デフォルト表紙
市場調査レポート
商品コード
1560873

グリーン水素パイプラインの世界市場:2024年~2031年

Global Green Hydrogen Pipeline Market - 2024 - 2031


出版日
ページ情報
英文 214 Pages
納期
即日から翌営業日
カスタマイズ可能
適宜更新あり
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.87円
グリーン水素パイプラインの世界市場:2024年~2031年
出版日: 2024年09月23日
発行: DataM Intelligence
ページ情報: 英文 214 Pages
納期: 即日から翌営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

レポート概要

世界のグリーン水素パイプラインの市場規模は、2023年に47億9,000万米ドルに達し、2031年には404億米ドルに達すると予測され、予測期間2024年~2031年のCAGRは30.54%で成長する見込みです。

グリーン水素パイプラインとは、グリーン水素ガスを生産拠点からエンドユーザーまたは貯蔵施設まで輸送するために設計されたインフラを指します。政府や民間企業は、水素の生産と流通を拡大するための大規模プロジェクトに資金を提供しています。例えば、欧州水素バックボーン(EHB)イニシアチブは、グリーン水素プロジェクトへの投資拡大が専用パイプラインインフラの開発を促進している顕著な例です。

中東では、水素生産能力が前年比2倍以上に急拡大しています。この急増は、2030年までに輸出開始を目指す大規模プロジェクトに対する多額の投資と最終的な投資決定の確保を伴っています。当地域から中国、日本、アラブ首長国連邦などへ出荷されたブルーアンモニアとクリーンアンモニアの初期出荷は、当地域の輸出活動の拡大を示しています。

日本や韓国を含む世界市場が補助金の支給やクリーン水素仕様の確立を準備する中、中東の開発業者は、多額の資本に支えられて、これらの新興基準にプロジェクトを合わせる態勢を整えており、国際的なクリーン水素貿易の堅調な将来を示しています。グリーン水素は、世界のエネルギー戦略の重要な構成要素となり、脱炭素化への取り組みにおいて重要な役割を果たします。各国政府と産業界が気候変動目標を達成し、化石燃料への依存度を低減する可能性を認めるにつれ、政策支援がグリーン水素パイプライン市場の主要な促進要因になると思われます。

製造税控除や再生可能水素の義務化といったイニシアチブは、水素インフラへの投資を大幅に後押しすると予想されます。例えば、米国政府のインフレ抑制法(IRA)は、クリーン水素生産税額控除を含んでおり、水素パイプラインと関連インフラの開発への大規模な投資を促進すると予想されます。

市場力学

世界の脱炭素化への取り組みの高まり

パリ協定のような気候変動協定に後押しされた脱炭素化の世界の推進は、グリーン水素の採用を加速させています。70カ国以上が今世紀半ばまでにネット・ゼロ・エミッションを達成することを約束しており、水素はこれらの計画の多くで中心的な役割を担っています。水素需要は、2020年の約9,000万トンから、2050年には年間5億トンに達する可能性があり、その中でもグリーン水素は大きな割合を占める見込みです。

オーストリア、ドイツ、イタリアにまたがる新たな3,300kmのネットワークにより、欧州は現在の1,600kmのパイプラインに加え、水素パイプライン・ネットワークを大幅に拡大しています。SoutH2 Corridorを含むこの新しいネットワークは、欧州と北アフリカを結ぶことを目的としており、EUのRePowerEU目標を達成するために必要な水素の40%を供給すると予測されています。2030年までに、欧州は1万1,600kmの水素パイプラインを整備し、2040年までに4万km近くを整備するという野心的な目標を掲げています。

水素輸送の技術的進歩

分子構造が小さく、従来の鋼鉄製パイプラインでは脆化を引き起こす可能性がある水素を、安全かつ効率的に輸送するための先進的な材料と技術の開発は、グリーン水素インフラを拡大する上で極めて重要です。パイプライン建設における技術革新は、この拡張をより実現可能で費用対効果の高いものにしており、デンマークとドイツを結ぶホルステブロ・ハンブルグ・パイプラインのような野心的なプロジェクトに道を開いています。

デンマークは欧州の水素パイプライン開発のリーダーとして台頭しており、2022年~2026年の間に、世界の新規水素パイプラインの35%を占めると予測されています。2026年までに、デンマークは800kmの水素パイプラインを持つ可能性があり、世界のグリーン水素市場の最前線に位置づけられます。

不透明なグリーン水素需要

脱炭素化計画におけるグリーン水素の重要性は大きくなっていますが、製造コストが高く、バッテリー貯蔵のような代替低炭素技術との競合があるため、その普及はまだ不透明です。水素需要の増加は予測されているもの、グリーン水素の市場導入は遅れています。2022年には、世界全体の水素供給量のわずか1%しか環境にやさしい水素は供給されず、これは予想よりも移行が遅れていることを示しています。

需要の鈍化は、特に導入率の低い地域におけるグリーン水素パイプライン・プロジェクトの財政的実現性に影響を与えます。需要に関する曖昧さは、長期的な生産拡大やコスト削減に必要な大規模インフラ投資をサポートする能力を複雑にしています。

セグメント分析

世界のグリーン水素パイプライン市場は、パイプライン材料、水素形態、場所、エンドユーザー、地域に基づいてセグメント化されます。

耐腐食性とコスト効率に優れたプラスチック・コンポジットパイプラインが需要に

水素を効率的かつ安全に輸送するという明確な要件が、グリーン水素パイプライン市場におけるプラスチック・コンポジットパイプラインの需要を後押ししています。これらの材料は、特に新興のグリーン水素経済において、従来のスチールパイプラインと比較していくつかの利点を提供します。同様に、プラスチック・コンポジットパイプラインは一般的に、鋼鉄パイプラインよりも製造・設置コストが安いです。これらの材料は軽量であるため、輸送・設置コストが削減され、大規模な水素インフラ・プロジェクトにとって魅力的な選択肢となります。

地域別シェア

欧州における意欲的な目標とインフラ投資

欧州連合(EU)が2030年までに再生可能水素を1,000万トン生産するという目標を掲げるなど、強力な政策枠組みにより、欧州は世界のグリーン水素市場の最前線に位置しています。同大陸では、水素ハブや大規模電解プラントの開発など、水素インフラへの投資が盛んに行われています。

欧州の「2050年低炭素戦略」と「欧州グリーン協定」は、鉄鋼や化学などのエネルギー集約型産業の脱炭素化において水素が果たす重要な役割をさらに強調しています。このような野心的な取り組みにより、水素の輸送を促進する水素パイプラインの需要が高まっています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 世界の脱炭素化への取り組みの高まり
      • 水素輸送の技術的進歩
    • 抑制要因
      • グリーン水素の不透明な需要
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 パイプライン材料別

  • 金属
  • プラスチック・コンポジット

第8章 水素形態別

  • ガス
  • 液体

第9章 場所別

  • オンショア
  • オフショア

第10章 エンドユーザー別

  • 工業製造
  • 発電
  • 石油・ガス
  • 産業ガス
  • その他

第11章 持続可能性分析

  • 環境分析
  • 経済分析
  • ガバナンス分析

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
      • ドイツ
      • 英国
      • フランス
      • イタリア
      • スペイン
      • その他欧州
    • 南米
      • ブラジル
      • アルゼンチン
      • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第14章 企業プロファイル

  • ArcelorMittal
    • 会社概要
    • 製品ポートフォリオと概要
    • 財務概要
    • 主な発展
  • Cenergy Holdings
  • Fichtner GmbH & Co. KG
  • GF Piping Systems
  • Hexagon Purus
  • HyNet North West Hydrogen Pipeline
  • Pipelife International GmbH
  • Royal IHC
  • SoluForce
  • TUV SUD

第15章 付録

目次
Product Code: EP8616

Report Overview

Global Green Hydrogen Pipeline Market reached US$ 4.79 billion in 2023 and is expected to reach US$ 40.40 billion by 2031, growing with a CAGR of 30.54% during the forecast period 2024-2031.

A green hydrogen pipeline refers to the infrastructure designed for the transportation of green hydrogen gas from production sites to end-users or storage facilities. Governments and private players are funding large-scale projects to scale up hydrogen production and distribution. For instance, European Hydrogen Backbone (EHB) initiative is a prominent example of how growing investments in green hydrogen projects are driving the development of dedicated pipeline infrastructure.

Middle East's rapid expansion in planned hydrogen capacity, which has more than doubled year-on-year. The surge is accompanied by significant investment and the securing of final investment decisions for large-scale projects aiming to commence exports by 2030. Early shipments of blue and clean ammonia from the region to destinations like China, Japan and UAE showcase the region's growing export activity.

As global markets, including Japan and Korea, prepare to award subsidies and establish clean hydrogen specifications, Middle Eastern developers, backed by substantial capital, are poised to align their projects with these emerging standards, indicating a robust future for international clean hydrogen trade. Green hydrogen is poised to be a key component of global energy strategies, playing a crucial role in decarbonization efforts. As governments and industries acknowledge its potential to meet climate goals and reduce reliance on fossil fuels, policy support will become a major driver for the green hydrogen pipeline market.

Initiatives such as production tax credits and renewable hydrogen mandates are expected to significantly boost investment in hydrogen infrastructure. For instance, US government's Inflation Reduction Act (IRA), which includes a Clean Hydrogen Production Tax Credit, is anticipated to catalyze substantial investments in the development of hydrogen pipelines and related infrastructure.

Market Dynamics

Increasing Global Decarbonization Efforts

The global push for decarbonization, driven by climate agreements like the Paris Agreement, is accelerating green hydrogen adoption. Over 70 countries have committed to achieving net-zero emissions by mid-century and hydrogen is central to many of these plans. The hydrogen demand could reach 500 million metric tons annually by 2050, up from around 90 million tons in 2020, with green hydrogen accounting for a significant share of that growth.

With a new 3,300 km network spanning Austria, Germany, and Italy, Europe is significantly expanding its hydrogen pipeline network in addition to the 1,600 km of current pipelines. This new network, including the "SoutH2 Corridor," aims to link Europe with North Africa and is projected to deliver 40% of the hydrogen required to meet the EU's RePowerEU targets. By 2030, Europe plans to have 11,600 km of hydrogen pipelines, with an ambitious goal of nearly 40,000 km by 2040.

Technological Advancements in Hydrogen Transport

The development of advanced materials and technologies to safely and efficiently transport hydrogen, which has a smaller molecular structure and can cause embrittlement in traditional steel pipelines, is crucial for expanding green hydrogen infrastructure. Innovations in pipeline construction are making this expansion more feasible and cost-effective, paving the way for ambitious projects like the Holstebro-Hamburg pipeline between Denmark and Germany, expected to stretch 450 km.

Denmark is emerging as a leader in Europe's hydrogen pipeline development, projected to account for 35% of the world's new hydrogen pipelines between 2022 and 2026. By 2026, Denmark could have 800 km of hydrogen pipelines, positioning the country at the forefront of the global green hydrogen market.

Uncertain Demand for Green Hydrogen

The importance of green hydrogen in decarbonization plans is significant, but its popularity is still unclear because of expensive production and rivalry with alternative low-carbon technologies like battery storage. Although there is a projected increase in hydrogen demand, the adoption of green hydrogen in the market has been slow. In 2022, just 1% of the worldwide hydrogen supply is environmentally friendly, indicating a slower transition than anticipated.

The slow demand affects the financial feasibility of green hydrogen pipeline projects, especially in areas with low adoption rates. The ambiguity regarding demand complicates the ability to support major infrastructure investments, which are necessary for expanding production and cutting costs in the long run.

Segmentation Analysis

The global green hydrogen pipeline market is segmented based on Pipeline Material, Hydrogen Form, Location, End-User and Region.

Corrosion Resistance & Cost-Effective Plastic & Composite Pipelines are in Demand

The distinct requirements of transporting hydrogen effectively and safely are what drive the demand for plastic and composite pipelines in the green hydrogen pipeline market. These materials offer several advantages over traditional steel pipelines, particularly in the context of the emerging green hydrogen economy. Similarly, Plastic and composite pipelines are generally cheaper to manufacture and install than steel pipelines. The lighter weight of these materials reduces transportation and installation costs, making them an attractive option for large-scale hydrogen infrastructure projects.

Geographical Share

Ambitious Targets and Infrastructure Investments in Europe Region

Due to strong policy frameworks like the European Union's goal to produce 10 million metric tons of renewable hydrogen by 2030, Europe is at the forefront of the global green hydrogen market. The continent is heavily investing in hydrogen infrastructure, including the development of hydrogen hubs and large-scale electrolysis plants.

Europe's 2050 Low Carbon Strategy and the Green Pact for Europe further emphasize hydrogen's critical role in decarbonizing energy-intensive industries such as steel and chemicals. These ambitious initiatives are driving demand for hydrogen pipelines to facilitate the transport of hydrogen across the region, connecting production hubs with industrial consumers and export terminals.

Competitive Landscape

The major global players in the market include ArcelorMittal, Cenergy Holdings, Fichtner GmbH & Co. KG, GF Piping Systems Hexagon Purus, HyNet North West Hydrogen Pipeline, Pipelife International GmbH, Royal IHC, SoluForce and TUV SUD.

Sustainability Analysis

The global green hydrogen pipeline market holds substantial promise for reducing carbon emissions, as green hydrogen produced through electrolysis using renewable energy has a significantly lower carbon footprint compared to hydrogen derived from fossil fuels. Lifecycle greenhouse gas emissions for green hydrogen range between 0.6 to 3.0 kg CO2e per kg, well below the US Department of Energy's benchmark of 4 kg CO2e per kg for "clean" hydrogen.

Additionally, green hydrogen pipelines contribute to local environmental sustainability by eliminating local air pollutants and noise pollution, offering an eco-friendly alternative to transportation methods such as trucks and ships. The competitiveness of green hydrogen is expected to grow as production costs decrease due to technological advancements and economies of scale.

Policies such as tax credits and subsidies, especially in regions including Europe, North America and Asia-Pacific, will further enhance market competitiveness. The development of green hydrogen pipelines is economically sustainable through the establishment of long-term contracts that ensure market stability, attracting investors and accelerating the deployment of regional-scale projects. These factors combine to create a favorable economic environment for the growth of green hydrogen infrastructure.

Russia-Ukraine War Impact

The Russia-Ukraine war has significantly impacted the global green hydrogen pipeline market, primarily through its effect on energy prices and geopolitical stability. The war-induced energy crisis has caused electricity prices to soar, directly increasing the cost of green hydrogen production, as electricity is a crucial input.

The rise in production costs makes green hydrogen less competitive compared to traditional energy sources, potentially slowing the development of pipeline infrastructure. Geopolitical instability has also introduced uncertainty for investors, making them hesitant to commit substantial capital to large-scale green hydrogen projects, including the construction of pipelines.

Trade barriers resulting from sanctions and restrictions further complicate the global hydrogen trade, disrupting the flow of hydrogen and the technologies needed for its production and transport. Additionally, the war has intensified competition for renewable energy resources, such as land and water, which are essential for green hydrogen production. The competition adds another layer of complexity to the development of pipeline infrastructure necessary to support the global hydrogen market.

Pipeline Material

Metal

Plastic & Composite

Hydrogen Form

Gas

Liquid

Location

Onshore

Offshore

End-User

Industrial Manufacturing

Power Generation

Oil & Gas

Others

Region

North America

US

Canada

Mexico

Europe

Germany

UK

France

Italy

Spain

Rest of Europe

South America

Brazil

Argentina

Rest of South America

Asia-Pacific

China

India

Japan

Australia

Rest of Asia-Pacific

Middle East and Africa

Key Developments

In 2022, Hexagon Purus and Lhyfe collaborated to create green and renewable hydrogen for transportation and industrial use. Similarly, SoluForce BV made a deal with ADNOC to set up a production plant in Abu Dhabi for reinforced thermoplastic pipes and non-metallic solutions, enabling SoluForce to increase its production of H2T pipes in area.

In March 2021, Salzgitter AG partnered with BP, Evonik, Nowega, OGE, RWE and Thyssengas to create a hydrogen infrastructure that spans across borders. The collaboration's goal is to encompass the full value chain, starting from the production of green hydrogen to its transportation and utilization in industry, setting up the groundwork for a European green hydrogen network.

Why Purchase the Report?

To visualize the global green hydrogen pipeline market segmentation based on pipeline material, hydrogen form, location, end-user and region.

Identify commercial opportunities by analyzing trends and co-development.

Excel data sheet with numerous data points of the green hydrogen pipeline market-level with all segments.

PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.

Product mapping available as excel consisting of key products of all the major players.

The global green hydrogen pipeline market report would provide approximately 70 tables, 60 figures and 214 pages.

Target Audience 2024

Manufacturers/ Buyers

Industry Investors/Investment Bankers

Research Professionals

Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet Pipeline Material
  • 3.2. Snippet Hydrogen Form
  • 3.3. Snippet Location
  • 3.4. Snippet End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Increasing Global Decarbonization Efforts
      • 4.1.1.2. Technological Advancements in Hydrogen Transport
    • 4.1.2. Restraints
      • 4.1.2.1. Uncertain Demand for Green Hydrogen
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Spain-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Pipeline Material

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 7.1.2. Market Attractiveness Index, By Pipeline Material
  • 7.2. Metal
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Plastic & Composite

8. By Hydrogen Form

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 8.1.2. Market Attractiveness Index, By Hydrogen Form
  • 8.2. Gas
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Liquid

9. By Location

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 9.1.2. Market Attractiveness Index, By Location
  • 9.2. Onshore
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Offshore

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. Industrial Manufacturing
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Power Generation
  • 10.4. Oil & Gas
  • 10.5. Industrial Gases
  • 10.6. Others

11. Sustainability Analysis

  • 11.1. Environmental Analysis
  • 11.2. Economic Analysis
  • 11.3. Governance Analysis

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), End-User
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.7.1. US
      • 12.2.7.2. Canada
      • 12.2.7.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), End-User
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.7.1. Germany
      • 12.3.7.2. UK
      • 12.3.7.3. France
      • 12.3.7.4. Italy
      • 12.3.7.5. Spain
      • 12.3.7.6. Rest of Europe
    • 12.3.8. South America
    • 12.3.9. Introduction
    • 12.3.10. Key Region-Specific Dynamics
    • 12.3.11.
    • 12.3.12. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 12.3.13. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 12.3.14. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.3.15. Market Size Analysis and Y-o-Y Growth Analysis (%), End-User
    • 12.3.16. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.16.1. Brazil
      • 12.3.16.2. Argentina
      • 12.3.16.3. Rest of South America
  • 12.4. Asia-Pacific
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3.
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), End-User
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. China
      • 12.4.8.2. India
      • 12.4.8.3. Japan
      • 12.4.8.4. Australia
      • 12.4.8.5. Rest of Asia-Pacific
  • 12.5. Middle East and Africa
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Pipeline Material
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Hydrogen Form
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Location
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), End-User

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. ArcelorMittal*
    • 14.1.1. Company Overview
    • 14.1.2. Type Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. Cenergy Holdings
  • 14.3. Fichtner GmbH & Co. KG
  • 14.4. GF Piping Systems
  • 14.5. Hexagon Purus
  • 14.6. HyNet North West Hydrogen Pipeline
  • 14.7. Pipelife International GmbH
  • 14.8. Royal IHC
  • 14.9. SoluForce
  • 14.10. TUV SUD (*LIST NOT EXHAUSTIVE)

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us