表紙:自動車用バッテリー熱管理システムの世界市場:2023年~2030年
市場調査レポート
商品コード
1382540

自動車用バッテリー熱管理システムの世界市場:2023年~2030年

Global Automotive Battery Thermal Management System Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 227 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
自動車用バッテリー熱管理システムの世界市場:2023年~2030年
出版日: 2023年11月17日
発行: DataM Intelligence
ページ情報: 英文 227 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

自動車用バッテリー熱管理システムの世界市場は、2022年に27億米ドルとなり、2023年~2030年の予測期間中に23.3%のCAGRで成長し、2030年までに128億米ドルに達すると予測されています。

世界の自動車用バッテリー熱管理システム市場は、そのダイナミクスに影響を与えるさまざまな要因によって、長年にわたって著しい成長と変貌を遂げてきました。リチウムイオン電池を動力源とする電気自動車は、こうした課題に対する有望な解決策として浮上しています。

しかし、電気自動車を駆動するリチウムイオン電池は、温度変動の影響を受けやすいです。自動車用バッテリー熱管理システムは、バッテリーの温度を最適な範囲に維持し、バッテリーの安全性と効率を確保しながら、動作寿命を延ばすように設計されています。自動車メーカーが世界的に電気自動車の生産を拡大するにつれて、高性能なバッテリー熱管理システムの需要が急増しています。

バッテリー電気自動車(BEV)用バッテリー熱管理システムは、市場シェアの2/5以上を占めています。同様に、アジア太平洋地域は自動車用バッテリー熱管理システム市場を独占しており、1/3以上の最大市場シェアを獲得しています。この地域の成長の背景には、政府のインセンティブ、環境問題、バッテリー技術の進歩があります。

ダイナミクス

厳しい排ガス規制

世界的に厳しい排ガス規制の導入が電気自動車の普及を後押ししています。各国政府は排出ガスを抑制し、持続可能な輸送を促進する政策を実施しています。例えば、欧州連合(EU)は厳しいCO2排出規制を導入し、自動車メーカーに電気自動車やハイブリッド車への移行を促しています。

こうした規制に対応するため、自動車メーカーは電気自動車技術や先進的な自動車用バッテリー熱管理システムに投資しています。2021年に発売されるフォードのマスタングMach-Eのような製品には、優れた性能を発揮しながら排ガス規制への適合を確保するための高度な自動車用バッテリー熱管理システムが搭載されています。

バッテリー技術の進歩

バッテリー技術は近年大きな進歩を遂げ、より強力でエネルギー密度の高いバッテリーが誕生しています。このような進歩は、自動車用バッテリー熱管理システム市場に直接的な影響を及ぼしています。バッテリーのエネルギー貯蔵能力が向上し、安全性と長寿命を確保するためにバッテリーの温度を管理することがさらに重要になるからです。

例えば、2022年型シボレー・ボルトEUVには、バッテリーの寿命と航続距離を向上させる革新的な自動車用バッテリー熱管理システムが搭載されています。ゼネラルモーターズはこの先進システムを開発するためにバッテリー技術に多額の投資を行い、効率的な温度管理の重要性が高まっていることを強調しています。

限られた充電インフラ

先進的なバッテリー熱管理システムを含む電気自動車の普及には、強固な充電インフラが不可欠です。しかし、多くの地域では、充電インフラはまだ初期段階にあります。米国エネルギー省(DOE)の統計によると、充電ステーションの利用可能性は、道路を走るEVの増加に対応するにはまだ十分ではありません。

インフラの不足は、電気自動車を所有することの利便性や実用性に影響するため、大きな制約となり得ます。信頼性が高く利用しやすい充電ネットワークがなければ、消費者は従来型自動車からEVへの乗り換えをためらうかもしれません。前述の制約は、EVの普及に影響を与えるだけでなく、長距離EVに不可欠な高度な自動車用バッテリー熱管理システムの必要性にも影響します。

コストへの配慮とEVメーカーに課される追加コスト

自動車業界におけるバッテリー熱管理システムの採用における主な阻害要因の1つは、EVメーカーに課す追加コストです。国際エネルギー機関(IEA)によると、バッテリーと関連システムを含む電気自動車のコストは、従来の内燃機関車(ICE)よりも依然として高く、このコスト差は、コスト意識の高い消費者の間で課題となっています。

しかし、自動車業界はコスト削減戦略に取り組んでいます。例えば、テスラは2020年に、バッテリーの熱管理システムに革新的なヒートポンプシステムを採用した新型電気クロスオーバー「モデルY」を発表しました。この開発は、車両の冷暖房の全体的な効率を向上させることで、バッテリーの寿命を延ばし、所有コストを削減することを目的としています。

環境規制と排ガス規制

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 厳しい排ガス規制
      • バッテリー技術の進歩
      • 限られた充電インフラ
    • 抑制要因
      • コスト面への配慮とEVメーカーに課される追加コスト
      • 環境規制と排ガス規制
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析
  • ロシア・ウクライナ戦争の影響分析
  • DMI意見

第6章 COVID-19分析

第7章 タイプ別

  • ポートランド
  • ブレンド
  • その他

第8章 電池容量別

  • ポートランド
  • ブレンド
  • その他

第9章 車種別

  • 乗用車
  • 商用車

第10章 推進力別

  • バッテリー電気自動車(BEV)
  • ハイブリッド車(HEV)
  • プラグインハイブリッド車(PHEV)
  • 燃料電池車(FCV)

第11章 技術別

  • アクティブ
  • パッシブ

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋地域
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋地域
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第14章 企業プロファイル

  • LG Chem
    • 会社概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な発展
  • Continental
  • Gentherm
  • Robert Bosch
  • Valeo
  • Dana
  • Hanon System
  • Samsung SDI
  • MAHLE
  • VOSS Automotive

第15章 企業概要付録

目次
Product Code: AUTR7467

Overview

Global Automotive Battery Thermal Management System Market reached US$ 2.7 billion in 2022 and is expected to reach US$ 12.8 billion by 2030, growing with a CAGR of 23.3% during the forecast period 2023-2030.

The global automotive battery thermal management system market has witnessed significant growth and transformations over the years, with various factors influencing its dynamics. The automotive landscape is evolving at an extraordinary pace, driven by the need to reduce carbon emissions, dependence on fossil fuels and mitigate the impact of climate change.Electric vehicles, powered by lithium-ion batteries, have emerged as a promising solution to these challenges.

However, the lithium-ion batteries that power electric vehicles are sensitive to temperature fluctuations. Automotive battery thermal management system is designed to maintain the battery's temperature within an optimal range, ensuring its safety and efficiency while extending its operational life. As automakers globally ramp up their electric vehicle production, the demand for high-performance battery thermal management systems has soared.

The battery electric vehicle (BEV) battery thermal management system, accounts for over 2/5th of the market share. Similarly, the Asia-Pacific dominates the automotive battery thermal management system market, capturing the largest market share of over 1/3rd. Government incentives, environmental concerns and advancements in battery technology all act as major reasons behind the region's growth.

Dynamics

Stringent Emission Regulations

Adoption of stringent emission regulations globally have propelled the adoption of electric vehicles. Governments are implementing policies to curb emissions and promote sustainable transportation. For instance, the European Union introduced stringent CO2 emission standards, pushing automakers to transition towards electric and hybrid vehicles.

To meet these regulations, automakers are investing in electric vehicle technology and advanced automotive battery thermal management systems. Products such as Ford's Mustang Mach-E, launched in 2021, are equipped with sophisticated automotive battery thermal management systems to ensure compliance with emission standards while providing superior performance.

Advancements in Battery Technology

Battery technology has made significant strides in recent years, resulting in more powerful and energy-dense batteries. Such advancements have a direct impact on the automotive battery thermal management systems market as batteries become more capable of storing energy and it becomes even more critical to manage their temperature to ensure safety and longevity.

For example, the 2022 Chevrolet Bolt EUV features an innovative automotive battery thermal management systems that enhances battery life and range. General Motors invested heavily in battery technology to develop this advanced system, highlighting the growing importance of efficient thermal management.

Limited Charging Infrastructure

A robust charging infrastructure is vital for the widespread adoption of electric vehicles, including those with advanced battery thermal management systems. However, in many regions, the charging infrastructure is still in its nascent stages. Statistics from U.S. Department of Energy (DOE) indicates that the availability of charging stations is not yet sufficient to cater to the growing number of EVs on the road.

The respective lack of infrastructure can be a major restraint, as it affects the convenience and practicality of owning an electric vehicle. Without a reliable and accessible charging network, consumers may hesitate to switch from conventional vehicles to EVs. The aforementioned restraint not only impacts the adoption of EVs but also the need for sophisticated automotive battery thermal management systems, which are more essential in long-range EVs.

Cost Considerations and Additional Cost Imposed on EV Manufacturers

One of the primary restraints in the adoption of battery thermal management systems in the automotive industry is the additional cost they impose on EV manufacturers. According to the International Energy Agency (IEA), the cost of electric vehicles, including batteries and associated systems, remains higher than that of traditional internal combustion engine (ICE) vehicles. The cost differential presents a challenge among cost-conscious consumers.

However, the automotive industry is working towards cost reduction strategies. For instance, in 2020, Tesla unveiled its new Model Y electric crossover, which featured an innovative heat pump system for its battery thermal management system. The development aimed to improve the overall efficiency of the vehicle's heating and cooling, thereby extending battery life and reducing the cost of ownership.

Environmental Regulations and Emission Control

Segment Analysis

The global automotive battery thermal management system market is segmented based on type, battery capacity, vehicle, propulsion, technology and region.

Environmental Concerns, Government Regulations and Advancements in Battery Technology

The shift towards BEVs is driven by multiple factors, including environmental concerns, government regulations and advancements in battery technology. Governments globally have been promoting clean energy and reducing greenhouse gas emissions, with several offering incentives for BEVs, such as tax credits and rebates.

One of the standout examples comes from U.S., where the federal government, as of 2021, provides a tax credit of up to US$ 7,500 for BEV buyers. Additionally, many states offer further incentives, resulting in significant savings for consumers. Consequently, BEV adoption in U.S. has been on a steep incline.

According to U.S. Department of Energy, the number of BEVs sold in the country increased from around 49,000 in 2017 to nearly 325,000 in 2020, reflecting an impressive growth rate. In Europe, countries such as Norway and the Netherlands have been at the forefront of BEV adoption. Norway, in particular, stands out as a global leader in EV market penetration. The success of BEVs is intrinsically tied to the performance and longevity of their batteries.

Automotive battery thermal management systems play a vital role in maintaining the optimal operating temperature of a BEV's battery pack. Such systems ensure that the battery neither overheats nor gets too cold, as extreme temperatures can negatively impact a battery's efficiency, lifespan and safety. As BEVs continue to grow in popularity, the demand for advanced BTMS has skyrocketed.

Further, automotive battery thermal management systems are designed to efficiently manage the temperature of the battery pack, optimizing its performance and ensuring the safety of the vehicle and passengers. Government regulations and safety standards have been a driving force in the development and implementation of sophisticated automotive battery thermal management systems.

Geographical Penetration

Growing Adoption of EVs, Government Incentives, Environmental Concerns and Advancements In Battery Technology

The global automotive industry is undergoing a remarkable transformation, with a strong focus on electric vehicles (EVs) to reduce carbon emissions and mitigate the impact of climate change. One of the critical components in electric vehicles is the battery system and efficient thermal management is essential to ensure their optimal performance and longevity.

In recent years, Asia-Pacific has emerged as a key player in the global automotive battery thermal management system market. Asia-Pacific has witnessed a significant increase in the adoption of electric vehicles in recent years. Several factors contribute to this trend, including government incentives, environmental concerns and advancements in battery technology.

Government incentives, such as subsidies, tax breaks and rebates, have played a crucial role in making electric vehicles more accessible and attractive to consumers. For instance, in China, the world's largest automotive market, the government has implemented various policies to promote the adoption of EVs. Such policies include purchase incentives, exemptions from vehicle taxes and support for charging infrastructure development.

Competitive Landscape

major global players in the market include: LG Chem, Continental, Gentherm, Robert Bosch, Valeo, Danam, Hanon System, Samsung SDI, MAHLE and VOSS Automotive.

COVID-19 Impact Analysis

The automotive industry, like many others, was significantly impacted by the COVID-19 pandemic that swept globally in 2020. One of the crucial aspects within this industry affected by the pandemic was the automotive battery thermal management system market. Prior to COVID-19, the global push towards greener transportation options, driven by environmental concerns and government regulations bolstered the electric vehicle (EV) market.

As EVs became more popular, the demand for efficient battery systems, including battery thermal management systems, grew substantially. In 2019, the global electric vehicle market was valued at approximately US$ 162.34 billion and it was projected to grow at a compound annual growth rate (CAGR) of 22.6% from 2020 to 2027, according to United Nations.

However, the onset of the COVID-19 pandemic in early 2020 brought the global automotive industry to a grinding halt. Lockdowns, restrictions and disruptions in supply chains caused a significant decline in vehicle production. The respective fact directly affected the demand for automotive battery thermal management systems, as they are primarily used in electric and hybrid vehicles.

Despite the initial setbacks, the automotive battery thermal management system market demonstrated resilience in the face of the pandemic. Many governments recognized the importance of the EV market in reducing carbon emissions and invested in incentives and subsidies for electric vehicle adoption. Further, in response to disruptions in supply chains, manufacturers began to diversify their sourcing, reducing their dependence on a single region or supplier.

As the world continues to transition towards electric mobility to combat climate change, the demand for efficient battery thermal management systems is set to rise. Innovations and product launches in this sector are expected to accelerate, driving improvements in EV performance, range and affordability.

Russia-Ukraine War Impact Analysis

The global automotive industry has been facing numerous challenges and transformations in recent years and one significant factor contributing to these changes is the Russia-Ukraine war. Beyond geopolitical implications, this conflict has reverberated through global supply chains, affecting the automotive battery thermal management system market.

According to the International Monetary Fund (IMF), the war has caused a slowdown in global economic growth, with many countries facing decreased trade prospects. The war has created logistical challenges and uncertainties regarding the supply of critical automotive components, including batteries and battery thermal management systems. Several automakers source these components from Eastern Europe.

Further, with supply disruptions and uncertainty about future supplies, the prices of certain automotive components, including battery thermal management systems, have become volatile. The, in turn, affects the pricing of automobiles. However, the automotive industry has shown resilience and adaptability.

By Type

  • Conventional
  • Soldi-State

By Battery Capacity

  • <100kWh
  • 100-200kWh
  • 200-500kWh
  • >500kWh

By Vehicle

  • Passenger Vehicle
  • Commercial Vehicle

By Propulsion

  • Battery Electric Vehicle (BEV)
  • Hybrid Electric Vehicle (HEV)
  • Plug-in Hybrid Electric Vehicle (PHEV)
  • Fuel Cell Vehicle (FCV)

By Technology

  • Active
  • Passive

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • In 2021, Denso unveiled a new battery cooling system designed explicitly for electric vehicles. Denso's system incorporates advanced cooling technology to enhance the performance and extend the lifespan of EV batteries. It addresses the challenge of maintaining battery temperature during rapid charging and high-demand driving conditions.
  • In 2020, Continental, a prominent automotive technology company, launched an advanced battery thermal management system. The respective system focuses on improving the efficiency of electric vehicle batteries by maintaining them at optimal temperatures. It contributes to more predictable battery performance, especially in extreme climates.
  • On May 4, 2023, Mahle, a leading automotive supplier, introduced a liquid-cooled battery housing system for electric vehicles. The respective system utilizes liquid cooling to regulate the temperature of EV batteries, ensuring they operate efficiently in various environmental conditions. It also contributes to the overall performance and longevity of the battery.

Why Purchase the Report?

  • To visualize the global automotive battery thermal management system market segmentation based on type, battery capacity, vehicle, propulsion, technology and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of automotive battery thermal management system market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global automotive battery thermal management system market report would provide approximately 83 tables, 78 figures and 227 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Type
  • 3.2. Snippet by Battery Capacity
  • 3.3. Snippet by Vehicle
  • 3.4. Snippet by Propulsion
  • 3.5. Snippet by Technology
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Stringent Emission Regulations
      • 4.1.1.2. Advancements in Battery Technology
      • 4.1.1.3. Limited Charging Infrastructure
    • 4.1.2. Restraints
      • 4.1.2.1. Cost Considerations and Additional Cost Imposed on EV Manufacturers
      • 4.1.2.2. Environmental Regulations and Emission Control
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis
  • 5.5. Russia-Ukraine War Impact Analysis
  • 5.6. DMI Opinion

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Type

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 7.1.2. Market Attractiveness Index, By Type
  • 7.2. Portland*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Blended
  • 7.4. Others

8. By Battery Capacity

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 8.1.2. Market Attractiveness Index, By Battery Capacity
  • 8.2. Portland*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Blended
  • 8.4. Others

9. By Vehicle

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 9.1.2. Market Attractiveness Index, By Vehicle
  • 9.2. Passenger Vehicle*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Commercial Vehicle

10. By Propulsion

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 10.1.2. Market Attractiveness Index, By Propulsion
  • 10.2. Battery Electric Vehicle (BEV)*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Hybrid Electric Vehicle (HEV)
  • 10.4. Plug-in Hybrid Electric Vehicle (PHEV)
  • 10.5. Fuel Cell Vehicle (FCV)

11. By Technology

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 11.1.2. Market Attractiveness Index, By Technology
  • 11.2. Active*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Passive

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Russia
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Battery Capacity
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Vehicle
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Propulsion
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. LG Chem*
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. Continental
  • 14.3. Gentherm
  • 14.4. Robert Bosch
  • 14.5. Valeo
  • 14.6. Dana
  • 14.7. Hanon System
  • 14.8. Samsung SDI
  • 14.9. MAHLE
  • 14.10. VOSS Automotive

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us