デフォルト表紙
市場調査レポート
商品コード
1446822

Waste to Energy(WtE)の世界市場 2024-2031

Global Waste To Energy Market - 2024-2031

出版日: | 発行: DataM Intelligence | ページ情報: 英文 182 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.58円
Waste to Energy(WtE)の世界市場 2024-2031
出版日: 2024年02月13日
発行: DataM Intelligence
ページ情報: 英文 182 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

Waste to Energy(WtE)の世界市場は、2023年に385億米ドルに達し、2031年には687億米ドルに達すると予測され、予測期間2024-2031年のCAGRは7.5%で成長します。

廃棄物からエネルギーへの転換は、信頼性が高く、地元で、手ごろな価格で、部分的に再生可能なエネルギーを確保しながら、循環型の廃棄物管理システムを確立することによって、公的機関を支援する上で重要な役割を果たしています。WtE発電所は、リサイクル不可能な廃棄物を効率的に処理し、貴重な資源として活用することで、欧州全体で1,700万人分の熱と2,000万人分の電力を生み出しています。欧州の地域冷暖房ネットワークに供給される熱の約10%は、WtEによるものです。

米国エネルギー省のバイオエネルギー技術局と国立再生可能エネルギー研究所は、WtEへの取り組みを世界的に支援・改善するための措置を講じています。BETOとNRELの協力により、有機廃棄物エネルギー技術支援プログラムが開始されました。

2023年には、北米が世界のWtE市場の約25%を占め、2番目に急成長する地域になると予想されています。米国では、商業廃棄物が都市固形廃棄物のかなりの部分を占めており、廃棄物管理努力の重要な焦点となっています。企業は廃棄物管理に関する連邦、州、地方の規制の対象であり、コンプライアンス違反は多額の罰金や風評被害につながる可能性があります。こうした要件を満たし、こうした事態を回避するため、WTE転換技術に注目する企業が増えています。

ダイナミクス

持続可能な廃棄物管理と発電への注目の高まり

WtE発電に対する需要の高まりは、いくつかの要因によってもたらされているが、中でも最も重要な要因のひとつは、WtE発電所が、都市固形廃棄物を燃料として燃焼させ発電することで、都市固形廃棄物を管理するソリューションを提供することです。廃棄物処理の課題を解決し、廃棄物の量を約87%削減します。MSWには、紙、プラスチック、庭くず、木製品のようなエネルギーに富む物質が含まれており、燃料源として効率的に利用することができます。米国では、MSWの約85%を燃やして発電することができます。

大量燃焼施設、モジュール式システム、ごみ固形燃料システムなど、さまざまな燃焼技術が存在します。大量燃焼施設は米国で最も一般的なタイプで、傾斜した移動火格子上でMSWを燃焼します。一方、ごみ固形燃料化システムは、MSWを破砕・分別して可燃性混合物を生成します。

政府のインセンティブと補助金

政府のインセンティブと補助金は、様々な地域のWtE市場の成長を促進しています。中国は、2031年までに廃棄物処理の50%をWtEで処理するという目標を掲げており、プロジェクトに手厚い補助金を出しています。英国では、高いチップ料金と固定価格買取制度に支えられて、廃棄物エネルギー化プロジェクトが急成長しています。オランダ、デンマーク、日本、シンガポールなど、土地に制約のある国では、埋立地課税のために焼却率が高くなっています。

WtEプロジェクトの設置にはコストがかかるため、2050年までに設置容量は大幅に増加すると予想されます。焼却は現在、大規模な廃棄物管理にとって最も有利な選択肢でありますが、消費者の嗜好、廃棄物組成、環境政策の変化が業界に影響を与える可能性があることを、報告書は認めています。

廃棄物エネルギー利用の環境影響

廃棄物焼却を経た廃棄物に含まれる炭素の大部分は、気候変動に重大な影響を及ぼす温室効果ガスである二酸化炭素として大気中に放出されます。紙、板紙、綿、木材、生ごみなどのバイオマス資源から作られた廃棄物燃料の場合、燃焼中に排出される二酸化炭素は、最初に大気から吸収された炭素に由来します。

プラスチックや石油製品など、廃棄物発電プロセスで焼却される物質も、他の化石燃料と同様に温室効果ガスの排出に寄与します。これらの物質の燃焼により、有害な温室効果ガスが放出され、環境に悪影響を及ぼします。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 持続可能な廃棄物管理と発電への注目の高まり
      • 政府のインセンティブと補助金
    • 抑制要因
      • 廃棄物発電による環境への影響
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 テクノロジー別

  • サーマル
  • バイオ
  • その他

第8章 廃棄物別

  • 固体廃棄物
  • 液体廃棄物
  • 気体廃棄物

第9章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第10章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第11章 企業プロファイル

  • Covanta Energy
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • China Everbright
  • Suez Environment(SITA)
  • Veolia Environmental
  • Viridor
  • Keppel Seghers Belgium N.V.
  • MVV Energie AG
  • China Metallurgical Group
  • Fluence Corporation
  • Waste Management Inc.

第12章 付録

目次
Product Code: EP658

Overview

Global Waste to Energy Market reached US$ 38.5 billion in 2023 and is expected to reach US$ 68.7 billion by 2031, growing with a CAGR of 7.5% during the forecast period 2024-2031.

Waste to energy plays a vital role in helping public authorities by establishing a circular waste management system while ensuring reliable, local, affordable and partially renewable energy. Waste to energy plants effectively process non-recyclable waste, utilizing it as a valuable resource to generate heat for 17 million individuals and electricity for 20 million citizens across Europe. Approximately 10% of the heat supplied to district heating and cooling networks in Europe is derived from waste to energy.

U.S. Department of Energy's Bioenergy Technologies Office and the National Renewable Energy Laboratory have taken steps to support and improve waste-to-energy initiatives globally. The collaboration between BETO and NREL has resulted in the launch of the organic Waste-to-Energy Technical Assistance program.

In 2023, North America is expected to be the second-fastest growing region, holding about 25% of the global waste to energy market. In U.S., commercial waste comprises a significant portion of municipal solid waste, making it a crucial focus for waste management efforts. Businesses are subject to federal, state and local regulations regarding waste management and non-compliance can result in substantial fines and reputational damage. To meet these requirements and avoid such consequences, businesses are increasingly turning to WTE conversion technologies.

Dynamics

Rising Focus on Sustainable Waste Management and Electricity Generation

The increased demand for waste-to-energy is driven by several factors, one of the most important is that waste-to-energy plants provide a solution for managing municipal solid waste by burning it as fuel to generate electricity. It addresses the challenge of waste disposal and reduces the volume of waste by about 87%. MSW contains energy-rich materials like paper, plastics, yard waste and wood products, which can be efficiently utilized as a fuel source. Approximately 85% of MSW in U.S. can be burned to generate electricity.

Different combustion technologies exist, including mass burn facilities, modular systems and refuse-derived fuel systems. Mass burn facilities are the most common type in U.S. and burn MSW on a sloping, moving grate. Modular systems are smaller and portable, while refuse-derived fuel systems shred and separate MSW to produce a combustible mixture.

Government Incentives and Subsidies

Government incentives and subsidies are driving growth in the waste to energy market in various regions. China has set a target for 50% of its waste disposal to be handled through waste to energy by 2031 and is generously subsidizing projects. UK has seen rapid growth in waste to energy projects supported by high tipping fees and feed-in tariffs. Countries with land constraints, such as Netherlands, Denmark, Japan and Singapore, have higher rates of incineration due to landfill taxation.

Waste to energy projects are costly to set up and the installed capacity is expected to increase significantly by 2050. Incineration is currently the most favorable option for large-scale waste management, but the report acknowledges that changes in consumer preferences, waste composition and environmental policies could impact the industry.

Environmental Impact of Waste-to-Energy Management

The majority of the carbon present in the waste that undergoes waste-to-energy incineration is released into the atmosphere as carbon dioxide which is a prevalent greenhouse gas with significant implications for climate change. In the case of waste fuel made from biomass sources such as paper, paperboard, cotton, wood and food waste, the carbon dioxide emitted during combustion originates from the carbon that was initially absorbed from the atmosphere.

Materials like plastics, oil-based products and other substances that are also incinerated in waste-to-energy processes contribute to greenhouse gas emissions in a manner similar to any other fossil fuel. The combustion of these materials results in the release of harmful greenhouse gases that have detrimental effects on the environment.

Segment Analysis

The global waste to energy market is segmented based on technology, waste and region.

Rising Demand for Thermal Incineration Drives the Segment Growth

Driver assistance is expected to be the fastest growing segment with 1/3rd of the market during the forecast period 2024-2031. It is estimated that plants that combine thermal power cogeneration and electricity generation can achieve 80% efficiency. Based on the International Renewable Energy Agency, globally bioenergy capacity will reach 148.9 GW in 2022, up 5.3% from the previous year.

Incineration is now the most widely used waste-to-energy technique for processing municipal solid waste. However, waste-to-energy systems, notably incineration, emit pollutants and pose serious health hazards. To minimize particulate and gas-phase emissions, incineration facilities have deployed a variety of process units for cleaning the flue gas stream, resulting in a considerable improvement in environmental sustainability.

Geographical Penetration

Rising Focus on Renewable Energy in Asia-Pacific

Asia-Pacific is the dominant region in the global waste to energy market covering about 30% of the market. The region is witnessing a growing interest in waste-to-energy management, driven by the benefits of waste to energy extend beyond energy generation. By reducing the volume of waste going to landfills by up to 90%, waste to energy helps address landfill capacity issues and mitigates methane emissions from decomposing organic materials. The factors are particularly crucial in Southeast Asia, where urban populations are projected to rise significantly, placing greater demands on waste management systems.

Southeast Asian countries including Singapore, Indonesia, Thailand and Vietnam have initiated WtE projects or trials. China and Japan are major players in exporting their expertise and technology to the region. The development of waste to energy facilities requires close coordination among government stakeholders, utilities and investors to ensure stable cash flow and viable risk structures.

Competitive Landscape

The major global players in the market include Covanta Energy, China Everbright, Suez Environment (SITA), Veolia Environmental, Viridor, Keppel Seghers Belgium N.V., MVV Energie AG, China Metallurgical Group, Fluence Corporation and Waste Management Inc.

COVID-19 Impact

The COVID-19 pandemic had a profound impact on waste-to-energy infrastructure, revealing both challenges and opportunities. One of the significant challenges was the increased volume of healthcare waste, overwhelming existing waste management systems. The limited resources and technology options, along with the capacity constraints of central waste management facilities, posed difficulties in effectively managing the surge in infectious medical waste.

The pandemic also underscored the need to shift towards a circular economy approach in waste management. The increased demand for single-use plastics during the pandemic led to a surge in plastic waste, creating an ecological disaster. To address this, a shift towards sustainable production, consumption and product design is necessary. The circular economy promotes resource efficiency, zero waste goals and alternative treatment technologies, such as recycling.

Russia-Ukraine War Impact

The Russia-Ukraine war has significantly affected waste-to-energy management, particularly by causing a surge in energy prices. It leads to higher household energy costs, creating an energy crisis that directly impacts heating, cooling, lighting and mobility expenses. Also, the increased energy prices have indirectly raised the costs of other goods and services throughout global supply chains.

A study conducted on 116 countries, with a focus on developing nations, revealed that household energy costs have risen by at least 63% and potentially up to 113%. The represents a major economic shock, requiring households globally to find additional income to maintain their pre-war living standards.

AI Impact

AI is powering waste-to-energy management through the integration of AI algorithms in robotic waste-to-energy systems. The systems leverage AI to optimize waste sorting, enhance energy conversion efficiency and improve overall waste management practices.

One of the key contributions of AI is in waste sorting. Machine learning algorithms can be trained to identify and separate different types of waste based on their physical properties and spectral signatures. It enables robots to sort waste more accurately and efficiently, increasing the recovery of valuable materials and reducing the amount of waste that ends up in landfills.

By Technology

  • Thermal
  • Biological
  • Others

By Waste

  • Solid Waste
  • Liquid Waste
  • Gaseous Waste

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In April 2023, Egypt has secured a contract worth US$ 120 million to design, develop, own and operate the country's first solid waste-to-electricity facility. The contract was signed between the Giza governorate and a collaboration made up of Renergy Egypt and the National Authority for Military Production.
  • In January 2023, Babcock & Wilcox was granted a contract by Lostock Sustainable Energy Plant to assist with the delivery of the power train for a waste-to-energy plant near Manchester, UK. Every year, the plant will generate more than 60 MW of energy for residents and businesses while also processing around 600,000 metric Tons of rubbish. The agreement is valued at US$ 65 million.
  • In August 2022, under part of its ambitious combined solid waste management project, the state's urban development and housing department planned to construct a waste-to-energy plant near Ramachak Bairiya on the Patna-Gaya highway. The purpose is to make sure that all waste products get disposed of scientifically in the plant.

Why Purchase the Report?

  • To visualize the global waste to energy market segmentation based on technology, waste and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of waste to energy market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global waste to energy market report would provide approximately 54 tables, 42 figures and 182 pages.

Target Audience 2024

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Technology
  • 3.2. Snippet by Waste
  • 3.3. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Rising Focus on Sustainable Waste Management and Electricity Generation
      • 4.1.1.2. Government Incentives and Subsidies
    • 4.1.2. Restraints
      • 4.1.2.1. Environmental Impact of Waste-to-Energy Management
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Consumer Electronics Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Technology

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 7.1.2. Market Attractiveness Index, By Technology
  • 7.2. Thermal*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Biological
  • 7.4. Others

8. By Waste

  • 8.1. Introduction
    • 8.1.1. *Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste
    • 8.1.2. Market Attractiveness Index, By Waste
  • 8.2. Solid Waste*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Liquid Waste
  • 8.4. Gaseous Waste

9. By Region

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 9.1.2. Market Attractiveness Index, By Region
  • 9.2. North America
    • 9.2.1. Introduction
    • 9.2.2. Key Region-Specific Dynamics
    • 9.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste
    • 9.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.2.5.1. U.S.
      • 9.2.5.2. Canada
      • 9.2.5.3. Mexico
  • 9.3. Europe
    • 9.3.1. Introduction
    • 9.3.2. Key Region-Specific Dynamics
    • 9.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste
    • 9.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.3.5.1. Germany
      • 9.3.5.2. UK
      • 9.3.5.3. France
      • 9.3.5.4. Italy
      • 9.3.5.5. Russia
      • 9.3.5.6. Rest of Europe
  • 9.4. South America
    • 9.4.1. Introduction
    • 9.4.2. Key Region-Specific Dynamics
    • 9.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste
    • 9.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.4.5.1. Brazil
      • 9.4.5.2. Argentina
      • 9.4.5.3. Rest of South America
  • 9.5. Asia-Pacific
    • 9.5.1. Introduction
    • 9.5.2. Key Region-Specific Dynamics
    • 9.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste
    • 9.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 9.5.5.1. China
      • 9.5.5.2. India
      • 9.5.5.3. Japan
      • 9.5.5.4. Australia
      • 9.5.5.5. Rest of Asia-Pacific
  • 9.6. Middle East and Africa
    • 9.6.1. Introduction
    • 9.6.2. Key Region-Specific Dynamics
    • 9.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 9.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Waste

10. Competitive Landscape

  • 10.1. Competitive Scenario
  • 10.2. Market Positioning/Share Analysis
  • 10.3. Mergers and Acquisitions Analysis

11. Company Profiles

  • 11.1. Covanta Energy*
    • 11.1.1. Company Overview
    • 11.1.2. Product Portfolio and Description
    • 11.1.3. Financial Overview
    • 11.1.4. Key Developments
  • 11.2. China Everbright
  • 11.3. Suez Environment (SITA)
  • 11.4. Veolia Environmental
  • 11.5. Viridor
  • 11.6. Keppel Seghers Belgium N.V.
  • 11.7. MVV Energie AG
  • 11.8. China Metallurgical Group
  • 11.9. Fluence Corporation
  • 11.10. Waste Management Inc.

LIST NOT EXHAUSTIVE

12. Appendix

  • 12.1. About Us and Services
  • 12.2. Contact Us