デフォルト表紙
市場調査レポート
商品コード
1643882

Water-as-a-Service(WaaS)の世界市場(2025年~2032年)

Global Water as a Service (WaaS) Market - 2025-2032


出版日
ページ情報
英文 210 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=143.57円
Water-as-a-Service(WaaS)の世界市場(2025年~2032年)
出版日: 2025年01月27日
発行: DataM Intelligence
ページ情報: 英文 210 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

世界のWater-as-a-Service(WaaS)の市場規模は、2024年に583億8,000万米ドルに達し、2032年には1,297億6,000万米ドルに達すると予測され、予測期間2025年~2032年のCAGRは10.50%で成長する見込みです。

世界のWater-as-a-Service(WaaS)市場は、持続可能な水管理に対する意識の高まりと、水不足への対応が急務となっていることから急速に成長しています。WaaSは、水のモニタリング、処理、リサイクルを含むエンドツーエンドの水ソリューションを提供し、産業界や自治体が環境への影響を最小限に抑えながら水利用を最適化できるようにします。世界各国の政府は、水のインフラと供給を改善するために民間企業と協力しています。

例えば、インド政府のJal Jeevan Missionは、Jal Shakti省によると、農村部の家庭への持続可能な水の供給を確保するためにPPPモデルを利用しています。同様に、モノのインターネット(IoT)センサーや人工知能(AI)を活用して、水質をリアルタイムで監視したり、水処理システムの予知保全を行ったりする企業も増えています。スマートな水管理技術により、水の損失を20%削減することができます。

アジア太平洋は、急速な工業化、都市化、水不足問題の深刻化により、WaaS市場が最も急成長しています。中国やインドのような国々は、政府の厳しい規制に後押しされ、WaaSモデル採用の最前線にいます。例えば、中国の第14次5ヵ年計画では、廃水処理と再利用を重視しており、WaaSの採用を後押ししています。

シンガポールのPUB Water Agencyは、同国のNEWaterプログラムが、WaaSソリューションを持続可能な水管理と統合することの利点を例証していると強調しています。アジア開発銀行によると、アジア太平洋では2016年~2030年に、水と衛生インフラのニーズを満たすために8,000億米ドル(年間530億米ドル)の投資が必要です。

力学

水不足と規制圧力の高まり

米国は、2025年までに18億人近くが絶対的な水不足に陥ると発表しています。世界の淡水消費量の約20%を産業界が占めていることから(UNESCO)、持続可能な水管理ソリューションに対する需要はますます高まっています。世界各国の政府は、水の浪費を抑制しリサイクルを促進するために厳しい規制を実施しており、これがWaaS市場を牽引しています。

欧州連合(EU)の水枠組み指令は持続可能な水利用を義務付け、工業用水の排出に厳しい制限を設けています。同様に、米国では水質浄化法が廃水処理に厳しい基準を課しており、コンプライアンスを確保するためにWaaSモデルの採用を奨励しています。米国環境保護庁(EPA)によると、WaaSを使用する産業は、規制基準を確実に遵守しながら、淡水の取水量を大幅に削減することができます。

企業の持続可能性目標の増加

企業は世界の環境目標に沿い、ブランドイメージを高めるために持続可能性を優先しています。Water-as-a-Serviceは、費用対効果が高く拡張性の高い水ソリューションを提供することで、企業の持続可能性目標の達成を支援します。持続可能な開発のための世界経済人会議(WBCSD)によると、持続可能な水慣行を採用する企業は、経営効率を高め、水不足に伴うリスクを軽減することができます。

ペプシコは水使用効率を22%向上させました。また、リスクの高い地域で使用する水の45%を地元の流域で代替しています。同時に、清潔な飲料水へのアクセスを拡大するため、保全プロジェクトや浄水システムに資金を投入しています。同様に、アーカンソー州フォートスミスにあるネスレのガーバー施設では、冷却塔の水処理システムを導入し、年間1万4,000立方メートルの水を節約しました。これは環境への影響を減らすだけでなく、同社を持続可能な水管理のリーダーとして位置づけています。

高い初期投資

Water-as-a-Service処理システムの導入は、高度処理施設の設置に必要な高額な初期投資によって妨げられることが多いです。逆浸透膜、高度酸化プロセス、ゼロ液体排出システムなどの技術には、調達、設置、既存インフラへの統合に多額の費用がかかります。国際脱塩協会(IDA)によると、工業規模の逆浸透システムの導入コストは、規模や複雑さにもよりますが、1施設あたり50万米ドル~100万米ドル以上になります。

また、運転コストも重要な課題です。高度な水処理システムは、効率を維持し、規制基準を満たすために、継続的なエネルギー投入と化学薬品使用を必要とすることが多いです。米国エネルギー省の報告書によると、エネルギー費だけで水処理施設の運転コストの30~40%を占めており、最もエネルギー集約的な工業プロセスの一つとなっています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 多様な産業からの水の再利用とリサイクルの導入
      • 企業の持続可能性目標の強化
    • 抑制要因
      • 初期投資額が高い
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • 持続可能な分析
  • DMIの見解

第6章 サービスタイプ別

  • 給水
  • 水・廃水処理
  • 水のリサイクルと再利用サービス
  • 運用・保守サービス
  • その他

第7章 容量別

  • 2万5,000L以下
  • 2万5,001~5万L
  • 5万1~10万L
  • 10万1L以上

第8章 展開モデル別

  • オンプレミス
  • クラウドベースのサービス
  • ハイブリッドモデル

第9章 エンドユーザー別

  • 地方自治体
    • 都市水管理
    • 農村給水プログラム
  • 産業
    • 発電
    • 食品・飲料
    • 医薬品
    • 繊維・皮革
    • パルプ・紙
    • 石油・ガス
    • 鉱業・金属
    • その他
  • 商業
  • その他

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況・シェア分析
  • M&A分析

第13章 企業プロファイル

  • WEB N.V.
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Seven Seas Water Group
  • Veolia
  • Ekopak
  • R3 Sustainability
  • Waterleau
  • HydroFloTech
  • Hacom Energy
  • Rainmaker Worldwide Inc.
  • AquaVenture Holdings Limited

第14章 付録

目次
Product Code: ICT9076

Global Water as a Service (WaaS) Market reached US$ 58.38 billion in 2024 and is expected to reach US$ 129.76 billion by 2032, growing with a CAGR of 10.50% during the forecast period 2025-2032.

The global Water as a Service (WaaS) market is rapidly growing due to increased awareness about sustainable water management and the pressing need to address water scarcity. WaaS offers end-to-end water solutions, including water monitoring, treatment and recycling, enabling industries and municipalities to optimize water usage while minimizing environmental impact. Governments worldwide are collaborating with private firms to improve water infrastructure and delivery.

For instance, the Indian government's Jal Jeevan Mission relies on PPP models to ensure sustainable water delivery to rural households, according to the Ministry of Jal Shakti. Similarly, Companies are increasingly leveraging Internet of Things (IoT) sensors and Artificial Intelligence (AI) for real-time water quality monitoring and predictive maintenance of water treatment systems. The smart water management technologies can reduce water losses by 20%.

Asia-Pacific is the fastest-growing WaaS market due to rapid industrialization, urbanization and mounting water scarcity issues. Countries like China and India are at the forefront of adopting WaaS models, driven by stringent government regulations. For example, China's 14th Five-Year Plan emphasizes wastewater treatment and reuse, supporting WaaS adoption.

Singapore's PUB Water Agency highlights that the nation's NEWater program exemplifies the benefits of integrating WaaS solutions with sustainable water management. According to the Asian Development Bank, Asia-Pacific requires US$ 800 billion or US$ 53 billion annually, in investment over the period 2016-2030 to meet its water and sanitation infrastructure needs.

Dynamics

Rising Water Scarcity and Regulatory Pressures

Water scarcity is a critical global issue, with the United Nations stating that nearly 1.8 billion people will experience absolute water scarcity by 2025. As industries account for approximately 20% of global freshwater consumption (UNESCO), the demand for sustainable water management solutions is intensifying. Governments worldwide are implementing stringent regulations to curb water wastage and promote recycling, which is driving the WaaS market.

The European Union's Water Framework Directive mandates sustainable water use and sets strict limits on industrial water discharge. Similarly, U.S. Clean Water Act imposes stringent standards on wastewater treatment, encouraging industries to adopt WaaS models to ensure compliance. According to U.S. Environmental Protection Agency (EPA), industries using WaaS can reduce freshwater withdrawals significantly while ensuring adherence to regulatory standards.

Increasing Corporate Sustainability Goals

Corporations are prioritizing sustainability to align with global environmental goals and enhance their brand image. Water as a Service helps organizations achieve their sustainability targets by offering cost-effective and scalable water solutions. According to the World Business Council for Sustainable Development (WBCSD), businesses adopting sustainable water practices can enhance their operational efficiency and mitigate risks associated with water scarcity.

PepsiCo has increased water-use efficiency by 22%. It has also replaced in local watersheds 45% of the water it uses in high-risk areas. At the same time, the company has put money toward conservation projects and water-filtration systems to expand access to clean drinking water. Similarly, Nestle's Gerber facility in Fort Smith, Arkansas implemented a cooling tower water treatment system that has saved 14,000 cubic meters of water annually. This not only reduces environmental impact but also positions the company as a leader in sustainable water management.

High Initial Investment

The adoption of water as a service systems is often hindered by the high initial capital investment required for setting up advanced treatment facilities. Technologies such as reverse osmosis, advanced oxidation processes and zero liquid discharge systems involve substantial costs for procurement, installation and integration into existing infrastructure. According to the International Desalination Association (IDA), the cost of implementing industrial-scale reverse osmosis systems can range from US$ 500,000 to over US$ 1 million per facility, depending on the scale and complexity.

Operational costs remain another critical challenge. Advanced water treatment systems often demand continuous energy input and chemical usage to maintain efficiency and meet regulatory standards. A report by the U.S. Department of Energy highlights that energy expenses alone account for 30-40% of the operational costs in water treatment facilities, making it one of the most energy-intensive industrial processes.

Segment Analysis

The global water as a service market is segmented based on service type, capacity, deployment model, end-user and region.

Rising Demand for Waste Water Solutions from Municipality

Municipalities represent the highest demand for WaaS solutions due to increasing urbanization and aging water infrastructure. According to the United Nations, urban areas are home to 55% of the global population, a figure expected to rise to 68% by 2050. This urban growth necessitates efficient water management systems, driving demand for WaaS.

WaaS providers offer municipalities tailored solutions, including water treatment, distribution and leakage detection. The World Bank estimates that more than 32 billion cubic meters of treated water physically leak from urban water supply systems around the world, while 16 billion cubic meters are delivered to customers for zero revenue, with WaaS technologies capable of reducing magnificently.

Geographical Penetration

Availivibility of Advanced Water Infrastructure in North America

North America is at the forefront of the Water-as-a-Service (WaaS) market, driven by its advanced water infrastructure, robust regulatory frameworks and significant technological innovations. The U.S. Environmental Protection Agency (EPA) supports this trend through initiatives like the WaterSense program, which promotes efficient water usage and encourages the adoption of WaaS solutions.

According to the American Water Works Association (AWWA), investments in the region's water sector are projected to surpass US$ 1 trillion over the next 25 years, highlighting the commitment to modernizing and maintaining water systems. US and Canada are actively utilizing WaaS to upgrade aging water infrastructures.

For example, California's Metropolitan Water District has implemented WaaS technologies. California recycles over one million acre-feet of water each year. This is enough water to meet the needs of at least two million households, effectively addressing ongoing drought challenges. In Canada, the government has made significant financial commitments through initiatives like the Clean Water and Wastewater Fund, which has allocated over US$ 2 billion for water and wastewater infrastructure projects aimed at ensuring sustainable water management practices.

Competitive Landscape

The major global players in the market include WEB N.V., Seven Seas Water Group, Veolia, Ekopak, R3 Sustainability, Waterleau, HydroFloTech, Hacom Energy, Rainmaker Worldwide Inc. and AquaVenture Holdings Limited.

Sustainable Analysis

The Water as a Service (WaaS) market plays a significant role in aligning with global sustainability goals, particularly the United Nations' Sustainable Development Goal 6 (SDG 6), which focuses on ensuring clean water and sanitation for all. By facilitating efficient water use and promoting recycling, WaaS helps to reduce the extraction of freshwater and eases the strain on natural water bodies. This is critical as billions of people still lack access to safe water, leading to severe health and social consequences. According to the Earth Org, 25% of the World Faces Extreme Water Stress Every Year, highlighting its effectiveness in addressing water scarcity issues.

In addition to improving water management, WaaS also contributes to energy efficiency. Water treatment systems that utilize the smart metering model consume approximately 20% less energy compared to traditional methods. This reduction in energy consumption is vital in the context of global energy demands and environmental concerns. A notable example of sustainable innovation within this framework is the solar-powered WaaS facilities in Morocco, which treat over 1 million cubic meters of water annually while minimizing energy input. Such initiatives not only demonstrate the feasibility of sustainable practices but also set a precedent for future developments in water management technologies

Integration of IoT and AI in Water as a Service (WaaS)

The integration of IoT and AI is transforming the WaaS market by enhancing efficiency and scalability. IoT sensors enable real-time water quality monitoring, leakage detection and usage analytics, while AI algorithms predict system maintenance needs and optimize operations. According to the International Telecommunication Union (ITU), IoT-enabled WaaS systems reduce water losses by 15-20%.

For example, Singapore's Smart Water Grid uses IoT sensors to monitor water flow and quality across its distribution network, reducing non-revenue water to just 5%. Similarly, AI-powered energy and water process optimization reduces energy expenses by 30%. These advancements underscore the transformative potential of IoT and AI in the WaaS market

Recent Developments

  • In April 2024, Water-En Energiebedrijf Aruba (WEB) and Seven Seas Water Group (SSWG), a leading multinational provider of WaaS solutions, have entered into a 10-year Build-Own-Operate-Transfer (BOOT) agreement. This collaboration marks a pivotal step in enhancing Aruba's water infrastructure.
  • In April 2024, India's ambitious Jal Jeevan Mission (JJM) is a flagship initiative leveraging a data-driven approach to achieve universal access to drinking water for rural communities. With a budget of $48 billion, the mission aims to provide clean water to 900 million people across 600,000 villages.
  • In December 2023, WaaS Asia, a new joint venture formed by Ekopak, Vyncke NV and Mr. Saku Rantanen, is set to revolutionize circular water use in the Asian market. Vyncke, with over 40 years of experience designing biomass-based energy plants and Ekopak, a leader in circular water systems, bring complementary expertise to the venture.

Why Purchase the Report?

  • To visualize the global water as a service market segmentation based on service type, capacity, deployment model, end-user and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the water as a service market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global water as a service market report would provide approximately 70 tables, 66 figures and 210 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Service Type
  • 3.2. Snippet by Capacity
  • 3.3. Snippet by Deployment Model
  • 3.4. Snippet by End-Users
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Adoption of the Water Reuse and Recycle from Diverse Industries
      • 4.1.1.2. Increasing Corporate Sustainability Goals
    • 4.1.2. Restraints
      • 4.1.2.1. High Initial Investment
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Sustainable Analysis
  • 5.6. DMI Opinion

6. By Service Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Service Type
    • 6.1.2. Market Attractiveness Index, By Service Type
  • 6.2. Water Supply*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. Water & Wastewater Treatment
  • 6.4. Water Recycling & Reuse Services
  • 6.5. Operations & Maintenance Services
  • 6.6. Others

7. By Capacity

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 7.1.2. Market Attractiveness Index, By Capacity
  • 7.2. Less than 25,000L*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. 25,001 TO 50,000 L
  • 7.4. 50,001 L TO 100,000 L
  • 7.5. More than 100,001 L

8. By Deployment Model

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 8.1.2. Market Attractiveness Index, By Deployment Model
  • 8.2. On-Premises*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Cloud-Based Services
  • 8.4. Hybrid Models

9. By End-Users

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Municipal*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
      • 9.2.2.1. Urban Water Management
      • 9.2.2.2. Rural Water Supply Programs
  • 9.3. Industrial
    • 9.3.1. Power Generation
    • 9.3.2. Food and Beverage
    • 9.3.3. Pharmaceuticals
    • 9.3.4. Textiles and Leather
    • 9.3.5. Pulp and Paper
    • 9.3.6. Oil and Gas
    • 9.3.7. Mining and Metals
    • 9.3.8. Others
  • 9.4. Commercial
  • 9.5. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Components
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Capacity
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Model
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. WEB N.V.*
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Seven Seas Water Group
  • 13.3. Veolia
  • 13.4. Ekopak
  • 13.5. R3 Sustainability
  • 13.6. Waterleau
  • 13.7. HydroFloTech
  • 13.8. Hacom Energy
  • 13.9. Rainmaker Worldwide Inc.
  • 13.10. AquaVenture Holdings Limited

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us