分類により、企業はリスク管理戦略をカスタマイズし、的を絞ったソリューションを展開することができます。アプリケーションベースのセグメンテーションを掘り下げると、行動分析、チャージバック管理、不正分析、本人認証、支払不正検出、トランザクション監視など、多様な機能が見えてくる。さらに、エンドユーザーという切り口でセグメンテーションを行うことで、銀行、金融サービス、保険から、ゲーム、エンターテインメント、小売、eコマース、旅行、ホスピタリティに至るまで、より詳細なセグメンテーションが可能となります。戦略的な内訳は、クラウドベースのソリューションとオンプレミスのセットアップを区別する導入形態や、大企業向けのアプローチと中小企業向けのアプローチを評価する組織規模の考察にまで及んでいます。各セグメントは、市場力学の微妙な理解に貢献し、特化型ソリューションのユニークな機会を浮き彫りにします。

目次

第1章 序文

第2章 調査手法

第3章 エグゼクティブサマリー

第4章 市場の概要

第5章 市場洞察

  • 市場力学
    • 促進要因
      • 世界中でオンラインショッピングを好む消費者が増加している
      • 世界中で高度なサイバー脅威が増加
      • 電子商取引プラットフォーム全体で不正行為検出対策を義務付ける規制要件と基準
    • 抑制要因
      • 高度な不正検出および防止システムの導入に伴う高コスト
    • 機会
      • スケーラブルな価格設定モデルを備えたサブスクリプションベースのeコマース詐欺防止プラットフォームの導入
      • 分散型で透明性の高いセキュリティソリューションにおけるブロックチェーン技術の採用
    • 課題
      • 取引における誤検知率を最小限に抑えながら不正検出アルゴリズムの精度を向上させる
  • 市場セグメンテーション分析
    • 解決策:異常や潜在的な脅威を特定するための不正検出ツールの需要が高まっている
    • 応用:ユーザーの行動パターンを分析するための行動分析の重要性の高まり
  • ポーターのファイブフォース分析
  • PESTEL分析
    • 政治的
    • 経済
    • 社会
    • 技術的
    • 法律上
    • 環境

第6章 eコマース不正検知・防止市場:ソリューション別

  • サービス
    • コンサルティングサービス
    • 統合サービス
    • サポートおよびメンテナンスサービス
  • ソフトウェア
    • 不正行為検出
    • 不正行為防止

第7章 eコマース不正検知・防止市場詐欺の種類別

  • アカウント乗っ取り
  • カード詐欺
  • フレンドリー詐欺
  • 個人情報の盗難
  • 加盟店詐欺
  • フィッシング
  • 払い戻し詐欺

第8章 eコマース不正検知・防止市場:用途別

  • 行動分析
  • チャージバック管理
  • 不正行為分析
  • 本人認証
  • 支払い詐欺検出
  • トランザクション監視

第9章 eコマース不正検知・防止市場:エンドユーザー別

  • 銀行、金融サービス、保険
  • ゲームとエンターテイメント
  • 小売・Eコマース
  • 旅行とホスピタリティ

第10章 eコマース不正検知・防止市場:展開モード別

  • クラウドベース
  • オンプレミス

第11章 eコマース不正検知・防止市場:組織規模別

  • 大企業
  • 中小企業

第12章 南北アメリカのeコマース不正検知・防止市場

  • アルゼンチン
  • ブラジル
  • カナダ
  • メキシコ
  • 米国

第13章 アジア太平洋地域のeコマース不正検知・防止市場

  • オーストラリア
  • 中国
  • インド
  • インドネシア
  • 日本
  • マレーシア
  • フィリピン
  • シンガポール
  • 韓国
  • 台湾
  • タイ
  • ベトナム

第14章 欧州・中東・アフリカのeコマース不正検知・防止市場

  • デンマーク
  • エジプト
  • フィンランド
  • フランス
  • ドイツ
  • イスラエル
  • イタリア
  • オランダ
  • ナイジェリア
  • ノルウェー
  • ポーランド
  • カタール
  • ロシア
  • サウジアラビア
  • 南アフリカ
  • スペイン
  • スウェーデン
  • スイス
  • トルコ
  • アラブ首長国連邦
  • 英国

第15章 競合情勢

  • 市場シェア分析, 2024
  • FPNVポジショニングマトリックス, 2024
  • 競合シナリオ分析
  • 戦略分析と提言

企業一覧

  • ACI Worldwide, Inc.
  • Blackhawk Network Holdings, Inc.
  • Bolt Financial, Inc.
  • Chargeflow, Inc.
  • ClearSale LLC
  • DXC Technology Company
  • Ekata
  • Equifax Inc.
  • F5, Inc.
  • Fiserv, Inc.
  • Forter, Ltd.
  • Fraud.com
  • Fraud.net Inc.
  • Hexasoft Development Sdn. Bhd.
  • Infosys Limited
  • International Business Machines Corporation
  • LexisNexis Risk Solutions Group
  • Lyra Network Private Limited
  • MarkMonitor Inc.
  • NortonLifeLock Inc.
  • PayPal Holdings, Inc.
  • Radial, Inc.
  • Riskified, Ltd.
  • RSA Security LLC
  • SEON Technologies Ltd.
  • SHIELD AI Technologies Pte. Ltd.
  • Sift Science, Inc.
  • Signifyd Inc.
  • Software AG
  • Stripe, Inc.
  • Subuno
  • TransUnion LLC
図表

LIST OF FIGURES

  • FIGURE 1. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET MULTI-CURRENCY
  • FIGURE 2. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET MULTI-LANGUAGE
  • FIGURE 3. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET RESEARCH PROCESS
  • FIGURE 4. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, 2024 VS 2030
  • FIGURE 5. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, 2018-2030 (USD MILLION)
  • FIGURE 6. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY REGION, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 7. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 8. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2024 VS 2030 (%)
  • FIGURE 9. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 10. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2024 VS 2030 (%)
  • FIGURE 11. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 12. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2024 VS 2030 (%)
  • FIGURE 13. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 14. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2024 VS 2030 (%)
  • FIGURE 15. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 16. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2024 VS 2030 (%)
  • FIGURE 17. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 18. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2024 VS 2030 (%)
  • FIGURE 19. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 20. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 21. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 22. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY STATE, 2024 VS 2030 (%)
  • FIGURE 23. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY STATE, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 24. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 25. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 26. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2030 (%)
  • FIGURE 27. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2024 VS 2025 VS 2030 (USD MILLION)
  • FIGURE 28. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SHARE, BY KEY PLAYER, 2024
  • FIGURE 29. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET, FPNV POSITIONING MATRIX, 2024

LIST OF TABLES

  • TABLE 1. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SEGMENTATION & COVERAGE
  • TABLE 2. UNITED STATES DOLLAR EXCHANGE RATE, 2018-2024
  • TABLE 3. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, 2018-2030 (USD MILLION)
  • TABLE 4. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 5. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 6. ECOMMERCE FRAUD DETECTION & PREVENTION MARKET DYNAMICS
  • TABLE 7. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 8. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 9. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY CONSULTING SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 10. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY INTEGRATION SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 11. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SUPPORT & MAINTENANCE SERVICES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 12. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 13. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 14. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD DETECTION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 15. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD PREVENTION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 16. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 17. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 18. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ACCOUNT TAKEOVER, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 19. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY CARD FRAUD, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 20. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRIENDLY FRAUD, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 21. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY IDENTITY THEFT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 22. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY MERCHANT FRAUD, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 23. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY PHISHING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 24. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY REFUND FRAUD, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 25. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 26. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY BEHAVIORAL ANALYSIS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 27. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY CHARGEBACK MANAGEMENT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 28. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD ANALYTICS, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 29. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY IDENTITY AUTHENTICATION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 30. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY PAYMENT FRAUD DETECTION, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 31. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY TRANSACTION MONITORING, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 32. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 33. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY BANKING, FINANCIAL SERVICES & INSURANCE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 34. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY GAMING & ENTERTAINMENT, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 35. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY RETAIL & E-COMMERCE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 36. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY TRAVEL & HOSPITALITY, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 37. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 38. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY CLOUD-BASED, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 39. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ON-PREMISE, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 40. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 41. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY LARGE ENTERPRISES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 42. GLOBAL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SMALL & MEDIUM ENTERPRISES, BY REGION, 2018-2030 (USD MILLION)
  • TABLE 43. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 44. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 45. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 46. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 47. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 48. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 49. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 50. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 51. AMERICAS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 52. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 53. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 54. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 55. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 56. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 57. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 58. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 59. ARGENTINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 60. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 61. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 62. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 63. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 64. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 65. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 66. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 67. BRAZIL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 68. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 69. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 70. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 71. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 72. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 73. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 74. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 75. CANADA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 76. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 77. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 78. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 79. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 80. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 81. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 82. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 83. MEXICO ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 84. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 85. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 86. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 87. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 88. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 89. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 90. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 91. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 92. UNITED STATES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY STATE, 2018-2030 (USD MILLION)
  • TABLE 93. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 94. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 95. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 96. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 97. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 98. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 99. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 100. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 101. ASIA-PACIFIC ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 102. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 103. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 104. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 105. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 106. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 107. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 108. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 109. AUSTRALIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 110. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 111. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 112. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 113. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 114. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 115. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 116. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 117. CHINA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 118. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 119. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 120. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 121. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 122. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 123. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 124. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 125. INDIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 126. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 127. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 128. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 129. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 130. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 131. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 132. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 133. INDONESIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 134. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 135. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 136. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 137. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 138. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 139. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 140. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 141. JAPAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 142. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 143. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 144. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 145. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 146. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 147. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 148. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 149. MALAYSIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 150. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 151. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 152. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 153. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 154. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 155. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 156. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 157. PHILIPPINES ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 158. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 159. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 160. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 161. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 162. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 163. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 164. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 165. SINGAPORE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 166. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 167. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 168. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 169. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 170. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 171. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 172. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 173. SOUTH KOREA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 174. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 175. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 176. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 177. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 178. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 179. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 180. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 181. TAIWAN ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 182. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 183. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 184. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 185. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 186. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 187. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 188. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 189. THAILAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 190. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 191. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 192. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 193. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 194. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 195. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 196. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 197. VIETNAM ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 198. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 199. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 200. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 201. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 202. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 203. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 204. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 205. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 206. EUROPE, MIDDLE EAST & AFRICA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY COUNTRY, 2018-2030 (USD MILLION)
  • TABLE 207. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 208. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 209. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 210. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 211. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 212. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 213. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 214. DENMARK ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 215. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 216. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 217. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 218. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 219. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 220. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 221. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 222. EGYPT ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 223. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 224. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 225. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 226. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 227. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 228. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 229. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 230. FINLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 231. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 232. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 233. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 234. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 235. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 236. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 237. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 238. FRANCE ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 239. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 240. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 241. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 242. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 243. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 244. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 245. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 246. GERMANY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 247. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 248. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 249. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 250. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 251. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 252. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 253. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 254. ISRAEL ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 255. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 256. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 257. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 258. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 259. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 260. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 261. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 262. ITALY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 263. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 264. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 265. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 266. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 267. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 268. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 269. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 270. NETHERLANDS ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 271. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 272. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 273. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 274. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 275. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 276. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 277. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 278. NIGERIA ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 279. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 280. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 281. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 282. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 283. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 284. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY END USER, 2018-2030 (USD MILLION)
  • TABLE 285. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY DEPLOYMENT MODE, 2018-2030 (USD MILLION)
  • TABLE 286. NORWAY ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY ORGANIZATION SIZE, 2018-2030 (USD MILLION)
  • TABLE 287. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOLUTION, 2018-2030 (USD MILLION)
  • TABLE 288. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SERVICES, 2018-2030 (USD MILLION)
  • TABLE 289. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY SOFTWARE, 2018-2030 (USD MILLION)
  • TABLE 290. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY FRAUD TYPE, 2018-2030 (USD MILLION)
  • TABLE 291. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET SIZE, BY APPLICATION, 2018-2030 (USD MILLION)
  • TABLE 292. POLAND ECOMMERCE FRAUD DETECTION & PREVENTION MARKET
目次
Product Code: MRR-43676CF424EE

The eCommerce Fraud Detection & Prevention Market was valued at USD 57.51 billion in 2024 and is projected to grow to USD 69.12 billion in 2025, with a CAGR of 21.69%, reaching USD 186.82 billion by 2030.

KEY MARKET STATISTICS
Base Year [2024] USD 57.51 billion
Estimated Year [2025] USD 69.12 billion
Forecast Year [2030] USD 186.82 billion
CAGR (%) 21.69%

The current landscape of eCommerce fraud detection and prevention is undergoing a period of rapid innovation, driven by both evolving digital threats and the continuous advancement of technologies. In recent years, the complexity of cybercrime and fraudulent activities has necessitated a robust approach from businesses operating in the digital space. Organizations are increasingly leveraging sophisticated tools and methodologies to detect and mitigate fraud before it inflicts significant financial and reputational damage. This industry is characterized by a relentless push towards embracing artificial intelligence, machine learning, and big data analytics, which together enhance the capability of systems to identify anomalous behavior in real time.

In this dynamic environment, stakeholder collaboration is paramount. Businesses, technology providers, and regulatory bodies work in tandem to create frameworks that proactively address emerging risks. The integration of enhanced analytical tools and cross-industry expertise fosters a more resilient ecosystem. As digital transactions continue to rise, firms are investing heavily in innovation to stay ahead of fraudsters. This overview provides an in-depth analysis of the market trends, transformative shifts, and key insights that are reshaping the eCommerce fraud detection and prevention space, offering valuable direction for decision-makers and industry experts alike.

Transformative Shifts in the eCommerce Fraud Landscape

Recent years have witnessed transformative shifts that are redefining the eCommerce fraud ecosystem. Emerging technologies, increasingly sophisticated attack methods, and an ever-evolving regulatory environment contribute to a landscape that is continuously in flux. Advanced analytics coupled with artificial intelligence and machine learning are increasingly deployed to reveal hidden patterns and anticipate potential fraudulent activities. The advent of cloud-based platforms has not only improved scalability but has also enabled real-time monitoring and faster deployment of detection systems.

Technological innovations, such as behavioral biometrics and real-time data stream analyses, are now pivotal in the fight against fraud. In parallel, businesses are re-evaluating legacy systems while implementing more agile solutions that adapt to evolving threats. The rise of mobile commerce and digital wallets has introduced new vulnerabilities, driving the need for more sophisticated security protocols. In this context, organizations are urged to invest in robust fraud intelligence and strategic partnerships to leverage best practices and cutting-edge technologies. Adeptly navigating these shifts will be essential for companies seeking to protect their revenues and uphold consumer trust in a digital-first world.

Key Segmentation Insights Driving Market Dynamics

Diving deep into market segmentation reveals critical insights that underpin strategic decisions in fraud detection and prevention. When examining segmentation based on solutions, the market is analyzed through the prism of Services and Software. The Services category is further dissected into consulting services that guide strategic initiatives, integration services that ensure seamless technology adoption, and support and maintenance services that keep systems operating optimally. Similarly, the Software segment is concentrated around the dual focal points of fraud detection and fraud prevention, each tailored to mitigate different facets of eCommerce fraud.

Further analysis based on fraud type presents a comprehensive view across various challenges such as account takeover, card fraud, friendly fraud, identity theft, merchant fraud, phishing, and refund fraud. These categories allow businesses to customize their risk management strategies and deploy targeted solutions. Delving into application-based segmentation uncovers diverse functionalities, including behavioral analysis, chargeback management, fraud analytics, identity authentication, payment fraud detection, and transaction monitoring. Moreover, viewing segmentation through the lens of the end user provides additional granularity, with sectors ranging from banking, financial services and insurance to gaming, entertainment, retail, e-commerce, and travel and hospitality. The strategic breakdown extends into deployment modes, distinguishing between cloud-based solutions and on-premise setups, as well as considerations of organizational size, evaluating approaches tailored for large enterprises versus small and medium enterprises. Each segment contributes to a nuanced understanding of market dynamics and highlights unique opportunities for specialized solutions.

Based on Solution, market is studied across Services and Software. The Services is further studied across Consulting Services, Integration Services, and Support & Maintenance Services. The Software is further studied across Fraud Detection and Fraud Prevention.

Based on Fraud Type, market is studied across Account Takeover, Card Fraud, Friendly Fraud, Identity Theft, Merchant Fraud, Phishing, and Refund Fraud.

Based on Application, market is studied across Behavioral Analysis, Chargeback Management, Fraud Analytics, Identity Authentication, Payment Fraud Detection, and Transaction Monitoring.

Based on End User, market is studied across Banking, Financial Services & Insurance, Gaming & Entertainment, Retail & E-Commerce, and Travel & Hospitality.

Based on Deployment Mode, market is studied across Cloud-Based and On-Premise.

Based on Organization Size, market is studied across Large Enterprises and Small & Medium Enterprises.

Regional Insights: Global Trends and Emerging Markets

Regional analysis of eCommerce fraud detection and prevention unravels significant disparities and opportunities across global markets. In the Americas, market maturity coupled with high digital transaction volumes drives demand for increasingly sophisticated fraud prevention tools. Businesses in this region continue to invest in state-of-the-art technologies and analytics, reflecting the imperative of maintaining consumer trust in a highly competitive space.

Across Europe, the Middle East, and Africa, regulatory mandates and heightened data protection standards impose additional layers of complexity, yet they also spur innovation. Firms are not only adapting to stringent compliance requirements but are also exploiting technological advancements to enhance detection capabilities. Meanwhile, the Asia-Pacific region presents a landscape characterized by rapid technological adoption and a surging number of digital transactions. This confluence of growth and innovation has created fertile ground for the deployment of next-generation fraud analytics, with companies continuously innovating to counter diverse fraud scenarios. The differences in regional maturity, regulatory pressure, and consumer behavior drive specific market characteristics that are essential for companies to consider when devising localized strategies.

Based on Region, market is studied across Americas, Asia-Pacific, and Europe, Middle East & Africa. The Americas is further studied across Argentina, Brazil, Canada, Mexico, and United States. The United States is further studied across California, Florida, Illinois, New York, Ohio, Pennsylvania, and Texas. The Asia-Pacific is further studied across Australia, China, India, Indonesia, Japan, Malaysia, Philippines, Singapore, South Korea, Taiwan, Thailand, and Vietnam. The Europe, Middle East & Africa is further studied across Denmark, Egypt, Finland, France, Germany, Israel, Italy, Netherlands, Nigeria, Norway, Poland, Qatar, Russia, Saudi Arabia, South Africa, Spain, Sweden, Switzerland, Turkey, United Arab Emirates, and United Kingdom.

Leading Companies Shaping the eCommerce Fraud Arena

The competitive environment of eCommerce fraud detection and prevention is marked by the active participation of several industry leaders. Dominant market players include ACI Worldwide, Inc. and Blackhawk Network Holdings, Inc., whose innovative futures set the pace for industry best practices. Industry disruptors such as Bolt Financial, Inc. and Chargeflow, Inc. have carved a niche with their agile approaches to fraud analytics and real-time transaction monitoring. The market also benefits from the contributions of ClearSale LLC, DXC Technology Company, and Ekata, all of which play pivotal roles in integrating complex data streams and enhancing identity verification processes.

Furthermore, key organizations such as Equifax Inc., F5, Inc., and Fiserv, Inc. leverage their extensive experience in data security to offer robust solutions catering to diverse fraud scenarios. Forter, Ltd. and Fraud.com, along with Fraud.net Inc., have established themselves as formidable contenders by focusing on dynamic detection methodologies. Other notable companies including Hexasoft Development Sdn. Bhd., Infosys Limited, and International Business Machines Corporation push the envelope on technological innovation. LexisNexis Risk Solutions Group and Lyra Network Private Limited, as well as MarkMonitor Inc. and NortonLifeLock Inc., all contribute unique insights and capabilities to the market. PayPal Holdings, Inc., Radial, Inc., Riskified, Ltd., and RSA Security LLC further solidify the industry's foundation through comprehensive risk analysis, while SEON Technologies Ltd., SHIELD AI Technologies Pte. Ltd., Sift Science, Inc., Signifyd Inc., Software AG, Stripe, Inc., Subuno, and TransUnion LLC continue to influence market trends through pioneering solutions and data-driven strategies.

The report delves into recent significant developments in the eCommerce Fraud Detection & Prevention Market, highlighting leading vendors and their innovative profiles. These include ACI Worldwide, Inc., Blackhawk Network Holdings, Inc., Bolt Financial, Inc., Chargeflow, Inc., ClearSale LLC, DXC Technology Company, Ekata, Equifax Inc., F5, Inc., Fiserv, Inc., Forter, Ltd., Fraud.com, Fraud.net Inc., Hexasoft Development Sdn. Bhd., Infosys Limited, International Business Machines Corporation, LexisNexis Risk Solutions Group, Lyra Network Private Limited, MarkMonitor Inc., NortonLifeLock Inc., PayPal Holdings, Inc., Radial, Inc., Riskified, Ltd., RSA Security LLC, SEON Technologies Ltd., SHIELD AI Technologies Pte. Ltd., Sift Science, Inc., Signifyd Inc., Software AG, Stripe, Inc., Subuno, and TransUnion LLC. Actionable Recommendations for Industry Leaders

Industry leaders must adopt a proactive approach to safeguard their operations in the rapidly evolving landscape of eCommerce fraud. It is essential that organizations enhance their investment in cutting-edge technologies, particularly those that harness the power of artificial intelligence and machine learning. By adopting these technologies, companies can accelerate the detection of anomalous transactions and enable real-time fraud assessment. Furthermore, leveraging advanced analytics to create dynamic risk models will facilitate more precise fraud prediction and prevention strategies.

In addition to technological upgrades, firms should cultivate a culture that emphasizes continuous learning and adaptive strategies. This includes regular training for staff to stay updated with industry best practices and emerging threats. Building robust partnerships with technology innovators and engaging with cross-industry alliances is also crucial. Such collaborations allow for the exchange of intelligence on emerging fraud trends and the development of standardized protocols to mitigate risk. Leaders are also advised to focus on scalability and integration of systems, ensuring that new solutions can be seamlessly incorporated into existing frameworks. Overall, a forward-thinking strategy that balances technology, collaboration, and agility is key to outperforming competitors and maintaining a secure, trust-centric environment for customers.

Conclusion: Synthesizing Key Insights

The exploration of eCommerce fraud detection and prevention reveals a market that is as dynamic as it is essential. Through an extensive analysis that spans technological innovations, detailed segmentation, regional trends, and competitive strategies, it becomes clear that the market is on a continual quest for enhanced security and efficiency. The industry's evolution is marked by transformative shifts that demand not only investment in advanced analytics but also a commitment to regulatory compliance and strategic foresight.

In synthesizing these insights, it is evident that the ability to tailor solutions that address specific fraud scenarios is paramount. Whether the focus is on upgrading software for precise fraud detection, refining integration services, or scaling support systems to meet diverse organizational needs, every aspect of the ecosystem plays a critical role. The regional variations in market maturity, coupled with the strategies employed by leading companies, underscore the need for a localized yet holistic approach. In this way, the overarching narrative is one of resilience, adaptability, and relentless innovation in the face of evolving digital threats.

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rising consumer preference for online shopping worldwide
      • 5.1.1.2. Increasing prevalence of sophisticated cyber threats globally
      • 5.1.1.3. Regulatory requirements and standards mandating fraud detection measures across eCommerce platforms
    • 5.1.2. Restraints
      • 5.1.2.1. High costs associated with implementing advanced fraud detection and prevention systems
    • 5.1.3. Opportunities
      • 5.1.3.1. Introduction of subscription-based e-commerce fraud prevention platforms with scalable pricing models
      • 5.1.3.2. Adoption of blockchain technology in decentralized and transparent security solutions
    • 5.1.4. Challenges
      • 5.1.4.1. Enhancing accuracy of fraud detection algorithms while minimizing false positive rates in transactions
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Solution: Rising preference for fraud detection tools to identify anomalies and potential threats
    • 5.2.2. Application: Increasing significance of behavioral analysis for analyzing user behavior patterns
  • 5.3. Porter's Five Forces Analysis
    • 5.3.1. Threat of New Entrants
    • 5.3.2. Threat of Substitutes
    • 5.3.3. Bargaining Power of Customers
    • 5.3.4. Bargaining Power of Suppliers
    • 5.3.5. Industry Rivalry
  • 5.4. PESTLE Analysis
    • 5.4.1. Political
    • 5.4.2. Economic
    • 5.4.3. Social
    • 5.4.4. Technological
    • 5.4.5. Legal
    • 5.4.6. Environmental

6. eCommerce Fraud Detection & Prevention Market, by Solution

  • 6.1. Introduction
  • 6.2. Services
    • 6.2.1. Consulting Services
    • 6.2.2. Integration Services
    • 6.2.3. Support & Maintenance Services
  • 6.3. Software
    • 6.3.1. Fraud Detection
    • 6.3.2. Fraud Prevention

7. eCommerce Fraud Detection & Prevention Market, by Fraud Type

  • 7.1. Introduction
  • 7.2. Account Takeover
  • 7.3. Card Fraud
  • 7.4. Friendly Fraud
  • 7.5. Identity Theft
  • 7.6. Merchant Fraud
  • 7.7. Phishing
  • 7.8. Refund Fraud

8. eCommerce Fraud Detection & Prevention Market, by Application

  • 8.1. Introduction
  • 8.2. Behavioral Analysis
  • 8.3. Chargeback Management
  • 8.4. Fraud Analytics
  • 8.5. Identity Authentication
  • 8.6. Payment Fraud Detection
  • 8.7. Transaction Monitoring

9. eCommerce Fraud Detection & Prevention Market, by End User

  • 9.1. Introduction
  • 9.2. Banking, Financial Services & Insurance
  • 9.3. Gaming & Entertainment
  • 9.4. Retail & E-Commerce
  • 9.5. Travel & Hospitality

10. eCommerce Fraud Detection & Prevention Market, by Deployment Mode

  • 10.1. Introduction
  • 10.2. Cloud-Based
  • 10.3. On-Premise

11. eCommerce Fraud Detection & Prevention Market, by Organization Size

  • 11.1. Introduction
  • 11.2. Large Enterprises
  • 11.3. Small & Medium Enterprises

12. Americas eCommerce Fraud Detection & Prevention Market

  • 12.1. Introduction
  • 12.2. Argentina
  • 12.3. Brazil
  • 12.4. Canada
  • 12.5. Mexico
  • 12.6. United States

13. Asia-Pacific eCommerce Fraud Detection & Prevention Market

  • 13.1. Introduction
  • 13.2. Australia
  • 13.3. China
  • 13.4. India
  • 13.5. Indonesia
  • 13.6. Japan
  • 13.7. Malaysia
  • 13.8. Philippines
  • 13.9. Singapore
  • 13.10. South Korea
  • 13.11. Taiwan
  • 13.12. Thailand
  • 13.13. Vietnam

14. Europe, Middle East & Africa eCommerce Fraud Detection & Prevention Market

  • 14.1. Introduction
  • 14.2. Denmark
  • 14.3. Egypt
  • 14.4. Finland
  • 14.5. France
  • 14.6. Germany
  • 14.7. Israel
  • 14.8. Italy
  • 14.9. Netherlands
  • 14.10. Nigeria
  • 14.11. Norway
  • 14.12. Poland
  • 14.13. Qatar
  • 14.14. Russia
  • 14.15. Saudi Arabia
  • 14.16. South Africa
  • 14.17. Spain
  • 14.18. Sweden
  • 14.19. Switzerland
  • 14.20. Turkey
  • 14.21. United Arab Emirates
  • 14.22. United Kingdom

15. Competitive Landscape

  • 15.1. Market Share Analysis, 2024
  • 15.2. FPNV Positioning Matrix, 2024
  • 15.3. Competitive Scenario Analysis
    • 15.3.1. Bureau raises USD 30 million in series B funding to advance AI-powered eCommerce fraud prevention solutions
    • 15.3.2. ClearSale introduced a new product suite preventative Intel
    • 15.3.3. Mangopay's AI-powered solution spearheads the fight against eCommerce fraud with real-time detection and secure integration
    • 15.3.4. Visa leverages AI innovations to bolster eCommerce fraud detection and prevention, enhancing transactional security
    • 15.3.5. Global collaboration between Equifax and VTEX strengthens ecommerce fraud protection with advanced AI solutions
    • 15.3.6. Namaste Credit Partners with Microsoft Azure to Launch Proprietary Fraud Detection Capabilities
    • 15.3.7. CellPoint Digital and Riskified Partner to Enhance Fraud Protection for Airlines and Travel Merchants with Industry-Leading Payments Solution
    • 15.3.8. Chargeflow, Which Taps AI to Fight Chargebacks, Raises USD 14 Million
    • 15.3.9. Mastercard and Vesta Partner To Deliver Enhanced Digital Fraud Detection Solutions For Asia Pacific
  • 15.4. Strategy Analysis & Recommendation
    • 15.4.1. ACI Worldwide, Inc.

Companies Mentioned

  • 1. ACI Worldwide, Inc.
  • 2. Blackhawk Network Holdings, Inc.
  • 3. Bolt Financial, Inc.
  • 4. Chargeflow, Inc.
  • 5. ClearSale LLC
  • 6. DXC Technology Company
  • 7. Ekata
  • 8. Equifax Inc.
  • 9. F5, Inc.
  • 10. Fiserv, Inc.
  • 11. Forter, Ltd.
  • 12. Fraud.com
  • 13. Fraud.net Inc.
  • 14. Hexasoft Development Sdn. Bhd.
  • 15. Infosys Limited
  • 16. International Business Machines Corporation
  • 17. LexisNexis Risk Solutions Group
  • 18. Lyra Network Private Limited
  • 19. MarkMonitor Inc.
  • 20. NortonLifeLock Inc.
  • 21. PayPal Holdings, Inc.
  • 22. Radial, Inc.
  • 23. Riskified, Ltd.
  • 24. RSA Security LLC
  • 25. SEON Technologies Ltd.
  • 26. SHIELD AI Technologies Pte. Ltd.
  • 27. Sift Science, Inc.
  • 28. Signifyd Inc.
  • 29. Software AG
  • 30. Stripe, Inc.
  • 31. Subuno
  • 32. TransUnion LLC