表紙:航空機用燃料電池(APU)の世界市場 2023年~2030年
市場調査レポート
商品コード
1418726

航空機用燃料電池(APU)の世界市場 2023年~2030年

Global Aircraft Fuel Cell APUS Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 195 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
航空機用燃料電池(APU)の世界市場 2023年~2030年
出版日: 2024年01月23日
発行: DataM Intelligence
ページ情報: 英文 195 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

航空機用燃料電池(APU)の世界市場は、2022年に18億米ドルに達し、2023-2030年の予測期間中にCAGR 10.8%で成長し、2030年には57億米ドルに達すると予測されています。

世界の航空業界は急速な変化を遂げており、脱炭素化が重視されるようになっています。航空機の完全な電気化はまだ数十年先のことだが、航空機メーカーは燃料電池APUの試験を徐々に進めています。このような広範な試験により、完全に実用化可能なAPUシステムが次世代の民間航空機に組み込まれる可能性が高いです。

民間航空宇宙分野で進行中の開発は、軍事分野にも波及する可能性が高く、戦闘機、軍用輸送機、UAV、巡航ミサイル、浮遊弾などの幅広い用途に恩恵をもたらします。軍事用途へのAPUの採用は、世界市場の成長見通しを大きく押し上げると見込まれています。

力学

ドローン戦争の進展

現在進行中のロシア・ウクライナ戦争が証明しているように、現代の無人航空機は戦争の様相を変えています。ロシアとウクライナの双方は、互いの歩兵や軍事施設を標的にするため、浮遊弾薬、FPV、マルチローター・ドローンを広範囲に使用しています。これにより、地上作戦における戦闘用ドローンの役割が改めて重視されるようになりました。それゆえ、ウクライナもロシアも、戦場で得た経験に基づいて新しいタイプの無人機を開発しています。

メーカー各社は、小火器の射撃に耐えられるよう本体を硬化させた新型ドローンを開発し、電子的な対抗手段に対しても硬化させています。軍隊はまた、敵の防空網を圧倒するために自律型ドローンの群れを配備することも検討しています。多くのドローンは、長距離推進用に小型のAPUを利用する可能性が高いです。

進行中の新型巡航ミサイルの開発

現代の戦争ドクトリンは、陸・空・海から発射される巡航ミサイルによって敵のインフラを破壊する精密空爆に大きな重点を置いています。米国、フランス、英国、ロシア、中国などの世界的大国は以前から精密攻撃能力を有していたが、新興軍事大国による採用は過去10年間で顕著になっています。

2023年12月、イランは有効射程1000キロのタライェ巡航ミサイルを導入しました。さらにインドは、独自開発したニルベイ巡航ミサイルのさまざまなバリエーションと構成をテストしています。2023年8月、トルコは11隻の自国製巡航ミサイル「アトマカ」を搭載すると発表しました。さらに、ロシアとウクライナの戦争は、巡航ミサイルによる長距離精密攻撃の壊滅的な影響力を十分に実証しました。

APUは巡航ミサイルに搭載され、初弾発射後のミサイル推進に使用されます。現在進行中の新世代の巡航ミサイルの開発は、巡航ミサイルの推進用途に適した燃料電池式APUの新たな研究に拍車をかけるに違いないです。

高い技術的複雑性

燃料電池補助動力装置はまだ新興技術であり、主流採用には至っていないです。その要因のひとつは、完全に機能させるために克服しなければならない技術的な複雑さが非常に多いことです。重要な課題のひとつは、燃料電池で使用される水素燃料の貯蔵と取り扱いです。

安全な輸送を保証するために、水素は液化され、圧力下で貯蔵されなければならないです。さらに、貯蔵システムは、航空機の全体的な機能を妨げないよう、軽量で小さなフォームファクターでなければならないです。燃料電池システムには、運転中に発生する熱を放散するためのコンパクトで効率的な冷却装置も必要です。これらの問題が未解決のままである限り、世界市場が大きく成長することはないと思われます。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • ドローン戦争の進展
      • 新型巡航ミサイルの開発
    • 抑制要因
      • 高い技術的複雑性
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMIの見解

第6章 COVID-19分析

第7章 燃料別

  • 水素
  • その他

第8章 用途別

  • 固定翼航空機
  • 回転翼航空機
  • UAV(無人航空機)
  • 空対空ミサイル(AAMs)

第9章 出力別

  • 0-100 kW
  • 100 kW-1 MW
  • 1MW以上

第10章 エンドユーザー別

  • OEM
  • MRO

第11章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • スペイン
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第12章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第13章 企業プロファイル

  • Honeywell International Inc.
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Zeroavia Inc.
  • Airbus
  • Embraer
  • Boeing
  • The Marvin Group
  • The Dewey Electronics Corporation
  • Powercell Sweden AB
  • Doosan Mobility Innovation
  • H3 Dynamics

第14章 付録

目次
Product Code: AD7836

Overview

Global Aircraft Fuel Cell APUs Market reached US$ 1.8 billion in 2022 and is expected to reach US$ 5.7 billion by 2030, growing with a CAGR of 10.8% during the forecast period 2023-2030.

The global aviation industry is undergoing a rapid shift, with growing emphasis on decarbonization. Although fully electric aircraft are still decades away, aircraft manufacturers are gradually trialing fuel cell APUs. Such extensive trials are likely to result in a fully workable APU system being integrated into the next generation of civilian aircraft.

The ongoing developments in civilian aerospace sector are also likely to spillover into the military domain, benefiting a wide range of applications such as fighter jets, military transport aircraft, UAVs, cruise missiles and loitering munitions. The adoption of fuel cell APUs for military applications will significantly boost the growth prospects of the global market.

Dynamics

Advancements in Drone Warfare

Modern unmanned aircraft have changed the face of warfare, as is evidenced by the ongoing Russia-Ukraine war. Both the sides are extensively using loitering munitions, FPV and multi rotor drones to target each other's infantry and military installations. It has placed renewed emphasis on the role of combat drones in ground operations. Hence, both Ukraine and Russia are developing new types of drones based on the experience gained on the battlefield.

Manufacturers are developing new drones with hardened bodies to withstand small arms fire and are also hardening them against electronic countermeasures. Armies are also looking at deploying autonomous drone swarms to overwhelm enemy air defences. Many drones are likely to utilize compact APUs for long range propulsion.

Ongoing Development of New Cruise Missiles

The modern doctrine of warfare places a major emphasis on precision air strikes to destroy enemy infrastructure through land, air or sea-launched cruise missiles. While global powers such as U.S., France, UK, Russia and China have had precision strike capabilities for a long time, their adoption by emerging military powers has become more pronounced over the past decade.

In December 2023, Iran inducted the Talaeiyeh cruise missile, with an effective range of 1000 kms. Furthermore, India is testing different variations and configuration of its indigenously developed Nirbhay cruise missiles. In August 2023, Turkey announced that 11 of its warships will be equipped with the indigenous Atmaca cruise missile. Furthermore, the Russia-Ukraine war has adequately demonstrated the devastating impact of long-range precision strikes by cruise missiles.

APUs are used in cruise missiles for missile propulsion after initial launch, during which rocket boosters get it upto flying speed. The ongoing development of a new generation of cruise missile will undoubtedly spur new research into fuel cell-powered APUs suitable for cruise missile propulsion applications.

High Technological Complexity

Fuel cell auxiliary power units are still an emerging technology and have not yet led to mainstream adoption. One factor is the sheer number of technological complexities that need to be overcome in order to ensure its full functioning. One of the key challenges is the storage and handling of hydrogen fuel used in the fuel cells.

Hydrogen must be liquified and stored under pressure to ensure safe transportation. Furthermore, the storage system must be lightweight and have small form factor so as not to impede the overall functioning of the aircraft. The fuel cell system also requires a compact and efficient cooling to dissipate the heat generated during the operation. As long as these issues remained unsolved, the global market is unlikely to experience major growth.

Segment Analysis

The global aircraft fuel cell APUs market is segmented based on fuel, application, power output, end-user and region.

0-100 kW segment is expected to garner the highest market share during the forecast period

The 0-100 kW power output segment will garner a large market share due to its compatibility with the ongoing trends in the aerospace industry. APUs in the 0-100 kW power range are largely used for medium altitude long endurance (MALE) UAVs, loitering munitions and long range precision cruise missiles.

The increasing usage of drones in applications such as surveying and entertainment will also be conducive to the growth of this segment. Furthermore, the development of small-scale zero emission aircraft are also likely to create sizeable demand for auxiliary power units in the 0-100 kW power output segment.

Geographical Penetration

New Innovations to Propel Market Growth in North America

North America is expected to have the highest share within the global market principally due to the advanced R&D ecosystem of U.S. Supported by high-quality academia and a plethora of research institutions, U.S. has been at the forefront of leading research in emerging aerospace technologies. U.S. has a major head start over other European and Asian countries in patenting and commercializing fuel cell APU technology.

The entire innovation ecosystem is backed by generous funding from U.S. governmental agencies. For instance, in November 2023, the AFWERX, the innovation branch of U.S. Air Force, awarded a US$ 37 million grant to Piasecki Aircraft to develop new clean hydrogen fuel cell technologies for next-generation vertical takeoff and landing (VTOL) aircraft.

COVID-19 Impact Analysis:

The COVID-19 pandemic represented a challenging time for the global aerospace industry. Many ongoing R&D projects were disrupted due to lockdowns and other workplace restrictions. Large aircraft manufacturers, such as Boeing and Airbus struggled to quickly adapt to changing market conditions, as fleeting grounding and a virtual halt to international air travel led to drying up of new aircraft orders. Business continuity focused on fulfilling existing aircraft orders.

The military aerospace industry was relatively less affected, as government grants and funding continued uninterrupted for researching and developing nascent emerging technologies. Large conglomerates with well-defined product pipelines did not face major challenges but many small startups went bankrupt over the course of the pandemic, as venture capital funding dried up. Large conglomerates were able to purchase IP rights for the technologies developed by these defunct startups. The post-pandemic period witnessed a surge in military spending, primarily due to Russia's invasion of Ukraine. The global fuel cell APU market will thus witness new growth opportunities.

Russia-Ukraine War Impact Analysis

The Russia-Ukraine war will have a major influence on the future development of the global aircraft fuel cell APUs market. Although fuel cell APUs is still a nascent technology, the increasingly frequent usage of reconnaissance drones and long range cruise missiles will lead to changes in modern warfare doctrines of all global military powers. It will give a new impetus to the development of fuel cell APUs.

Russia has switched its economy to a war-footing and has increased the production of critical military equipment. However, the harsh economic sanctions imposed on Russia for the invasion of Ukraine has hobbled the military industry's long term potential to develop and deploy fuel cell APUs for military applications.

By Fuel

  • Hydrogen
  • Others

By Application

  • Fixed Wing Aircraft
  • Rotary Aircraft
  • UAVs
  • Air-to-Air Missiles (AAMs)

By Power Output

  • 0-100 kW
  • 100 kW - 1 MW
  • Above 1 MW

By End-User

  • OEMs
  • MRO

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Spain
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In June 2023, the European aircraft manufacturer Airbus, trialed a hydrogen fuel cell powered APU on a modified A330 aircraft as part of its UpNext program. The trial demonstrated the successful in-flight operation of fuel cell APUs.
  • In August 2023, R&D dynamics, a U.S.-based aerospace components manufacturer, won a contract from Airbus to supply fuel cell compressors for the Airbus UpNext fuel cell APU program.
  • In December 2022, Blue World Technologies, a Danish fuel cell manufacturer, launched a methanol fuel cell powered APU to replace conventional diesel generators onboard marine vessels.

Competitive Landscape

The major global players in the market include: Honeywell International Inc., Zeroavia Inc., Airbus, Embraer, Boeing, The Marvin Group, The Dewey Electronics Corporation, Powercell Sweden AB, Doosan Mobility Innovation and H3 Dynamics.

Why Purchase the Report?

  • To visualize the global aircraft fuel cell APUs market segmentation based on fuel, application, power output, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of pouch tapes market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global aircraft fuel cell APUs market report would provide approximately 61 tables, 57 figures and 195 Pages.

Target Audience 2023

  • Aircraft Manufacturers
  • Aircraft Maintenance Companies
  • Industry Investors/Investment Bankers
  • Research Professionals

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Fuel
  • 3.2. Snippet by Application
  • 3.3. Snippet by Power Output
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Advancements in Drone Warfare
      • 4.1.1.2. Ongoing Development of New Cruise Missiles
    • 4.1.2. Restraints
      • 4.1.2.1. High Technological Complexity
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Fuel

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 7.1.2. Market Attractiveness Index, By Fuel
  • 7.2. Hydrogen*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Others

8. By Application

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 8.1.2. Market Attractiveness Index, By Application
  • 8.2. Fixed Wing Aircraft*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Rotary Aircraft
  • 8.4. UAVs
  • 8.5. Air-to-Air Missiles (AAMs)

9. By Power Output

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 9.1.2. Market Attractiveness Index, By Power Output
  • 9.2. 0-100 kW*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. 100 kW - 1 MW
  • 9.4. Above 1 MW

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. OEMs*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. MRO

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Aircraft
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Fuel
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Power Output
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Honeywell International Inc. *
    • 13.1.1. Company Overview
    • 13.1.2. Product Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Key Developments
  • 13.2. Zeroavia Inc.
  • 13.3. Airbus
  • 13.4. Embraer
  • 13.5. Boeing
  • 13.6. The Marvin Group
  • 13.7. The Dewey Electronics Corporation
  • 13.8. Powercell Sweden AB
  • 13.9. Doosan Mobility Innovation
  • 13.10. H3 Dynamics

LIST NOT EXHAUSTIVE.

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us