表紙:産業用酵素の世界市場(2026年~2036年)
市場調査レポート
商品コード
1808073

産業用酵素の世界市場(2026年~2036年)

The Global Industrial Enzymes Market 2026-2036


出版日
ページ情報
英文 150 Pages, 36 Tables, 9 Figures
納期
即納可能 即納可能とは
価格
価格表記: GBPを日本円(税抜)に換算
本日の銀行送金レート: 1GBP=203.48円
産業用酵素の世界市場(2026年~2036年)
出版日: 2025年09月08日
発行: Future Markets, Inc.
ページ情報: 英文 150 Pages, 36 Tables, 9 Figures
納期: 即納可能 即納可能とは
GIIご利用のメリット
  • 全表示
  • 概要
  • 図表
  • 目次
概要

世界の産業用酵素市場は、広範なバイオテクノロジー産業の中でもっともダイナミックで急速に拡大している部門の1つであり、持続可能な製造プロセス、環境規制、酵素工学における技術的ブレークスルーに対する需要の高まりがその促進要因となっています。これらの生物学的触媒は、主に遺伝子組み換え微生物を用いた先進の発酵技術によって生産され、多様な産業用途で経済的競争力を維持しながらグリーンケミストリーの目標を達成することに不可欠なツールとなっています。市場の拡大は、バイオ燃料生産、プラスチック廃棄物リサイクル、二酸化炭素利用など、酵素商業化の次のフロンティアとなる新用途で特に顕著です。

食品・飲料加工は世界市場の約23%を占める最大の用途セグメントであり、天然成分、クリーンラベル製品、栄養プロファイルの強化に対する消費者需要の増加がその促進要因となっています。洗剤産業は、環境意識の高まりと、家庭用および産業用の洗剤における化学品使用の削減を求める規制圧力の恩恵を受けて、20%の2番目に大きなセグメントを占めています。バイオ燃料生産は、現在の市場シェアは10%と小さい一方、世界的な再生可能エネルギー指令の強化に伴い、大幅な拡大が予測され、もっとも高い成長可能性を示しています。

動物飼料用途は、世界的なタンパク質消費の増加、抗生物質成長促進剤の規制上の制約、持続可能な畜産活動に対する意識の高まりに支えられ、重要な促進要因となっています。テキスタイル加工用酵素は、水の消費を削減し、ファブリックの準備と仕上げに従来使用されてきた過酷な化学品を排除する、環境にやさしい代替の製造法を可能にします。医薬品製造、廃棄物管理、農業強化における新用途は、技術開発が進み規制枠組みが進化するにつれて、重大な長期的な機会となります。

AI、機械学習、バイオテクノロジーの融合は酵素開発に革命をもたらし、発見までの期間を劇的に短縮すると同時に、達成可能な酵素特性の範囲を拡大しました。また、タンパク質工学の進歩により、安定性、活性、基質特異性の最適化が可能になっています。無細胞酵素生産システムや、植物ベースのプラットフォームを含む代替の発現宿主は、製造の経済性を変革する可能性を秘めた新技術です。

産業用酵素市場は、持続可能な産業変革の最前線にあり、メーカーが製品の品質と経済的競争力を維持しながら、エネルギー消費を削減し、有害化学物質を排除し、廃棄物の発生を最小化することを可能にします。環境保護に対する規制圧力の高まりと、持続可能な製品に対する消費者の需要により、酵素は事実上すべての産業部門において、環境にやさしい製造の実現に不可欠なものとなっています。市場の継続的な拡大は、技術的な進歩だけでなく、今後数十年の産業発展を決定づける持続可能性主導のビジネスモデルや循環型経済原則への基本的なシフトを反映しています。

当レポートでは、世界の産業用酵素市場について調査分析し、市場規模と成長予測、酵素のタイプの比較、テクノロジーロードマップ、主要企業76社のプロファイルなどの情報を提供しています。

目次

第1章 エグゼクティブサマリー

  • 概要
  • バイオ製造酵素
  • 酵素のタイプの比較
  • テクノロジーロードマップ

第2章 技術分析

  • 洗剤用酵素
  • 食品加工用酵素
  • テキスタイル加工用酵素
  • 紙・パルプ加工用酵素
  • 皮革加工用酵素
  • バイオ燃料生産用酵素
  • 動物飼料用酵素
  • 製薬・診断用酵素
  • 廃棄物管理・バイオレメディエーション用酵素
  • 農業・作物改良用酵素
  • 脱炭素化・CO2利用向け酵素

第3章 市場の分析

  • 主要企業と競合情勢
  • 市場の成長要因と動向
  • 産業用酵素の技術課題と機会
  • 酵素加工の経済的競争力
  • 規則
  • バリューチェーン
  • 将来の見通し
  • 技術成熟度レベル(TRL)
  • 獲得可能な市場規模
  • リスクと機会
  • 世界の収益

第4章 企業プロファイル(企業76社のプロファイル)

第5章 参考文献

図表

List of Tables

  • Table 1. Types of industrial enzymes
  • Table 2. Comparison of enzyme types
  • Table 3. Types of Detergent Enzymes
  • Table 4. Types of Food Processing Enzymes
  • Table 5. Types of Textile Processing Enzymes
  • Table 6. Types of Paper and Pulp Processing Enzymes
  • Table 7. Types of Leather Processing Enzymes
  • Table 8. Types of Biofuel Production Enzymes
  • Table 9. Lignocellulosic Enzyme Systems and Performance
  • Table 10. Cellulase Component Functions and Characteristics
  • Table 11. Hemicellulase Systems and Substrate Specificity
  • Table 12. Thermostable Enzyme Sources and Characteristics
  • Table 13. Thermostable Enzyme Economic Analysis Framework
  • Table 14. Types of Animal Feed Enzymes
  • Table 15. Types of Pharmaceutical and Diagnostic Enzymes
  • Table 16. Types of Waste Management and Bioremediation Enzymes
  • Table 17. Enzymes for Plastics Recycling Applications
  • Table 18. Challenges in Enzymatic Depolymerization
  • Table 19. Types of Agriculture and Crop Improvement Enzymes
  • Table 20. Enzymes for Decarbonization and CO2 Utilization
  • Table 21. Carbonic Anhydrase Applications in CO2 Capture
  • Table 22. Formate Dehydrogenase Systems for CO2 Conversion
  • Table 23. Enzymatic CO2 Capture and Conversion Technologies
  • Table 24. Key players in industrial enzymes
  • Table 25. Market Growth Drivers and Trends in industrial enzymes
  • Table 26. Technology Challenges and Opportunities for Industrial Enzymes
  • Table 27. Industrial enzymes Regulations
  • Table 28. Value chain: Industrial enzymes
  • Table 29. Technology Readiness Level (TRL): Biocatalysts
  • Table 30. Addressable market size for industrial enzymes
  • Table 31. Risks and Opportunities in industrial enzymes
  • Table 32. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Table 33. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Table 34. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Table 35. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Table 36. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD

List of Figures

  • Figure 1. Technology Roadmap for Industrial Enzymes (Biocatalysts)
  • Figure 2. Addressable market size for industrial enzymes
  • Figure 3. Global revenues for industrial enzymes, by applications market (2020-2036), billions USD
  • Figure 4. Global revenues for industrial enzymes, by regional market (2020-2036), billions USD
  • Figure 5. Global revenues for industrial enzymes, By Technology Platform (2020-2036), billions USD
  • Figure 6. Global revenues for industrial enzymes, By Production Host (2020-2036), billions USD
  • Figure 7. Global revenues for industrial enzymes, By Enzyme Stability/Temperature Range (2020-2036), billions USD
  • Figure 8. Light Bio Bioluminescent plants
  • Figure 9. Corbion FDCA production process
目次

The global industrial enzymes market represents one of the most dynamic and rapidly expanding sectors within the broader biotechnology industry, driven by increasing demand for sustainable manufacturing processes, environmental regulations, and technological breakthroughs in enzyme engineering. These biological catalysts, primarily produced through advanced fermentation technologies using genetically modified microorganisms, have become indispensable tools for achieving green chemistry objectives while maintaining economic competitiveness across diverse industrial applications. The market's expansion is particularly pronounced in emerging applications including biofuels production, plastic waste recycling, and carbon dioxide utilization, which collectively represent the next frontier of enzyme commercialization.

Food and beverage processing constitutes the largest application segment, accounting for approximately 23% of the global market, driven by increasing consumer demand for natural ingredients, clean-label products, and enhanced nutritional profiles. The detergent industry represents the second-largest segment at 20%, benefiting from growing environmental consciousness and regulatory pressure to reduce chemical usage in household and industrial cleaning products. Biofuels production, while currently smaller at 10% market share, demonstrates the highest growth potential with projections indicating substantial expansion as renewable energy mandates strengthen globally.

Animal feed applications represent a critical growth driver, supported by increasing global protein consumption, regulatory restrictions on antibiotic growth promoters, and growing awareness of sustainable livestock production practices. Textile processing enzymes enable eco-friendly manufacturing alternatives that reduce water consumption and eliminate harsh chemicals traditionally used in fabric preparation and finishing. Emerging applications in pharmaceutical manufacturing, waste management, and agricultural enhancement represent significant long-term opportunities as technology development progresses and regulatory frameworks evolve.

The convergence of artificial intelligence, machine learning, and biotechnology has revolutionized enzyme development, dramatically reducing discovery timelines while expanding the range of achievable enzyme properties. Directed evolution techniques combined with computational design enable creation of highly specialized enzymes for specific industrial challenges, while advances in protein engineering allow optimization of stability, activity, and substrate specificity. Cell-free enzyme production systems and alternative expression hosts including plant-based platforms represent emerging technologies with potential to transform manufacturing economics.

The industrial enzymes market stands at the forefront of sustainable industrial transformation, enabling manufacturers to reduce energy consumption, eliminate hazardous chemicals, and minimize waste generation while maintaining product quality and economic competitiveness. Growing regulatory pressure for environmental protection, combined with consumer demand for sustainable products, positions enzymes as essential enablers of green manufacturing across virtually all industrial sectors. The market's continued expansion reflects not only technological advancement but also fundamental shifts toward sustainability-driven business models and circular economy principles that will define industrial development in the coming decades.

"The Global Industrial Enzymes Market 2026-2036" provides an in-depth analysis of the industrial enzymes market from 2026-2036, examining the dynamic landscape of biological catalysts that are revolutionizing manufacturing processes worldwide. As industries increasingly prioritize environmental sustainability, cost efficiency, and regulatory compliance, industrial enzymes have emerged as critical enablers of green chemistry and circular economy principles. This report examines the complex ecosystem of industrial enzyme applications, from established markets including food processing and detergents to emerging applications in waste management, agriculture, and carbon capture technologies. The analysis encompasses detailed market segmentation by application areas, geographic regions, technology platforms, production hosts, and enzyme stability characteristics, providing stakeholders with comprehensive insights into market dynamics and growth opportunities.

The competitive landscape features a mix of established multinational corporations and innovative biotechnology companies developing next-generation enzyme solutions. Market leaders leverage extensive R&D capabilities, global distribution networks, and strategic partnerships to maintain competitive advantages, while emerging companies focus on specialized applications and breakthrough technologies that address specific industrial challenges.

Report contents include:

  • Market Overview: Comprehensive analysis of global industrial enzymes market size, growth projections, and key success factors
  • Bio-manufactured Enzymes: Advanced production technologies and fermentation platforms driving commercial enzyme development
  • Enzyme Types Comparison: Detailed evaluation of different enzyme categories, applications, and performance characteristics
  • Technology Roadmap: Strategic technology development timeline and innovation priorities across enzyme sector
  • Technology Analysis
    • Detergent Enzymes: Complete analysis of proteases, amylases, lipases, cellulases, mannanases, pectate lyases, and peroxidases for cleaning applications
    • Food Processing Enzymes: Comprehensive coverage of amylases, proteases, lipases, pectinases, lactase, transglutaminase, glucose oxidase, xylanases, invertase, and chymosin
    • Textile Processing Enzymes: Detailed examination of cellulases, amylases, catalases, laccases, pectinases, proteases, lipases, peroxidases, and xylanases for sustainable textile manufacturing
    • Paper and Pulp Processing: Analysis of xylanases, cellulases, lipases, laccases, amylases, pectinases, proteases, ligninases, mannanases, and esterases
    • Leather Processing: Coverage of proteases, lipases, amylases, cellulases, laccases, keratinases, pectinases, catalases, and tannases
    • Biofuel Production: Lignocellulosic bioethanol enzymes, cellulases, hemicellulases, thermostable enzymes, and cost-performance metrics
    • Animal Feed Enzymes: Phytases, xylanases, beta-glucanases, proteases, amylases, cellulases, lipases, mannanases, alpha-galactosidases, and pectinases
    • Pharmaceutical and Diagnostic: Restriction endonucleases, DNA ligases, polymerases, reverse transcriptases, proteases, glucose oxidase, cholesterol oxidase, luciferases, alkaline phosphatases, and horseradish peroxidase
    • Waste Management and Bioremediation: Plastic recycling enzymes, enzymatic depolymerization technologies, and implementation challenges
    • Agriculture and Crop Improvement: Cellulases, chitinases, beta-glucanases, phytases, xylanases, proteases, ligninases, phosphatases, nitrogenases, and peroxidases
    • Decarbonization and CO2 Utilization: Carbonic anhydrase, formate dehydrogenase, and innovative enzymatic approaches for carbon capture and conversion
  • Market Analysis
    • Competitive Landscape: Key market players, strategic positioning, and industry consolidation trends
    • Growth Drivers and Market Trends: Primary factors driving market expansion and emerging application opportunities
    • Technology Challenges and Opportunities: Technical barriers, innovation priorities, and breakthrough potential
    • Economic Competitiveness: Cost analysis, value propositions, and competitive positioning versus chemical alternatives
    • Regulatory Framework: Global regulatory landscape, approval processes, and compliance requirements
    • Value Chain Analysis: Supply chain dynamics, distribution channels, and market access strategies
    • Future Outlook: Long-term market projections, emerging technologies, and industry transformation trends
    • Technology Readiness Levels: Development status and commercial viability across enzyme categories
    • Addressable Market Size: Market sizing methodology, growth projections, and segment analysis
    • Risk and Opportunity Assessment: Market risks, competitive threats, and strategic opportunities
    • Global Revenue Analysis: Comprehensive revenue projections by application markets, regional markets, technology platforms, production hosts, and enzyme stability characteristics
  • Company Profiles of 76 leading companies across the industrial enzymes value chain, including established market leaders and innovative emerging companies: Agrivida, Allozymes, Amano Enzyme Inc., Ansa Biotechnologies, Aralez Bio, Arzeda, BASF, Biocatalysts Ltd., BioBetter, Bio Fab NZ, BioMap, Biomatter, Biosyntia, bitBiome, Cambrium GmbH, Carbios, Cascade Biocatalysts Inc., ChiralVision B.V., CinderBio, Codexis, Constructive Bio, Debut Biotechnology, Diffuse Bio, DNA Script, DSM-Firmenich, DuPont, Dyadic International, Eco Fuel Technology Inc., EnginZyme AB, EnPlusOne Biosciences, Enzyan Biocatalysis GmbH, Enzymaster, Enzyme Development Corporation, Enzymit, Enzymatic Deinking Technologies, Enzymicals AG, Epoch Biodesign, Etcembly, Eversyn, FabricNano, Futurity Bio-Ventures Ltd., Fermbox Bio, Fermentalg, Fooditive Group, Formo Bio, Gen3Bio, Ginkgo Bioworks, Global Bioenergies SA, Honext Material SL, HydGene Renewables, Imperagen Limited and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Overview
  • 1.2. Bio-manufactured enzymes
  • 1.3. Comparison of enzyme types
  • 1.4. Technology Roadmap

2. TECHNOLOGY ANALYSIS

  • 2.1. Detergent Enzymes
    • 2.1.1. Proteases
    • 2.1.2. Amylases
    • 2.1.3. Lipases
    • 2.1.4. Cellulases
    • 2.1.5. Mannanases
    • 2.1.6. Pectate Lyases
    • 2.1.7. Peroxidases
  • 2.2. Food Processing Enzymes
    • 2.2.1. Amylases
    • 2.2.2. Proteases
    • 2.2.3. Lipases
    • 2.2.4. Pectinases
    • 2.2.5. Lactase
    • 2.2.6. Transglutaminase
    • 2.2.7. Glucose Oxidase
    • 2.2.8. Xylanases
    • 2.2.9. Invertase
    • 2.2.10. Chymosin
  • 2.3. Textile Processing Enzymes
    • 2.3.1. Cellulases
    • 2.3.2. Amylases
    • 2.3.3. Catalases
    • 2.3.4. Laccases
    • 2.3.5. Pectinases
    • 2.3.6. Proteases
    • 2.3.7. Lipases
    • 2.3.8. Peroxidases
    • 2.3.9. Xylanases
  • 2.4. Paper and Pulp Processing Enzymes
    • 2.4.1. Xylanases
    • 2.4.2. Cellulases
    • 2.4.3. Lipases
    • 2.4.4. Laccases
    • 2.4.5. Amylases
    • 2.4.6. Pectinases
    • 2.4.7. Proteases
    • 2.4.8. Ligninases
    • 2.4.9. Mannanases
    • 2.4.10. Esterases
  • 2.5. Leather Processing Enzymes
    • 2.5.1. Proteases
    • 2.5.2. Lipases
    • 2.5.3. Amylases
    • 2.5.4. Cellulases
    • 2.5.5. Laccases
    • 2.5.6. Keratinases
    • 2.5.7. Pectinases
    • 2.5.8. Catalases
    • 2.5.9. Tannases
  • 2.6. Biofuel Production Enzymes
    • 2.6.1. Enzymes for lignocellulosic derived bioethanol
    • 2.6.2. Cellulases for lignocellulosic bioethanol
    • 2.6.3. Hemicellulases and synergistic enzyme cocktails
    • 2.6.4. Thermostable and extremophilic enzymes
    • 2.6.5. Cost-performance metrics for thermostable enzymes
  • 2.7. Animal Feed Enzymes
    • 2.7.1. Phytases
    • 2.7.2. Xylanases
    • 2.7.3. Beta-Glucanases
    • 2.7.4. Proteases
    • 2.7.5. Amylases
    • 2.7.6. Cellulases
    • 2.7.7. Lipases
    • 2.7.8. Mannanases
    • 2.7.9. Alpha-Galactosidases
    • 2.7.10. Pectinases
  • 2.8. Pharmaceutical and Diagnostic Enzymes
    • 2.8.1. Restriction Endonucleases
    • 2.8.2. DNA Ligases
    • 2.8.3. Polymerases
    • 2.8.4. Reverse Transcriptases
    • 2.8.5. Proteases
    • 2.8.6. Glucose Oxidase
    • 2.8.7. Cholesterol Oxidase
    • 2.8.8. Luciferases
    • 2.8.9. Alkaline Phosphatases
    • 2.8.10. Horseradish Peroxidase
  • 2.9. Waste Management and Bioremediation Enzymes
    • 2.9.1. Enzymes for plastics recycling
    • 2.9.2. Enzymatic depolymerization
    • 2.9.3. Challenges in enzymatic depolymerization
  • 2.10. Agriculture and Crop Improvement Enzymes
    • 2.10.1. Cellulases
    • 2.10.2. Chitinases
    • 2.10.3. beta-Glucanases
    • 2.10.4. Phytases
    • 2.10.5. Xylanases
    • 2.10.6. Proteases
    • 2.10.7. Ligninases
    • 2.10.8. Phosphatases
    • 2.10.9. Nitrogenases
    • 2.10.10. Peroxidases
  • 2.11. Enzymes for Decarbonization and CO2 Utilization
    • 2.11.1. Carbonic anhydrase in CO2 capture technologies
    • 2.11.2. Formate dehydrogenase and CO2-to-chemicals pathways
    • 2.11.3. Selected enzymatic approaches to CO2 capture and conversion

3. MARKET ANALYSIS

  • 3.1. Key players and competitive landscape
  • 3.2. Market Growth Drivers and Trends
  • 3.3. Technology challenges and opportunities for industrial enzymes
  • 3.4. Economic competitiveness of enzymatic processing
  • 3.5. Regulations
  • 3.6. Value chain
  • 3.7. Future outlook
  • 3.8. Technology Readiness Level (TRL)
  • 3.9. Addressable Market Size
  • 3.10. Risks and Opportunities
  • 3.11. Global revenues
    • 3.11.1. By Application Market
    • 3.11.2. By Regional Market
    • 3.11.3. By Technology Platform
    • 3.11.4. By Production Host
    • 3.11.5. By Enzyme Stability/Temperature Range

4. COMPANY PROFILES (76 company profiles)

5. REFERENCES