デフォルト表紙
市場調査レポート
商品コード
1712524

農業用ロボットの世界市場(2025年~2032年)

Global Robotics in Agriculture Market - 2025-2032


出版日
ページ情報
英文 180 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
農業用ロボットの世界市場(2025年~2032年)
出版日: 2025年04月22日
発行: DataM Intelligence
ページ情報: 英文 180 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界の農業用ロボットの市場規模は、2024年に157億8,000万米ドルに達し、2032年までに841億9,000万米ドルに達すると予測され、予測期間の2025年~2032年にCAGRで23.28%の成長が見込まれます。

農業用ロボット市場は、労働力不足を補い、効率を向上させ、精密農業を支援する自動化へのニーズによって急速に拡大しています。AIとIoTの進歩や、政府支援の拡大は、自律型機器の採用を加速させています。このシフトは生産性を高め、経営コストを削減し、持続可能な農業を促進しています。

農業用ロボット市場の動向

垂直農業へのロボティクスの統合は、作業効率の向上と労働力依存の軽減を目的とした変革的動向として浮上しています。高い人件費と安定した作物品質の必要性から、垂直農業者は播種、収穫、モニタリングの自動化システムに投資しています。例えば、Rooted Roboticsが開発した自動播種機や収穫ユニットなどのロボティクスソリューションは、農場が作物のロスを最小化し、収量の精度を高めながら作業を拡大することを可能にしています。

これらのシステムは手作業の負担を軽減するだけでなく植え付け密度の一貫性や収穫精度を向上させるものであり、スペースに制約のある垂直農場での収益性にとって重大です。このような管理された環境にAIを搭載したロボットを展開することで、リソースの利用が最適化され、より迅速でクリーンなプロセスが保証されます。垂直農業が拡大し続ける中、手頃な価格のモジュール化されたロボットソリューションの採用は、投資収益率を向上させ、長期的な商業的可能性を実現する鍵となります。

力学

労働力不足と人件費の上昇

広範な労働力不足と賃金上昇圧力が、農業用ロボットの採用を加速させています。農家は、植え付け、収穫、除草といった労働集約的な作業を管理するために、ますます自動化に目を向けています。ロボティクスはタイムリーな作業を保証し、労働力への依存を減らし、農場全体の効率を向上させます。この動向は、生産性の課題に対処し、作物の損失を最小化する上で極めて重要です。また、従来の農業システムとハイテク農業システムの両方における拡張性もサポートします。

例えば、John Deereは2025年1月、労働力不足に対処するために設計された完全自律型トラクターを発表しました。このトラクターは、GPS、AI、ビジョンシステムを使って、高い精度で独立して作動します。これにより、農家は限られた労働力をより戦略的な役割に振り向けることができます。この技術革新は、産業が自律型ソリューションに軸足を移していることを浮き彫りにしています。このような技術が、世界の農作業の大幅な効率化を促進すると予測されます。

高額な設備投資と所有コスト

高額な設備投資と所有コストは、農業用ロボットを採用する際の大きな障壁です。先進のシステムは、機器、設置、ソフトウェア統合に多額の先行投資を必要とします。そのため、予算が限られている中小規模の農場では敬遠されます。投資回収期間が長いことも、投資決定をさらに複雑にしています。その結果、市場採用は地域によってばらつきがあります。

例えば、Rooted Roboticsは、垂直農業に手頃な価格の自動化を提供することで、この問題に取り組んでいます。近年Denverの農場で導入された同社の低コスト播種機は、費用対効果の高いイノベーションを実演しています。このソリューションは、多額の資本支出なしに労働力を削減します。このようなスケーラブルなモデルは、市場で人気を集めています。財務リスクを最小化しながら、より広範な採用を可能にします。

当レポートでは、世界の農業用ロボット市場について調査し、市場力学、地域とセグメントの分析、競合情勢、企業プロファイルなどを提供しています。

目次

第1章 調査手法と範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 労働力不足と人件費の上昇
    • 抑制要因
      • 高額な資本投資と所有コスト
    • 機会
    • 影響の分析

第5章 産業の分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制とコンプライアンスの分析
  • 持続可能性分析
  • DMIの見解

第6章 ロボットタイプ別

  • 無人トラクター
  • 無人航空機(UAV)
  • 搾乳ロボット
  • 収穫ロボット
  • 除草ロボット
  • 播種ロボット
  • 灌漑ロボット
  • その他

第7章 用途別

  • 畑作
  • 酪農管理
  • 土壌管理
  • 収穫管理
  • 灌漑、水管理
  • 作物モニタリング
  • その他

第8章 提供別

  • ハードウェア
    • ロボットアーム
    • センサー(LiDAR、GPS、マルチスペクトル)
    • カメラ、イメージングシステム
    • モーター、ホイール、アクチュエーター
  • ソフトウェア
    • AIによる作物管理
    • ロボティックプロセスオートメーション(RPA)
    • 予測分析
    • コンピュータービジョンシステム
  • サービス
    • 設置、試運転
    • トレーニング、コンサルティング
    • メンテナンス、修理
    • データドリブン農場アドバイザリーサービス

第9章 農場規模別

  • 小規模農場(10ヘクタール未満)
  • 中規模農場(10~100ヘクタール)
  • 大規模農場(100ヘクタール以上)

第10章 エンドユーザー別

  • 農業者
  • 農業協同組合
  • 研究機関
  • 政府機関
  • アグリテック企業

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他の欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他の南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他のアジア太平洋
  • 中東・アフリカ

第12章 企業プロファイル

  • Deere & Company
  • AGCO Corporation
  • Trimble Inc.
  • Ecorobotix
  • Harvest Automation
  • Naio Technologies
  • CNH Industrial NV
  • Agrobot
  • Harvest CROO Robotics LLC.
  • KUBOTA Corporation

第13章 付録

目次
Product Code: AG9486

The Global robotics in agriculture market reached US$ 15.78 billion in 2024 and is expected to reach US$ 84.19 billion by 2032, growing at a CAGR of 23.28% during the forecast period 2025-2032.

The robotics in agriculture market is expanding rapidly, driven by the need for automation to offset labor shortages, improve efficiency and support precision farming. Advances in AI and IoT, along with growing government support, are accelerating the adoption of autonomous equipment. This shift is enhancing productivity, reducing operational costs and promoting sustainable farming practices.

Robotics in Agriculture Market Trend

The integration of robotics in vertical farming is emerging as a transformative trend aimed at improving operational efficiency and reducing labor dependency. High labor costs and the need for consistent crop quality have prompted vertical farm operators to invest in automated systems for seeding, harvesting and monitoring. For example, Robotics solutions, such as automated seed casters and harvesting units developed by Rooted Robotics, are enabling farms to scale operations while minimizing crop loss and increasing yield precision.

These systems not only reduce manual workload but also enhance consistency in planting density and harvesting accuracy, which are critical for profitability in space-constrained vertical farms. The deployment of AI-powered robots in such controlled environments is optimizing resource utilization and ensuring faster, cleaner processes. As vertical farming continues to scale, the adoption of affordable and modular robotic solutions will be key to improving return on investment and enabling long-term commercial viability.

Dynamics

Labor Shortages and Rising Labor Costs

Widespread labor shortages and rising wage pressures are accelerating the adoption of robotics in agriculture. Farmers are increasingly turning to automation to manage labor-intensive tasks such as planting, harvesting and weeding. Robotics ensures timely operations, reduces labor dependency and improves overall farm efficiency. This trend is critical in addressing productivity challenges and minimizing crop losses. It also supports scalability in both traditional and high-tech farming systems.

For instance, in January 2025, John Deere launched its fully autonomous tractor, designed to tackle workforce shortages. The tractor uses GPS, AI and vision systems to operate independently with high precision. It allows farmers to reallocate limited labor to more strategic roles. This innovation highlights the industry's pivot toward autonomous solutions. Such technologies are expected to drive significant efficiency gains across global farming operations.

High Capital Investment and Ownership Costs

High capital investment and ownership costs are a significant barrier to adopting robotics in agriculture. Advanced systems require large upfront spending on equipment, installation and software integration. This deters small and mid-sized farms with limited budgets. The long payback period further complicates investment decisions. As a result, market adoption remains uneven across regions.

For example, Rooted Robotics is addressing this issue by offering affordable automation for vertical farms. Their low-cost seed caster, recently implemented at a farm in Denver, demonstrates cost-effective innovation. The solution reduces labor needs without heavy capital outlay. Such scalable models are gaining traction in the market. They enable broader adoption while minimizing financial risk.

Segment Analysis

The global robotics in agriculture market is segmented based on robot type, application, offering, farm size, end-user and region.

Rising Demand Drives Adoption of Autonomous Tractors in Modern Farming

Autonomous tractors have emerged as the dominant robot type in the agriculture robotics market, driven by their multi-functional capabilities and ability to reduce reliance on manual labor. These tractors are increasingly adopted in precision farming, where accuracy, consistency and efficiency are critical. With satellite guidance, remote operation via smartphones and AI integration, they enable round-the-clock fieldwork with minimal human intervention-ideal for tackling labor shortages and boosting productivity.

For instance, Carbon Robotics launched the AutoTractor, a retrofitted autonomous farming system equipped with GPS, AI, radar sensors and LaserWeeder integration. Designed for 24/7 operations, it performs key ground preparation tasks without in-cab drivers. Its remote monitoring feature enables real-time operator intervention, addressing common adoption barriers such as operational disruptions.

Geographical Penetration

Accelerating AgTech Adoption: Rising Demand for Robotics in North American Agriculture

North America holds a significant share of the robotics in agriculture market, driven by labor shortages, rising wage costs and the need to enhance productivity and efficiency in farming operations. US and Canada are witnessing the rapid adoption of autonomous tractors, robotic harvesters, drones and precision farming technologies, particularly in large-scale commercial farms. Government support and investments in Agri-tech innovation are further accelerating the regional market growth.

For example, in September 2024, Niqo Robotics launched RoboThinner in North America to address growing labor challenges in lettuce farming. The AI-driven solution delivers 97% thinning accuracy and covers up to 7 acres per hour, boosting efficiency and yield quality. Designed for easy retrofit on existing tractors, it ensures seamless integration. With rapid ROI and strong adoption potential, it supports growers in key regions like Salinas and Yuma. This reflects North America's shift toward precision agriculture through robotics.

Sustainability Analysis

The integration of robotics in agriculture is significantly advancing sustainable farming practices by enhancing operational efficiency, resource optimization and environmental stewardship. Robotic systems reduce dependency on chemical inputs through precision application of water, fertilizers and pesticides, thereby minimizing environmental pollution and input waste.

AI-powered weeding robots and smart seeders help conserve soil health, reduce over-tillage and lower fuel consumption, supporting regenerative agriculture. Technologies such as robotic arms, autonomous tractors and vertical farming systems also contribute to higher yields with lower resource intensity, improving food security and profitability.

Competitive Landscape

The major global players in the market include Deere & Company, AGCO Corporation, Trimble Inc., Ecorobotix, Harvest Automation, Naio Technologies, CNH Industrial N.V., Agrobot, Harvest CROO Robotics LLC. and KUBOTA Corporation.

Key Developments

  • In March 2025, Carbon Robotics introduced Carbon AutoTractor, the first autonomous tractor solution with real-time remote supervision. Compatible with John Deere 6R and 8R tractors, it installs in under 24 hours and enables seamless switching between manual and autonomous modes. Integrated with the LaserWeeder, it improves operational efficiency by up to 20%, addressing labor challenges and enabling scalable, reliable farm automation.
  • In February 2025, Yamaha Motor launched Yamaha Agriculture, Inc. to deliver autonomous equipment and AI-powered crop management solutions for specialty crops. Through the acquisitions of Robotics Plus and The Yield, the company aims to enhance precision farming and operational efficiency in key markets, aligning with its 2030 vision for robotics-driven sustainable agriculture.

Why Choose DataM?

  • Data-Driven Insights: Dive into detailed analyses with granular insights such as pricing, market shares and value chain evaluations, enriched by interviews with industry leaders and disruptors.
  • Post-Purchase Support and Expert Analyst Consultations: As a valued client, gain direct access to our expert analysts for personalized advice and strategic guidance, tailored to your specific needs and challenges.
  • White Papers and Case Studies: Benefit quarterly from our in-depth studies related to your purchased titles, tailored to refine your operational and marketing strategies for maximum impact.
  • Annual Updates on Purchased Reports: As an existing customer, enjoy the privilege of annual updates to your reports, ensuring you stay abreast of the latest market insights and technological advancements. Terms and conditions apply.
  • Specialized Focus on Emerging Markets: DataM differentiates itself by delivering in-depth, specialized insights specifically for emerging markets, rather than offering generalized geographic overviews. This approach equips our clients with a nuanced understanding and actionable intelligence that are essential for navigating and succeeding in high-growth regions.
  • Value of DataM Reports: Our reports offer specialized insights tailored to the latest trends and specific business inquiries. This personalized approach provides a deeper, strategic perspective, ensuring you receive the precise information necessary to make informed decisions. These insights complement and go beyond what is typically available in generic databases.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Robot Type
  • 3.2. Snippet by Application
  • 3.3. Snippet by Offering
  • 3.4. Snippet by Farm Size
  • 3.5. Snippet by End-User
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Labor Shortages and Rising Labor Costs
    • 4.1.2. Restraints
      • 4.1.2.1. High Capital Investment and Ownership Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory and Compliance Analysis
  • 5.5. Sustainability Analysis
  • 5.6. DMI Opinion

6. By Robot Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 6.1.2. Market Attractiveness Index, By Robot Type
  • 6.2. Driverless Tractors*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Unmanned Aerial Vehicles (UAVs)
  • 6.4. Milking Robots
  • 6.5. Harvesting Robots
  • 6.6. Weeding Robots
  • 6.7. Seeding Robots
  • 6.8. Irrigation Robots
  • 6.9. Others

7. By Application

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 7.1.2. Market Attractiveness Index, By Application
  • 7.2. Field Farming*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Dairy Management
  • 7.4. Soil Management
  • 7.5. Harvest Management
  • 7.6. Irrigation and Water Management
  • 7.7. Crop Monitoring
  • 7.8. Others

8. By Offering

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 8.1.2. Market Attractiveness Index, By Offering
  • 8.2. Hardware*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
    • 8.2.3. Robotic arms
    • 8.2.4. Sensors (LiDAR, GPS, multispectral)
    • 8.2.5. Cameras and imaging systems
    • 8.2.6. Motors, wheels and actuators
  • 8.3. Software
    • 8.3.1. AI-based crop management
    • 8.3.2. Robotic process automation (RPA)
    • 8.3.3. Predictive analytics
    • 8.3.4. Computer vision systems
  • 8.4. Services
    • 8.4.1. Installation and commissioning
    • 8.4.2. Training and consulting
    • 8.4.3. Maintenance and repair
    • 8.4.4. Data-driven farm advisory services

9. By Farm Size

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 9.1.2. Market Attractiveness Index, By Farm Size
  • 9.2. Small Farms (<10 hectares) *
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Medium Farms (10-100 hectares)
  • 9.4. Large Farms (>100 hectares)

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Farmers *
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Agricultural Cooperatives
  • 10.4. Research Institutions
  • 10.5. Government Bodies
  • 10.6. Agri-Tech Companies

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.8.1. US
      • 11.2.8.2. Canada
      • 11.2.8.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.8.1. Germany
      • 11.3.8.2. UK
      • 11.3.8.3. France
      • 11.3.8.4. Italy
      • 11.3.8.5. Spain
      • 11.3.8.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.8.1. Brazil
      • 11.4.8.2. Argentina
      • 11.4.8.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.8.1. China
      • 11.5.8.2. India
      • 11.5.8.3. Japan
      • 11.5.8.4. Australia
      • 11.5.8.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Robot Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Offering
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Farm Size
    • 11.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Company Profiles

  • 12.1. Deere & Company*
    • 12.1.1. Company Overview
    • 12.1.2. Product Portfolio and Description
    • 12.1.3. Financial Overview
    • 12.1.4. Key Developments
  • 12.2. AGCO Corporation
  • 12.3. Trimble Inc.
  • 12.4. Ecorobotix
  • 12.5. Harvest Automation
  • 12.6. Naio Technologies
  • 12.7. CNH Industrial N.V.
  • 12.8. Agrobot
  • 12.9. Harvest CROO Robotics LLC.
  • 12.10. KUBOTA Corporation

LIST NOT EXHAUSTIVE

13. Appendix

  • 13.1. About Us and Services
  • 13.2. Contact Us