デフォルト表紙
市場調査レポート
商品コード
1634259

オフショア変電所の世界市場 - 2024年~2032年

Global Offshore Substation Market - 2024 - 2032


出版日
ページ情報
英文 176 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.06円
オフショア変電所の世界市場 - 2024年~2032年
出版日: 2025年01月13日
発行: DataM Intelligence
ページ情報: 英文 176 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

オフショア変電所の世界市場は、2024年に69億3,000万米ドルに達し、2032年には109億6,000万米ドルに達すると予測され、予測期間2024年から2032年に5.9%のCAGRで成長します。

世界のオフショア変電所市場は再生可能エネルギーのインフラに関連しており、洋上風力発電所で生産された電力を陸上の送電網に効率的に送電することを可能にしています。世界風力エネルギー会議(GWEC)によると、洋上風力発電の設備容量は2023年までに約75GWに達し、2030年には隔年で200GW以上になると予測されています。この開発は、先進的な変電所への投資を誘致する手段となっています。

市場開発はさらに、欧州連合(EU)の再生可能エネルギー指令や米国のインフレ抑制法などの政策を通じて推進されます。オフショア変電所の建設は、技術革新と代替エネルギーに対する目標の高まりの影響を受けています。深海でコストとスペース効率に優れたモジュール式や浮体式設計の利用が勢いを増しています。Global Offshore Wind Report 2023では、エネルギー貯蔵一体型ハイブリッド変電所の設置が増加し、送電網の安定性が向上していることを記録しています。デジタル化の動向から、スマート変電所ではリアルタイムの予知保全が可能になります。

アジア太平洋地域のオフショア変電所市場は、主に再生可能エネルギーへの投資により急速な成長を遂げています。Global Wind Energy Council(GWEC)は、アジア太平洋地域は2024年から2030年の間に世界全体で建設される新規増設の最大61%を占めると予測しています。2023年末時点で、すでに世界の風力発電設備総数の半分以上(51%)を占めています。2030年までに10GWを目指す日本の洋上風力ロードマップや韓国のグリーン・ニューディールを含む政府のイニシアチブは、洋上インフラを重視しています。このような開発は、高容量で技術的に先進的な変電所に対する地域の需要に火をつけ、アジア太平洋地域を重要な成長貢献地域として位置づけています。

ダイナミクス

野心的な再生可能エネルギー目標の高まり

世界的に政府の再生可能エネルギー目標が意欲的になっていることから、オフショア変電所市場も刺激されると考えるのが妥当であろう。実際、EUの再生可能エネルギー指令は、2030年までに42.5%の再生可能エネルギー比率を達成することを加盟国に求めています。そのためには、大容量の洋上風力発電所の建設が必要となります。その洋上変電所は、送電網への組み込みとトランスミッションにおいて重要な役割を果たします。

米国エネルギー省(DOE)は、2030年までに30GWを達成し、2050年までに110GW以上を達成するロードマップを確立することを目指しています。そのためには、米国クリーン電力協会(ACPA)が発表した報告書によれば、洋上変電所と関連インフラに約120億米ドルを投資する必要があります。同様に、英国エネルギー安全保障戦略(BESS)は、2022年4月初めに、2030年までに50GWの洋上風力発電を生産するという野心的な目標を設定し、その中には5GWの革新的な浮体式技術が含まれています。

浮体式洋上ウィンドファームは、より深い海域にも展開することができ、勢いを増しています。この場合、運用効率を最適化するために、新しい変電所設計、特に浮体式変電所が必要となります。ノルウェーの浮体式洋上風力発電戦略は、2040年までに30GWの容量を達成することを目指しており、次世代変電所ソリューションの市場は急速に拡大しています。これらの変電所は、世界の再生可能エネルギー目標において重要であり、送電網の安定性を維持しながら風力発電を国内送電網に統合するための要素とみなされています。高電圧直流(HVDC)システムを含む変電所技術は、開発者が信頼性と効率を優先するため、投資が増加しています。

デジタル・スマート変電所の台頭

オフショア変電所開発市場は、変電所の設計と運用における技術進歩の影響を大きく受けています。現代の運転効率の次元は、リアルタイムのモニタリングと高度な通信システムを特徴とするデジタル・スマート変電所によって変化しています。国際電気標準会議(IEC)によれば、デジタル変電所は信頼性が高く、運用コストを最大30%削減できます。コストを最適化し、設置を迅速化するため、モジュール式変電所は、現場に搬入される前に事前に組み立てられ、事前テストが行われます。さらに、国際原子力機関(IAEA)は、モジュール式設計が配備期間を短縮できることを実証しており、迅速なエネルギー構想に理想的な選択肢となっています。

もうひとつの躍進は、より深い海域に設置される洋上風力発電所をサポートする浮体式変電所の開発です。ノルウェーと日本は、より深い海域での洋上風力発電の可能性を活用するため、浮体式変電所の配備を先駆的に進めています。さらに、HVDC技術は長距離送電を効率的に行う能力で脚光を浴びています。HVDCシステムを組み込んだ変電所は、大規模な洋上風力発電プロジェクトでますます使用されるようになっています。Global Wind Energy Councilの報告によると、2023年には世界全体で11GWの洋上風力発電が送電網に接続され、前年比24%増となります。

高い初期投資コスト

大きな成長が見込まれるもの、初期投資コストの高さが依然としてオフショア変電所市場の大きな抑制要因となっています。洋上変電所の建設には、高度な設備、水中配線、過酷な海洋環境での設置など、多額の資本支出が伴う。国際再生可能エネルギー機関(IRENA)によると、オフショア変電所の平均建設コストは容量容量1MWあたり20万~30万ドルです。この財政負担は、開発者が資本へのアクセスが制限されがちな新興国市場にとって特に厳しい課題です。世界銀行の報告によると、アフリカや東南アジアなどの地域では、資金調達の制約が洋上風力発電プロジェクトを遅らせ、変電所市場の成長を妨げています。

さらに、オフショア変電所の設計と設置の複雑さがコスト高騰の一因となっています。より深い海域や厳しい環境条件の地域に位置するプロジェクトでは、特殊な設備や専門知識が必要となり、コストがさらに膨らみます。例えば、浮体式変電所は革新的ではあるが、高度な材料や技術を使用するため、初期コストが高くなります。また、送電網統合の課題も財政負担に拍車をかける。洋上変電所と陸上送電網の接続を確立するには、大規模なインフラ投資が必要です。欧州委員会のWind Energy The Factは、グリッド統合コストがプロジェクト総費用の最大10%を占めることを強調しています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 野心的な再生可能エネルギー目標の拡大
      • デジタルおよびスマート変電所の台頭
    • 抑制要因
      • 初期投資コストが高い
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 タイプ別

  • 交流変電所
  • 直流変電所

第7章 電圧タイプ別

  • 5kV
  • 72.5kV
  • 123kV
  • 145kV
  • 170kV
  • 245kV
  • 400kV
  • 400kV以上

第8章 設置場所別

  • 固定式洋上変電所
  • 浮体式洋上変電所

第9章 エンドユーザー別

  • 風力発電所
  • 石油・ガス
  • その他

第10章 サスティナビリティ分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州地域
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

    • 競合シナリオ
    • 市況・シェア分析
    • M&A分析

第13章 企業プロファイル

  • General Electric Company
    • 会社概要
    • タイプポートフォリオと概要
    • 財務概要
    • 主な発展
  • Aker Solutions
  • Envision Group
  • Petrofac Limited
  • Burns & McDonnell
  • Hitachi Energy
  • HSM Offshore Energy BV
  • SLPE
  • Hollandia
  • Siemens

第14章 付録

目次
Product Code: FB9007

Global Offshore Substation Market reached US$ 6.93 billion in 2024 and is expected to reach US$ 10.96 billion by 2032, growing with a CAGR of 5.9% during the forecast period 2024-2032.

The global offshore substation market relates to the renewable energy infrastructure, making it possible for the power produced by offshore wind farms to be efficiently transmitted to an onshore electrical grid. Offshore substations are increasing their demand in light of governments pushing for achieving net-zero emissions, as it is estimated from Global Wind Energy Council (GWEC) that the installed offshore wind capacity reached around 75 GW by 2023, with projections to be more than 200 GWs by 2030 biennially plotted. The development is an avenue attracting investments in advanced substations.

Market developments further drive through policies such as the Renewable Energy Directive addressed within the European Union and the Inflation Reduction Act in the United States. The construction of offshore substation is influenced by technological innovations and the increasing goals for alternative energy. It is the use of modular and floating designs that are cost and space-efficient for deep waters that are gaining momentum. The Global Offshore Wind Report 2023 records a rise in the installation of energy storage integrated hybrid substations, thus improving grid stability. The trend toward digitization indicates that in smart substations enables real-time and predictive maintenance.

The Offshore Substation market in the Asia-Pacific region is experiencing rapid growth, primarily due to investments in renewable energy. The Global Wind Energy Council (GWEC) estimates that Asia-Pacific is expected to account for up to 61% of the new additions to be constructed globally in the 2024-2030 period. As of the end of 2023, it already accounted for over half (51%) of the global total wind power installations. Government initiatives, including Japan's offshore wind roadmap for 10 GW by 2030 and South Korea's Green New Deal, emphasize offshore infrastructure. These developments ignite regional demand for high-capacity technologically advanced substations, thereby positioning the Asia-Pacific region as a significant growth contributor.

Dynamics

Growing Ambitious Renewable Energy Targets

Given the increasing ambition of government renewable energy targets worldwide, it is reasonable to assume that the offshore substation market would be stimulated. In fact, the Renewable Energy Directive of the EU is going to require member states to attain a 42.5% renewable energy share by 2030. This necessitates the construction of offshore wind farms with substantial capacity. Their offshore substations will play a critical role in the incorporation of the grid and the transmission of power.

The U.S. Department of Energy (DOE) aims to achieve 30 GW by 2030 and establish a roadmap for attaining 110 GW or more by 2050. This would necessitate an investment of approximately $12 billion in offshore substations and associated infrastructure, as per the report published by the American Clean Power Association (ACPA). Similarly, the British Energy Security Strategy (BESS) established an ambitious goal of producing 50 GW of offshore wind by 2030, which includes 5 GW of innovative floating technology, at the beginning of April 2022.

The floating offshore wind farms, which can also be deployed in deeper waters, are gathering momentum. In this instance, they necessitate novel substation designs, specifically floating substations, to optimize operational efficiency. The market for next-generation substation solutions is rapidly expanding as Norway's Floating Offshore Wind Strategy aims to achieve 30 GW of capacity by 2040. These substations are important in the global renewable energy targets and are regarded as a component of the integration of wind power within national grids while maintaining grid stability. Substation technologies, including high-voltage direct current (HVDC) systems, are receiving increased investment as developers prioritize reliability and efficiency.

Rise of Digital And Smart Substations

The offshore substation development market is significantly influenced by the ongoing technological advancements in substation design and operation. The modern operating efficiency dimension is transformed by digital and smart substations that feature real-time monitoring and advanced communication systems. Digital substations are more reliable and reduce operational costs by up to 30%, according to the International Electrotechnical Commission (IEC). In order to optimize costs and expedite installation, modular substations are preassembled and pretested prior to their delivery to the site. Additionally, the International Atomic Energy Agency (IAEA) has demonstrated that modular designs can reduce deployment timelines, making them an ideal choice for rapid-track energy initiatives.

Another breakthrough is the development of floating substations, which support offshore wind farms located in deeper waters. Norway and Japan are pioneering floating substation deployment to leverage deeper offshore wind potential. Additionally, HVDC technology is gaining prominence for its ability to efficiently transmit power over long distances. Substations incorporating HVDC systems are increasingly being used in large-scale offshore wind projects. The Global Wind Energy Council reports that in 2023, the industry connected 11 GW of offshore wind to the grid representing a 24% year-on-year (YoY) increase across the world.

High Initial Investment Costs

Despite significant growth prospects, high initial investment costs remain a major restraint for the offshore substation market. The construction of offshore substations involves substantial capital expenditure, encompassing advanced equipment, underwater cabling and installation in harsh marine environments. According to the International Renewable Energy Agency (IRENA), the average cost of building an offshore substation is $2-3 lakhs per MW of capacity. The financial burden is particularly challenging for emerging markets, where developers often face limited access to capital. The World Bank reports that financing constraints delay offshore wind projects in regions like Africa and Southeast Asia, impeding substation market growth.

Additionally, the complexity of offshore substation design and installation contributes to cost escalation. Projects located in deeper waters or areas with harsh environmental conditions require specialized equipment and expertise, further inflating costs. For instance, floating substations, while innovative, entail higher initial costs due to the use of advanced materials and technologies. Grid integration challenges also add to the financial burden. Establishing connectivity between offshore substations and onshore grids requires extensive infrastructure investments. The European Commission's Wind Energy The Fact highlight that grid integration costs account for up to 10% of total project expenditures.

Segment Analysis

The global offshore substation market is segmented based on type, voltage type, installation, end-user and region.

Rising Deep-Water Wind Farms Drive the Demand for Floating Offshore Substations

The floating substation segment is emerging as the fastest-growing segment in the offshore substation market. With offshore wind farms increasingly moving to deeper waters, traditional fixed-bottom substations are becoming less viable. Floating substations provide a practical alternative, enabling efficient power transmission from remote locations. According to the Carbon Trust, floating wind projects accounted for 7 GW of global offshore wind capacity in 2023, with projections to reach 70 GW by 2040. This exponential growth is driving demand for floating substations.

Technological advancements are playing a key role in the segment's expansion. Floating substations are leveraging HVDC technology for efficient power transmission and incorporating digital systems for enhanced operational control. These innovations align with the International Renewable Energy Agency's (IRENA) emphasis on cost reduction and efficiency improvement in offshore wind infrastructure. The segment's growth is also supported by partnerships and collaborations. For example, in 2023, Siemens Energy and ABB announced a joint venture to develop next-generation floating substations, aiming to reduce costs and improve scalability.

Geographical Penetration

Robust Renewable Energy Policies and Significant Offshore Wind Capacity Expansions in Asia-Pacific

Asia-Pacific holds the distinction of being the largest region in the offshore substation market, driven by aggressive renewable energy policies and significant offshore wind capacity expansions. According to the Asia Wind Energy Association (AWEA), the region accounted for over 60% of global offshore wind installations in 2023, with China leading the charge. China's National Energy Administration (NEA) has set a target of achieving 50 GW of offshore wind capacity by 2030, requiring substantial investments in substations to support these projects.

Japan and South Korea are also key players in the region. Japan's offshore wind roadmap outlines a target of 10 GW by 2030 and 30-45 GW by 2040, emphasizing the development of floating wind farms and advanced substations. Similarly, South Korea's Green New Deal includes plans for 12 GW of offshore wind capacity by 2030, accompanied by significant investments in high-voltage substations and grid infrastructure.

Technological advancements in substation designs, such as modular and floating substations, are gaining traction in Asia-Pacific. The Carbon Trust highlights that these designs are particularly suitable for the region's deep-water projects, enhancing efficiency and reducing costs. Additionally, the integration of energy storage systems with offshore substations is becoming a key trend, addressing grid stability challenges associated with renewable energy.

Collaborative initiatives are accelerating the region's market growth. For instance, in 2023, China's State Grid Corporation partnered with international technology providers to develop next-generation substations for large-scale offshore wind farms. These partnerships are fostering innovation and driving the adoption of advanced solutions.

Source: Global Wind Energy Council

Competitive Landscape

The major global players in the market include General Electric Company, Aker Solutions, Envision Group, Petrofac Limited, Burns & McDonnell, Hitachi Energy, HSM Offshore Energy BV, SLPE, Hollandia and Siemens. The key players are focusing on strategic partnerships, product innovation and expanding their global presence to increase their market share. The following recent developments highlight the strategies that enhance their competitiveness in the market.

In December 2024, SLPE received a contract to develop foundation designs for HVDC offshore substations for the Centre Manche 1 and 2 offshore wind projects in France. Each substation will have a capacity of 1.25 GW and the jacket structures for these substations are projected to weigh approximately 7,000 tonnes.

In December 2024, Aker Solutions and ABB will conduct the first-phase FEED for the 560-MW GreenVolt floating offshore wind project in the central UK North Sea, 80 km from Peterhead, eastern Scotland. Aker Solutions will lead the design of the high-voltage offshore substation (HVAC) and the overall system design and work on the onshore HV equipment.

In September 2024, the Revolution Wind offshore wind farm project, featuring 65 Siemens Gamesa 11 MW turbines, will generate 704 MW of renewable energy-400 MW for Rhode Island and 304 MW for Connecticut-powering over 350,000 homes. The project includes the installation of two offshore substations, with construction supported by union workers, three Northeast ports and multiple vessels.

In August 2024, GE Vernova, in collaboration with Seatrium, completed the installation of the Offshore Converter Platform (OCP) for RWE's North Sea wind project. Heerema Marine Contractors used the Sleipnir heavy-lift vessel to install the 13,000-tonne platform, equivalent in height to an eleven-story building, onto its jacket structure.

In December 2023, Vestas entered into a joint venture with Siemens Gamesa Renewable Energy to drive the development of innovative offshore wind turbines and associated infrastructure. As part of its commitment to advancing offshore wind energy, Vestas is also investing in the development of new offshore substation designs tailored to support its turbine technology.

In March 2023, GE Vernova signed together with its consortium partners Seatirum and TenneT to supply three 2 GW HVDC electrical transmission systems for offshore wind farm projects in the Netherlands, each valued at approximately $2.15 billion. GE Vernova is accelerating the path to more reliable, affordable and sustainable for the entire project development phases.

Sustainability Analysis

Sustainability is a cornerstone of the offshore substation market, with trends emphasizing eco-friendly practices and technologies. Offshore substations contribute to decarbonization by facilitating the integration of renewable energy into grids. According to the International Renewable Energy Agency (IRENA), offshore wind farms can reduce CO2 emissions by up to 500 grams per kWh compared to fossil fuels. Sustainable materials and designs are gaining traction. Developers are adopting corrosion-resistant and recyclable materials to enhance substation longevity and minimize environmental impact. The European Commission's Horizon 2020 program has funded several projects focusing on sustainable substation designs, including modular systems that reduce material usage.

Energy efficiency is another focus area. Advanced cooling systems and energy storage integration are being incorporated into substations to optimize performance and reduce energy loss. For example, the German Offshore Wind Energy Foundation highlights that integrating battery storage with offshore substations can improve grid stability and reduce reliance on fossil fuel backup systems. Environmental impact assessments are becoming mandatory for substation projects, ensuring compliance with regulations. UK's Marine Management Organization (MMO) requires offshore wind developers to conduct environmental impact studies, addressing concerns like marine biodiversity and ecosystem disruption.

Why Purchase the Report?

  • To visualize the global offshore substation market segmentation based on type, voltage type, installation, end-user and region.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points at the offshore substation market level for all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global offshore substation market report would provide approximately 70 tables, 65 figures and 250 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Voltage Type
  • 3.3. Snippet by Installation
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Ambitious Renewable Energy Targets
      • 4.1.1.2. Rise of Digital and Smart Substations
    • 4.1.2. Restraints
      • 4.1.2.1. High Initial Investment Costs
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. By Type

  • 6.1. Introduction
    • 6.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 6.1.2. Market Attractiveness Index, By Type
  • 6.2. AC Substations*
    • 6.2.1. Introduction
    • 6.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 6.3. DC Substations

7. By Voltage Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 7.1.2. Market Attractiveness Index, By Voltage Type
  • 7.2. 5 kV*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. 72.5 kV
  • 7.4. 123 kV
  • 7.5. 145 kV
  • 7.6. 170 kV
  • 7.7. 245 kV
  • 7.8. 400 kV
  • 7.9. Above 400 kV

8. By Installation

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 8.1.2. Market Attractiveness Index, By Installation
  • 8.2. Fixed Offshore Substations*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Floating Offshore Substations

9. By End-User

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 9.1.2. Market Attractiveness Index, By End-User
  • 9.2. Wind Farms*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Oil & Gas
  • 9.4. Others

10. Sustainability Analysis

  • 10.1. Environmental Analysis
  • 10.2. Economic Analysis
  • 10.3. Governance Analysis

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. US
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.6.1. China
      • 11.5.6.2. India
      • 11.5.6.3. Japan
      • 11.5.6.4. Australia
      • 11.5.6.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Voltage Type
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Installation
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

    • 12.1.1. Competitive Scenario
    • 12.1.2. Market Positioning/Share Analysis
    • 12.1.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. General Electric Company*
    • 13.1.1. Company Overview
    • 13.1.2. Type Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Aker Solutions
  • 13.3. Envision Group
  • 13.4. Petrofac Limited
  • 13.5. Burns & McDonnell
  • 13.6. Hitachi Energy
  • 13.7. HSM Offshore Energy BV
  • 13.8. SLPE
  • 13.9. Hollandia
  • 13.10. Siemens

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us