![]() |
市場調査レポート
商品コード
1722569
垂直農法市場レポート:コンポーネント、構造、成長メカニズム、用途、地域別、2025年~2033年Vertical Farming Market Report by Component, Structure, Growth Mechanism, Application, and Region 2025-2033 |
||||||
カスタマイズ可能
|
垂直農法市場レポート:コンポーネント、構造、成長メカニズム、用途、地域別、2025年~2033年 |
出版日: 2025年05月01日
発行: IMARC
ページ情報: 英文 139 Pages
納期: 2~3営業日
|
世界の垂直農法市場規模は2024年に68億米ドルに達しました。今後、IMARC Groupは、市場は2033年までに368億米ドルに達し、2025年から2033年にかけて20.56%の成長率(CAGR)を示すと予測しています。持続可能な農業方法に対する需要の高まり、作物の収量を向上させるための水耕栽培、エアロポニックス、アクアポニックスの進歩の高まり、投資を促進するための有利な政府政策や金銭的報酬の実施は、市場成長を促す要因の一部です。
垂直農法は、垂直に積み重ねられた層や構造で植物を栽培する方法です。水耕栽培、エアロポニックス、アクアポニックスなど様々な方法を用いて、温度、光、湿度を人工的に制御し、農業に最適な微気候を作り出します。レタス、ケール、ホウレンソウ、バジル、ミント、パセリ、コリアンダー、キュウリ、ピーマン、マイクロラディッシュなどの作物を一年中栽培するために広く利用されています。垂直農法は、スペースを節約し、エネルギー消費を抑え、水の使用量を最小限に抑え、輸送コストを軽減し、手作業を減らす、環境に優しい農業技術です。垂直農法は、伝統的なフレーム栽培技術に比べ、収量が多く、季節の変化に左右されず、農薬や除草剤の必要性を減らすことができます。
オーガニックで栄養価の高い食用作物を栽培するための持続可能な農業への需要の高まりは、市場成長に寄与する重要な要因のひとつです。垂直農法は、効率的なリサイクルシステムによる水の節約、資源消費の最小化による持続可能性の促進、土地の必要性の低減に役立ちます。これに伴い、新鮮な農産物の栽培を近接した場所で可能にし、長距離輸送の必要性を減らすために都市部で栽培が広く採用されていることも、成長を促進する要因として作用しています。さらに、耕地不足の高まりと、増大する食糧需要を満たすための安定した作物生産に対する要求の高まりが、市場の成長を後押ししています。これとは別に、植え付け、収穫、植物の健康状態の監視などの作業に採用される自動化やロボットシステムの活用などの急速な技術進歩が、市場成長に弾みをつけています。その他、伝統的な農法に関連する環境問題の高まり、有利な政府政策の実施、消費者の支出能力の増加などが、市場の成長を促進すると予測されています。
持続可能な農業へのニーズの高まり
環境に優しく持続可能な農業へのニーズの高まりが、市場の成長を後押ししています。垂直農法システムは、水の使用量を最小限に抑えるため、循環水システム、水耕栽培、エアロポニックスなど様々な技術を採用しています。これに伴い、垂直農法は土壌の質を維持し、耕作不可能な土地や荒廃した土地を生産性の高い耕作スペースに転換することを可能にし、市場の成長を後押ししています。さらに、エネルギー効率の高い技術、再生可能エネルギー源の利用の増加、長距離輸送への依存度の低減は、温室効果ガスの排出削減に役立ち、市場成長にプラスの影響を与えています。これに加えて、垂直農法は、管理された室内環境により化学農薬や除草剤の使用を削減または排除し、持続可能で環境に優しい農業を実現します。
耕地不足の深刻化
人口の増加と急速な都市化は、伝統的な農業に利用可能な耕地を減少させる主な要因です。さらに、土壌浸食、汚染、肥料の過剰使用などの要因によって耕地が荒廃しており、これが垂直農法市場を後押ししています。さらに、異常気象、干ばつ、降水パターンの変化など、気候条件の変化が市場の成長を促進しています。これに加えて、垂直農法は温度、湿度、光を正確に調整できる制御された環境を提供し、気候変動が作物生産に与える影響を緩和するため、垂直農法の採用が増加しており、市場の成長を大幅に後押ししています。これに加えて、垂直農法は、人工照明と制御された環境を利用して植物の成長を最適化し、耕地の必要性を減らすことで、作物を積み重ねて栽培することでスペースの効率的な利用を可能にします。
急速な技術進歩
垂直農法の分野では、効率性、生産性、持続可能性を高めるため、広範な研究開発(R&D)が行われています。また、垂直農法に発光ダイオード(LED)を利用することで、エネルギー効率が高く、カスタマイズ可能な照明ソリューションを提供することが、市場の成長を後押ししています。さらに、人工知能(AI)とデータ分析を統合して、環境条件、植物の健康状態、栄養要求に関するデータをリアルタイムで調整・分析することが、市場の成長を支えています。このほか、ソーラーパネルや風力タービンなどの再生可能エネルギーを電力供給に利用することで、送電網への依存を減らし、より持続可能で環境に優しい農業モデルに貢献しています。
The global vertical farming market size reached USD 6.8 Billion in 2024. Looking forward, IMARC Group expects the market to reach USD 36.8 Billion by 2033, exhibiting a growth rate (CAGR) of 20.56% during 2025-2033. The growing demand for sustainable agriculture methods, rising advancements in hydroponics, aeroponics, and aquaponics to improve crop yields, and implementation of favorable government policies and monetary rewards to encourage investment are some of the factors impelling the market growth.
Vertical farming is a method of cultivating plants in vertically stacked layers or structures. It employs various methods, such as hydroponics, aeroponics, and aquaponics, to artificially control temperature, light, and humidity and produce the perfect micro-climate for farming. It is widely used to grow crops, such as lettuce, kale, spinach, basil, mint, parsley, cilantro, cucumbers, peppers, and micro radish around the year. Vertical farming is an eco-friendly farming technique that saves space, lowers energy consumption, minimizes water usage, mitigates transportation costs, and reduces manual labor. As compared to traditional framing techniques, vertical farming produces higher yields, eliminates dependence on seasonal changes, and reduces the need for pesticides and herbicides.
The increasing demand for sustainable farming to grow organic and nutritious food crops is one of the key factors contributing to the market growth. Vertical farming helps to conserve water through efficient recycling systems, promotes sustainability by minimizing resource consumption, and reduces the need for land. In line with this, the widespread cultivation adoption in urban areas to allow the cultivation of fresh produce in close proximity and reduce the need for long-distance transportation is acting as another growth-inducing factor. Additionally, the rising scarcity of arable land, coupled with escalating requirements for stabilized crop production to meet the increasing food demands, is propelling the market growth. Apart from this, rapid technological advancements, such as the utilization of automation and robotic systems that are employed for tasks such as planting, harvesting, and monitoring plant health, are providing an impetus to the market growth. Other factors, including the rising environmental concerns associated with traditional farming practices, the implementation of favorable government policies, and increasing expenditure capacities of consumers, are anticipated to drive the market toward growth.
The increasing need for sustainable farming
The rising demand for more environmentally friendly and sustainable agriculture practices is supporting the market growth. Vertical farming systems employ various techniques, such as recirculating water systems, hydroponics, and aeroponics, to minimize water usage. In line with this, vertical farming helps preserve soil quality and allows for the conversion of non-arable or degraded land into productive farming spaces, which is favoring the market growth. Moreover, the increasing use of energy-efficient technologies, renewable energy sources, and reduced reliance on long-distance transportation help in lowering greenhouse gas emissions, which in turn is positively influencing the market growth. Besides this, vertical farming reduces or eliminates the use of chemical pesticides and herbicides due to a controlled indoor environment resulting in sustainable and environmentally friendly farming.
The rising scarcity of arable land
The growing population and rapid urbanization are key factors reducing the availability of arable land for traditional farming. Furthermore, arable land is being degraded due to factors such as soil erosion, pollution, and overuse of fertilizers which in turn is favoring the vertical farming market. Additionally, changing climatic conditions, including extreme weather events, droughts, and changing precipitation patterns, are propelling the market growth. In addition to this, the increasing adoption of vertical farming, as it provides a controlled environment where temperature, humidity, and light can be precisely regulated, mitigating the impact of climate change on crop production, is providing a considerable boost to the market growth. Besides this, vertical farming allows for the efficient use of space by growing crops in stacked layers, using artificial lighting and controlled environments to optimize plant growth, reducing the need for arable land.
Rapid technological advancements
Extensive research and development (R&D) activities are taking place in the field of vertical farming to enhance its efficiency, productivity, and sustainability. Additionally, the utilization of light-emitting diodes (LEDs) in vertical farming to provide energy-efficient and customizable lighting solutions is favoring the market growth. Moreover, the integration of artificial intelligence (AI) and data analytics to make real-time adjustments and analyze data on environmental conditions, plant health, and nutrient requirements is supporting the market growth. Besides this, the utilization of renewable energy sources such as solar panels and wind turbines to power operation, reduce reliance on the grid and contribute to a more sustainable and environmentally friendly farming model.
Lighting dominates the vertical farming market
Lighting is the primary component used in vertical farming as it increases the nutritional parameters of horticultural plants. Light-emitting diodes (LEDs) are widely used as they are highly energy-efficient compared to other lighting options and help to convert a higher percentage of electrical energy into usable light, minimizing energy wastage. Moreover, lighting is essential in vertical farming as it can be dimmed or brightened as needed, allowing growers to provide the appropriate light intensity at various growth stages. Apart from this, the introduction of various advanced lighting solutions that can be customized to provide specific wavelengths of light that are optimal for plant growth, resulting in healthier and more productive crops, is contributing to the market growth.
Container-based vertical farms represent the leading application in market
Container-based structures are commonly used in vertical farming to create compact and modular growing environments. These containers provide a controlled environment for plant growth, allowing growers to optimize growing conditions. In addition to this, they can be stacked or arranged side by side to scale up the farming operation vertically or horizontally as needed. Moreover, container-based structures are prefabricated that offer quick setup and installation with minimal construction. These structures are equipped with built-in infrastructure such as electrical wiring, ventilation systems, and water supply, reducing the need for extensive on-site construction, which is positively influencing the market growth.
Hydroponics represents the leading segment
Hydroponics is a commonly used growth mechanism in vertical farming as it eliminates the need for traditional soil, reducing the risk of soil-borne diseases and enabling the reuse of water and nutrients, making it a highly water-efficient cultivation method. As compared to soil-based methods, hydroponics provides plants with direct access to nutrients and water, resulting in faster growth rates and increased crop yields. Furthermore, hydroponics also helps in sustainable agriculture practices and facilitate faster growth rates due to the direct availability of nutrients and optimal growing conditions.
Indoor vertical farming is widely preferred as it allows for year-round crop production and maximizes space utilization by growing plants in multiple layers or shelves. It further assists in providing precise control over environmental factors such as temperature, humidity, light, and air quality. Additionally, indoor farming practices reduce environmental impact by operating within a controlled environment and reducing the need for pesticides, herbicides, or fertilizers. Apart from this, the integration of LED lighting, climate control systems, nutrient delivery systems, and monitoring sensors for precise control, data-driven decision-making, and increased operational efficiency is providing a thrust to the market growth.
Asia Pacific exhibits a clear dominance in the market, accounting for the largest vertical farming market share
The report has also provided a comprehensive analysis of all the major regional markets, which include North America (the United States and Canada); Asia Pacific (China, Japan, India, South Korea, Australia, Indonesia, and others); Europe (Germany, France, the United Kingdom, Italy, Spain, Russia, and others); Latin America (Brazil, Mexico, and others); and the Middle East and Africa. According to the report, Asia Pacific represented the largest market for vertical farming.
Asia Pacific is dominating the global vertical farming market due to the growing land scarcity, urbanization, climate variability, and sustainable food production. The widespread adoption of vertical farming practices in the region as it is highly urbanized, with densely populated cities and limited available land for traditional agriculture. Moreover, the Asia Pacific region experiences diverse climates, ranging from tropical to temperate, which is facilitating the demand for vertical farming that allows year-round production irrespective of external weather conditions. Besides this, the implementation of various government initiatives to promote vertical farming by providing subsidies to farmers through the vertical garden scheme launched under various missions in the region.
Several key market players are significantly investing in research and development (R&D) projects to enhance efficiency, productivity, and sustainability in vertical farming. Moreover, researchers are focusing on nutrient dosages, composition, and timing to maximize plant growth and health. Furthermore, key players are optimizing the design and layout of vertical farming systems for improved space utilization, energy efficiency, and workflow management. Apart from this, the development of software platforms to manage and monitor vertical farming systems and integrate data from sensors, control systems, and environmental monitors, providing growers with real-time insights, analytics, and remote-control capabilities, is providing a considerable boost to the market growth.
The report has provided a comprehensive analysis of the competitive landscape in the global vertical farming market. Detailed profiles of all
In 2020, AeroFarms launched a new line of microgreens, including arugula, mustard greens, and wheatgrass, which are grown in their vertical farms. In 2019, the company announced a partnership with Dell Technologies to develop a machine learning platform that can optimize plant growth in vertical farms.
Freight Farms Inc. has continued to develop and improve their technology, including updates to their software platform and hardware components. They have also introduced new products, such as the Greenery, a smaller version of the LGM designed for homes and small-scale farming.
Urban Crop Solutions focuses on the integration of artificial intelligence (AI) and machine learning (ML) algorithms to optimize crop growth. It also uses modular systems, which allows for easy scalability and customization of its vertical farms.