![]() |
市場調査レポート
商品コード
1754032
ライフサイエンスにおける人工知能市場レポート:提供、展開、用途、地域別、2025年~2033年Artificial Intelligence in Life Sciences Market Report by Offering, Deployment, Application, and Region 2025-2033 |
||||||
カスタマイズ可能
|
ライフサイエンスにおける人工知能市場レポート:提供、展開、用途、地域別、2025年~2033年 |
出版日: 2025年06月02日
発行: IMARC
ページ情報: 英文 140 Pages
納期: 2~3営業日
|
世界のライフサイエンスにおける人工知能市場規模は2024年に29億米ドルに達しました。今後、IMARC Groupは、同市場が2033年までに167億米ドルに達し、2025年から2033年の間に21.5%の成長率(CAGR)を示すと予測しています。複雑な疾患の有病率の上昇、医療画像解析におけるAIの採用の増加、ゲノム研究および解析へのAIの統合、AIと新興技術の融合などが、市場を推進する主な要因の一部です。
創薬と開発の加速化
従来の医薬品開発プロセスでは、新薬の上市までに10年以上を要するなど、長期的でコストがかかり、非効率的な取り組みとなることが多いです。AIは、医薬品開発の様々な段階を迅速化することで、この状況を一変させる。例えば、2023年、コグニザントはサンフランシスコに先進人工知能(AI)ラボを立ち上げ、主にAIのコア研究、イノベーション、最先端AIシステムの開発に注力しています。専属のAI研究者・開発者チームを擁するこのラボは、すでに75件の発行済み・出願中の特許を生み出し、研究機関、顧客、新興企業との連携を図る。機械学習アルゴリズムは、生物学的・化学的情報、臨床試験データ、既存の医薬品データベースなどの膨大なデータセットを分析し、これまでにないスピードと精度で潜在的な医薬品候補を特定します。これにより、研究者は有望な化合物を特定し、その有効性を予測し、特性を最適化することができるため、創薬に必要な時間とコストを大幅に削減することができ、その結果、ライフサイエンスにおける人工知能市場の成長を促進することができます。
個別化医療とヘルスケア
従来の治療法は、多くの場合、幅広い集団の平均値に基づいて薬や治療法を処方する、画一的なアプローチに従っています。AIはビッグデータと機械学習の力を活用し、個人の遺伝的体質、臨床歴、ライフスタイル要因、リアルタイムの健康データを分析し、高度にオーダーメイドの治療計画を策定します。2023年、OM1は、充実したヘルスケア・データセットとAI技術を活用した個別化医療のためのAI搭載プラットフォームPhenOMを発表しました。PhenOMは、縦断的な健康履歴データを用いてキャリブレーションされ、疾患に関連する固有のデジタル表現型を特定し、個別化ヘルスケアに関する洞察を大規模に可能にします。慢性疾患に焦点を当て、OM1は革新的なRWE調査のパイオニアとして、患者の転帰にパーソナライズされたインパクトを提供し、最先端のAIソリューションを通じてヘルスケアを前進させる。このレベルのパーソナライゼーションにより、患者はより効果的なだけでなく、副作用を引き起こしにくい治療を確実に受けることができます。また、AI主導の予測モデルは、特定の疾患のリスクが高い患者を特定するのに役立ち、早期介入や予防措置を可能にします。さらに腫瘍学では、AIが患者のがんを引き起こす特定の遺伝子変異をピンポイントで特定するのを支援し、腫瘍医が成功する可能性の高い標的療法を推奨できるようにします。
病気の診断とバイオマーカーの発見
AIアルゴリズムは、X線、MRI、CTスキャンなどの医療画像、患者の電子カルテ、ゲノムプロファイルなど、多様な医療データソースを卓越した精度と効率で分析することができます。放射線医学では、AIを活用した画像解析が放射線科医を支援し、微妙な異常の検出や潜在的な健康問題のフラグを立てることで、早期診断と治療に役立てることができます。2024年、Rad AIはGoogleと提携し、AI技術を活用して放射線科のレポーティングを強化することで、放射線科医の時間を節約し、燃え尽きを減らし、患者ケアの質を向上させることを目指しています。この提携により、ワークフローが合理化され、反復作業が自動化され、放射線科報告の効率性と正確性が向上します。さらに、AIは病気のバイオマーカーの発見にも役立っています。バイオマーカーは、病気を初期段階で特定し、その進行を監視する上で極めて重要です。機械学習モデルは、分子データの微妙なパターンを検出することができ、がん、アルツハイマー病、心血管疾患など、さまざまな疾患に関連する特定のバイオマーカーを特定するのに役立ちます。これらのバイオマーカーは早期警告サインとして機能し、臨床医が患者の治療についてタイムリーで十分な情報に基づいた決定を下す際の指針となります。
Table 7 Global: Artificial Intelligence In Life Sciences Market: Key Players
The global artificial intelligence in life sciences market size reached USD 2.9 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 16.7 Billion by 2033, exhibiting a growth rate (CAGR) of 21.5% during 2025-2033. The rising prevalence of complex diseases, the increasing adoption of AI in medical imaging analysis, the integration of AI into genomics research and analysis, and the convergence of AI with emerging technologies are some of the major factors propelling the market.
Drug Discovery and Development Acceleration
The traditional drug development process is a lengthy, costly, and often inefficient endeavour, taking over a decade to bring a new drug into the market. AI transforms this landscape by expediting various stages of drug development. For instance, in 2023, Cognizant launched an Advanced Artificial Intelligence (AI) Lab in San Francisco to mainly focus on core AI research, innovation, and development of cutting-edge AI systems. The lab, staffed by a team of dedicated AI researchers and developers, has already produced 75 issued and pending patents and will collaborate with research institutions, customers, and startups. Machine learning algorithms analyse vast datasets, including biological and chemical information, clinical trial data, and existing drug databases, to identify potential drug candidates with unprecedented speed and accuracy. This enables researchers to pinpoint promising compounds, predict their efficacy, and optimize their properties, significantly reducing the time and cost required for drug discovery, thereby propelling the artificial intelligence in life sciences market growth.
Personalized Medicine and Healthcare
Traditional medical treatments often follow a one-size-fits-all approach, with medications and therapies prescribed based on broad population averages. AI harnesses the power of big data and machine learning to analyze an individual's genetic makeup, clinical history, lifestyle factors, and real-time health data to develop highly tailored treatment plans. In 2023, OM1 introduced PhenOM, an AI-powered platform for personalized medicine, leveraging enriched healthcare datasets and AI technology. Calibrated using longitudinal health history data, PhenOM identifies unique digital phenotypes associated with conditions, enabling personalized healthcare insights at scale. With a focus on chronic conditions, OM1 pioneers innovative RWE research, delivering personalized impact on patient outcomes and advancing healthcare through cutting-edge AI solutions.This level of personalization ensures that patients receive treatments that are not only more effective but also less likely to cause adverse side effects. Also, AI-driven predictive models can help identify patients at higher risk of certain diseases, allowing for early intervention and preventive measures. Additionally, in oncology, AI assists in pinpointing the specific genetic mutations driving a patient's cancer, enabling oncologists to recommend targeted therapies that are more likely to be successful.
Disease Diagnosis and Biomarker Discovery
AI algorithms can analyze diverse medical data sources, including medical images, such as X-rays, MRIs, and CT scans, patient electronic health records, and genomic profiles, with exceptional accuracy and efficiency. In radiology, AI-powered image analysis can assist radiologists in detecting subtle abnormalities and flagging potential health issues, aiding in early diagnosis and treatment. In 2024, Rad AI has partnered with Google to enhance radiology reporting by leveraging AI technology, aiming to save radiologists time, reduce burnout, and improve patient care quality. This collaboration will streamline workflows, automate repetitive tasks, and advance the efficiency and accuracy of radiology reporting. Moreover, AI is instrumental in the discovery of disease biomarkers, which are crucial in identifying diseases at their earliest stages and monitoring their progression. Machine learning models can detect subtle patterns in molecular data, helping to identify specific biomarkers associated with various diseases, including cancer, Alzheimer's, and cardiovascular conditions. These biomarkers serve as early warning signs and can guide clinicians in making timely and informed decisions about patient care.
Software dominates the market
Software in the context of AI encompasses a wide array of tools, platforms, and applications specifically designed to process, analyze, and interpret the immense volume of data generated in life sciences research. These software solutions utilize machine learning algorithms, natural language processing, deep learning, and other AI techniques to sift through complex biological datasets, making sense of genomics, proteomics, and clinical data. The versatility of AI software allows researchers to explore various aspects of drug discovery, disease diagnosis, and patient care with unprecedented precision and efficiency. Additionally, the scalability and adaptability of AI software make it a preferred choice for organizations operating in the life sciences domain. Researchers can customize and fine-tune AI algorithms to meet their specific research needs, whether it involves drug target identification, biomarker discovery, or patient stratification for clinical trials. This flexibility empowers scientists to adapt to evolving research objectives and swiftly respond to emerging challenges in healthcare and life sciences. Furthermore, AI software offerings are at the forefront of addressing some of the most pressing issues in the industry.
Cloud-based dominate the market
Cloud-based deployment offers unparalleled scalability and flexibility, which are crucial for the resource-intensive nature of AI applications in life sciences. Researchers and organizations can tap into cloud resources as needed, scaling up or down depending on the complexity and volume of data being processed. This dynamic scalability ensures that computational resources are optimally allocated, avoiding underutilization or resource bottlenecks, which can occur with on-premises solutions. Additionally, cloud-based deployment eliminates the need for significant upfront hardware and infrastructure investments. This cost-effectiveness is particularly attractive for research institutions, pharmaceutical companies, and healthcare providers looking to leverage AI without the burden of substantial capital expenditures. Cloud services provide pay-as-you-go pricing models, allowing organizations to pay only for the computing resources they consume, thus optimizing cost management. Moreover, cloud-based deployments offer the advantage of accessibility and collaboration. Researchers and scientists can access AI tools and applications from anywhere with an internet connection, facilitating collaboration across geographic boundaries and enabling real-time data sharing and analysis.
Drug discovery dominates the market
AI-driven drug discovery is not limited to target identification alone. AI models can predict the pharmacokinetics and toxicity profiles of potential drugs, allowing researchers to assess their safety and efficacy earlier in the development pipeline. This risk mitigation not only saves time but also reduces the likelihood of costly late-stage failures, a common challenge in the pharmaceutical industry. Additionally, AI plays a pivotal role in drug repurposing, where existing drugs are explored for new therapeutic applications. By analyzing biological data, AI algorithms can identify overlooked connections between drugs and diseases, potentially unveiling novel treatment options. This approach not only accelerates the availability of treatments for various medical conditions but also leverages existing knowledge and resources more efficiently. Furthermore, the personalized medicine revolution is closely linked to AI-driven drug discovery. As AI models analyze patients' genetic profiles, clinical histories, and real-time health data, they can identify specific genetic markers and mutations that influence drug response.
North America exhibits a clear dominance, accounting for the largest artificial intelligence in life sciences market share
The market research report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, North America accounted for the largest market share.
North America boasts significant investments in AI research and development. Government initiatives, private sector funding, and venture capital investments have poured into AI projects and startups, fueling innovation and technological advancements. This financial backing has accelerated the growth of AI-driven solutions, from drug discovery and genomics to healthcare analytics and personalized medicine. Moreover, North America's robust regulatory framework and intellectual property protection create a conducive environment for AI development and commercialization. Several regulatory agencies have been proactive in engaging with AI developers to establish clear guidelines and approval processes for AI-based medical devices and treatments. This regulatory clarity gives businesses confidence to invest in AI projects. Furthermore, North America's healthcare infrastructure is among the most advanced globally, making it a prime testing ground for AI applications. The region's large patient population, extensive electronic health record systems, and well-established pharmaceutical and biotech industries provide ample opportunities for AI-driven healthcare solutions to demonstrate their efficacy and impact.
Numerous companies in this market are focused on using AI to accelerate drug discovery processes. They develop AI algorithms and platforms that analyze biological data, identify potential drug candidates, predict drug interactions, and optimize drug design, all with the goal of bringing new therapies to market faster and more efficiently. Also, AI companies in the life sciences sector work on solutions for genomic analysis. They develop tools that can decipher and interpret genetic information, identify disease markers, predict disease risk, and enable personalized medicine by tailoring treatments based on an individual's genetic profile. Moreover, companies are developing AI-driven solutions that assist radiologists and pathologists in interpreting medical images such as X-rays, MRIs, and CT scans. These tools can help detect diseases and anomalies earlier and with greater accuracy. Companies are also actively engaged in predictive analytics, utilizing AI to identify disease biomarkers, predict patient outcomes, and stratify patients for clinical trials. These AI-driven insights can inform treatment decisions and improve patient care.