表紙:原子炉廃止措置の世界市場-2023-2030年
市場調査レポート
商品コード
1347946

原子炉廃止措置の世界市場-2023-2030年

Global Nuclear Reactor Decommissioning Market - 2023-2030

出版日: | 発行: DataM Intelligence | ページ情報: 英文 211 Pages | 納期: 約2営業日

● お客様のご希望に応じて、既存データの加工や未掲載情報(例:国別セグメント)の追加などの対応が可能です。  詳細はお問い合わせください。

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=157.14円
原子炉廃止措置の世界市場-2023-2030年
出版日: 2023年09月11日
発行: DataM Intelligence
ページ情報: 英文 211 Pages
納期: 約2営業日
ご注意事項 :
本レポートは最新情報反映のため適宜更新し、内容構成変更を行う場合があります。ご検討の際はお問い合わせください。
  • 全表示
  • 概要
  • 目次
概要

概要

原子炉廃止措置の世界市場は、2022年に765億米ドルに達し、2023年から2030年にかけてCAGR 2.7%で成長し、2030年には943億米ドルに達すると予測されています。

原子炉廃止措置市場は、世界中の数多くの原子炉や施設の運転寿命が頂点に近づいていることが成長の原動力となり、これらの施設の安全かつ効率的な廃止措置は、今後数年間で重要な成長分野になると予想されています。IAEAの会議は、廃炉への関心が世界的に高まる中で開催されました。各国は、気候変動と闘うための信頼性の高い低炭素エネルギー生産などの課題に対処するため、老朽化した原子力施設を廃止し、新しい原子力技術を導入しようとしています。

フランス原子力委員会のローレンス・ピケティ副CEOは、現在世界中にある400基以上の原子炉のほぼ半分が、2050年までに廃炉になると予測していると述べました。既存の原子炉のかなりの部分、約50%が2050年までに引退すると予想されています。すでに200基以上の原子炉が廃炉となり、多数の調査炉や燃料サイクル施設も閉鎖される可能性が高いです。

北米は、原子力規制委員会(NRC)が廃炉作業中および廃炉後の作業員や公衆の安全を確保するため、原子力発電所の廃炉に関する厳しい規制を課すなど、政府の規制が後押しする原子炉廃炉市場の最大地域です。約90基の原子炉が最長60年の認可の下で運転されている米国の原子力産業は、独自の課題に直面しています。特に、いくつかの原子炉は、経済的考慮などさまざまな要因により、指定された運転寿命前にすでに引退しています。

ダイナミクス

技術の進歩が原子炉廃止措置業界の進化を促進

原子炉廃止措置市場は、技術の成長と進歩によって牽引されると予想されます。国際原子力機関(IAEA)は、廃炉プロセスにおける新技術および新技術の役割を強化するための世界の取り組みを開始しました。200基を超える原子炉が廃止措置中であり、稼働中の原子炉も今後数十年で段階的に廃止される見込みであることから、業界はプロセスの合理化と改善を模索しています。

この取り組みは、廃炉のデータ管理、計画、ライセンシング、実施に使用される新しいデジタルツールや技術に関する洞察を提供することを目的としています。原子炉廃止措置業界は、人工知能、自動化、デジタル化といった最先端のイノベーションを通じて、技術的な飛躍を経験しています。これらの技術は、廃炉プロジェクトの効率性、安全性、費用対効果を高めると期待されています。こうした進歩の重要性は、原子力発電能力のかなりの部分が2030年までに廃止されると予測されている事実によって浮き彫りにされています。

健康・環境への懸念が原子炉廃止措置を後押し

原子炉廃止措置市場は、健康リスクと環境への影響の増大によって牽引されると予想されます。核反応の製品別である電離放射線は、作業員と一般住民の双方に健康リスクをもたらします。電離放射線被曝による潜在的な健康被害には、直接的な損傷、放射線病、がん、心血管疾患、白内障などの長期的な影響が含まれます。このような健康リスクへの理解から、原子炉の運転寿命が近づくにつれ、廃炉が重視されるようになってきました。

さらに、よりクリーンで持続可能なエネルギー源への転換の必要性から、原子力発電所の引退とそれに続く廃炉が促されています。二酸化炭素排出量の削減と気候変動への対応がますます重視される中、古い原子炉の引退とこれらの施設の適切な廃炉は、より環境に優しいエネルギー環境に貢献します。

原子力施設の閉鎖が急増

原子炉廃止措置市場は、2050年までに発生すると予測される原子力施設の永久閉鎖の差し迫った急増によって大きな影響を受けます。この急増は、次の世紀まで続く可能性のある複雑な廃炉構想を成功させるために、資金面と人的面の両方を含む相当な資源を必要とします。商業施設の場合、廃炉費用の資金は一般に運転段階で計上されていますが、廃炉のための資金を直接または間接的に国の資源に頼っている施設も少なくありません。

このような場合、十分な資金を確保できるかどうかが、重要な廃炉プロジェクトの実行を遅らせる可能性のある重要な要因となります。廃炉プログラムの複雑な性質から、原子力工学や放射性廃棄物管理など、さまざまな領域にまたがる専門知識を持つ専門家が必要とされます。廃炉と放射性廃棄物管理の分野でキャリアを積もうとする若く才能ある労働力を引き付け、参加させることは、この業界が直面する最大の障害の1つとして浮上しています。

目次

第1章 調査手法と調査範囲

第2章 定義と概要

第3章 エグゼクティブサマリー

第4章 市場力学

  • 影響要因
    • 促進要因
      • 技術進歩が原子炉廃止措置産業の進化を促進
      • 健康・環境への懸念が原子炉廃止措置を後押し
    • 抑制要因
      • 原子力施設の閉鎖が急増
    • 機会
    • 影響分析

第5章 産業分析

  • ポーターのファイブフォース分析
  • サプライチェーン分析
  • 価格分析
  • 規制分析

第6章 COVID-19分析

第7章 技術別

  • 汚染除去(DECON)
  • 安全貯蔵(SAFSTOR)
  • その他

第8章 原子炉サイズ別

  • 大型原子炉
  • 小型原子炉

第9章 タイプ別

  • 即時解体
  • 安全貯蔵
  • 密閉

第10章 原子炉タイプ別

  • 加圧水型原子炉
  • ガス冷却炉
  • 高速中性子炉
  • 沸騰水型原子炉
  • その他

第11章 フェーズ別

  • 廃止措置前
  • 除染・解体(D&D)
  • 廃棄物管理
  • 現場修復
  • 燃料除去・貯蔵
  • その他

第12章 地域別

  • 北米
    • 米国
    • カナダ
    • メキシコ
  • 欧州
    • ドイツ
    • 英国
    • フランス
    • イタリア
    • ロシア
    • その他欧州
  • 南米
    • ブラジル
    • アルゼンチン
    • その他南米
  • アジア太平洋
    • 中国
    • インド
    • 日本
    • オーストラリア
    • その他アジア太平洋
  • 中東・アフリカ

第13章 競合情勢

  • 競合シナリオ
  • 市況/シェア分析
  • M&A分析

第14章 企業プロファイル

  • SNC-Lavalin Group
    • 企業概要
    • 製品ポートフォリオと説明
    • 財務概要
    • 主な動向
  • Westinghouse Electric Company
  • AECOM
  • Orano
  • Studsvik
  • Babcock International Group
  • Bechtel Corporation
  • Energy Solutions
  • Magnox Ltd
  • NorthStar Group Services

第15章 付録

目次
Product Code: MA6831

Overview

Global Nuclear Reactor Decommissioning Market reached US$ 76.5 billion in 2022 and is expected to reach US$ 94.3 billion by 2030, growing with a CAGR of 2.7% during the forecast period 2023-2030.

The nuclear reactor decommissioning market is expected to be driven by growing by the approaching culmination of operational lifespans for numerous nuclear reactors and facilities worldwide, the safe and efficient decommissioning of these facilities is expected to become a significant growth sector in the coming years. The IAEA conference took place amid increasing global interest in decommissioning. Countries are looking to retire aging nuclear facilities and adopt new nuclear technologies to address challenges like reliable and low-carbon energy production to combat climate change.

Laurence Piketty, Deputy CEO of the French Atomic Energy Commission said, almost half of the current 400 + power reactors worldwide are projected to undergo decommissioning by 2050. A substantial portion of the existing nuclear fleet, around 50%, is expected to be retired by 2050. Over 200 nuclear power reactors have already been retired and numerous research reactors and fuel cycle facilities are likely to be shut down as well.

North America is the largest region in the nuclear reactor decommissioning market driven by government regulations such as Nuclear Regulatory Commission imposes stringent regulations governing nuclear power plant decommissioning to ensure the safety of workers and the public throughout and after the decommissioning process. With approximately 90 reactors operating under licenses that extend up to 60 years, U.S. nuclear industry faces unique challenges. Notably, several reactors have already been retired before their designated operational lifespan due to various factors, including economic considerations.

Dynamics

Advancing Technology Drives Nuclear Reactor Decommissioning Industry Evolution

The nuclear reactor decommissioning market is expected to be driven by growing technology and advancements. International Atomic Energy Agency has initiated a global effort to enhance the role of new and emerging technologies in the decommissioning process. With over two-hundred nuclear power reactors undergoing decommissioning and several operating ones expected to phase out in the coming decades, the industry is seeking to streamline and improve the process.

This effort aims to provide insights into new digital tools and technologies used for data management, planning, licensing and implementation of decommissioning. The nuclear reactor decommissioning industry is experiencing a technological breakthrough through cutting-edge innovations such as artificial intelligence, automation and digitalization. The technologies are expected to enhance efficiency, safety and cost-effectiveness in decommissioning projects. The importance of these advancements is highlighted by the fact that a significant portion of nuclear electrical generating capacity is projected to be retired by 2030.

Health and Environmental Concerns Drive Nuclear Reactor Decommissioning

The nuclear reactor decommissioning market is expected to be driven by growing health risks and environmental impacts. Ionizing radiation, a byproduct of nuclear reactions, poses health risks to both workers and the general population. The potential health hazards of exposure to ionizing radiation include immediate damage, radiation sickness and long-term effects such as cancer, cardiovascular disease and cataracts. The understanding of the health risks has led to a growing emphasis on decommissioning nuclear reactors as they reach the end of their operational lifetimes.

Moreover, the need to transition to cleaner and more sustainable energy sources has prompted the retirement of nuclear power plants and the subsequent decommissioning of these facilities. With the increasing focus on reducing carbon emissions and addressing climate change, the retirement of older nuclear reactors and the proper decommissioning of these facilities contribute to a more environmentally friendly energy landscape.

Impending Surge of Nuclear Facility Shutdowns

The nuclear reactor decommissioning market is significantly impacted by the impending surge in permanent shutdowns of nuclear facilities projected to occur by 2050. The surge necessitates substantial resources, encompassing both financial and human aspects, to successfully execute the complex decommissioning initiatives that could extend well into the next century. While funds for decommissioning costs have generally been earmarked during the operational phase for commercial facilities, a notable proportion of facilities rely on state resources, either directly or indirectly, to finance decommissioning endeavor.

The availability of adequate funding in such cases becomes a critical factor that could potentially introduce delays to the execution of these crucial decommissioning projects. The intricate nature of decommissioning programs necessitates professionals with expertise spanning various domains, including nuclear engineering and radioactive waste management. Engaging and attracting a young and talented workforce to embrace careers in decommissioning and radioactive waste management is emerging as one of the foremost obstacles confronting the industry.

Segment Analysis

The global nuclear reactor decommissioning market is segmented based on technology, reactor size, type, reactor type, phase and region.

DECON Dominance for Efficient and Swift Nuclear Reactor Decommissioning

DECON holds the largest share of decommissioning industry driven by it's immediate dismantling feature further enhances its efficiency by initiating the facility's deconstruction promptly after the removal of nuclear fuel rods and equipment, ultimately contributing to potential cost savings. DECON mitigates radiation hazards and prioritizes worker safety. Also, this process demands less long-term monitoring compared to other methods like Safstor, as the facility's prompt dismantling after material removal diminishes the need for prolonged oversight, making it a well-rounded and expedient choice for nuclear reactor decommissioning.

Moreover, DECON's primary focus on the removal of fuel and equipment translates into a reduction of potential radiation exposure for workers engaged in subsequent decommissioning activities. By prioritizing immediate dismantling and decontamination, the DECON process proves pivotal in swiftly managing a potential nuclear crisis, ensuring worker safety, minimizing radiation hazards and facilitating efficient disaster response coordination.

Geographical Penetration

North America Drives Nuclear Reactor Decommissioning Market Amid Energy Transition

North America is the largest region in the nuclear reactor decommissioning market driven by the need to address the challenges posed by early retirements, economic viability and the transition to cleaner energy sources while ensuring a sustainable and reliable energy future in the region. The region's pursuit of a sustainable and reliable energy future has led to its prominent position within this sector. The Inflation Reduction Act of 2022 introduced in U.S. has significantly enhanced the economic landscape of nuclear power generation. The legislation establishes a tax credit aimed at promoting zero-emission nuclear power, thereby intensifying the need for decommissioning existing nuclear reactors within the region.

The dismantling market in U.S. holds substantial potential due to the closure of multiple reactors. The projected increase in the number of nuclear facilities slated for permanent shutdown by 2050 underscores the demand for considerable resources, both financial and human, to effectively execute the complex decommissioning processes. As the energy landscape evolves, these specialized services become vital for ensuring safe, efficient and cost-effective decommissioning, contributing to the broader transition toward cleaner and more sustainable energy sources.

Competitive Landscape

The major global players in the market include: SNC-Lavalin Group, Westinghouse Electric Company, AECOM orano, Studsvik, Babcock International Group, Bechtel Corporation, EnergySolutions, Magnox Ltd and NorthStar Group Services.

COVID-19 Impact Analysis

COVID-19 made a significant impact on the nuclear reactor industry by inducing temporary shutdowns of some nuclear facilities to prevent the spread of the virus among workers and to protect their safety. The disruption in operations affected various stages of decommissioning, including planned outages and maintenance schedules. The reallocation of resources and manpower to manage pandemic-related challenges could have diverted attention and resources from decommissioning projects.

The pandemic disrupted global supply chains, affecting the availability of components and materials required for nuclear reactor construction, operation and decommissioning. It further contributed to delays in projects and operations. Governments and organizations prioritized pandemic response and safety, potentially affecting the pace of decommissioning efforts.

Russia-Ukraine War Impact

The Russia-Ukraine war made a significant impact on the nuclear reactor industry, the conflict has substantially disrupted decommissioning processes and cast a shadow of concern over nuclear facility safety and security. The immediate proximity of military actions to nuclear power plants has instigated fears of infrastructure damage, potential radiation leaks and even severe nuclear accidents.

The International Atomic Energy Agency has responded by closely monitoring the situation, providing technical support and underscoring the significance of international collaboration during times of turmoil. However, the conflict's ongoing nature has exacerbated uncertainty regarding the future of Ukraine's nuclear facilities. Decisions concerning reactor operation, decommissioning or potential closure are entwined with the geopolitical context and the resolution of the conflict.

By Technology

  • Safe Storage (SAFSTOR)
  • Decontamination (DECON)
  • Other

By Reactor Size

  • Large Reactors
  • Small Reactors

By Type

  • Immediate Dismantling
  • Safe Enclosure
  • Entombment

By Reactor Type

  • Pressurized Water Reactor
  • Gas-Cooled Reactor
  • Fast Neutron Reactor
  • Boiling Water Reactor
  • Others

By Phase

  • Pre-Decommissioning
  • Decontamination & Dismantling (D&D)
  • Waste Management
  • Site Restoration
  • Defueling & Storage
  • Other

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Italy
    • Russia
    • Rest of Europe
  • South America
    • Brazil
    • Argentina
    • Rest of South America
  • Asia-Pacific
    • China
    • India
    • Japan
    • Australia
    • Rest of Asia-Pacific
  • Middle East and Africa

Key Developments

  • On January 11, 2023, Westinghouse Electric Company made a significant stride in the field of nuclear decommissioning by entering an agreement with Ignalinos Atomine Elektrine (IAE) to lead the decommissioning project of two RBMK-1500 nuclear power reactors at Ignalina Nuclear Power Plant (NPP) in Lithuania's Visaginas Municipality. The venture stands as a historic milestone as it marks the first-ever decommissioning of an RBMK reactor.
  • In March 2023, orano Decommissioning Services (Orano DS) showcased an innovative approach to swift reactor dismantling at unit 3 of the Crystal River Nuclear Power Plant (CR3) in U.S. The method, known as the Optimised Segmentation process, is aimed at minimizing waste volume for disposal and reducing the amount of segmentation work on reactor structures. The process involves underwater segmentation, extraction and separation of reactor internals into categories, namely Greater-than-Class C (GTCC) waste and highly contaminated internal structures.
  • In July 2023, a significant development occurred in the field of nuclear decommissioning as Cavendish Nuclear, along with joint venture partners Amentum and Fluor, secured the Portsmouth Gaseous Diffusion Plant Decontamination and Decommissioning Contract in Piketon, Ohio. The contract entails the demolition, disposal and decommissioning of facilities associated with the gaseous diffusion plant. Beyond facility dismantling, the joint venture aims to implement established technologies for water treatment and soil remediation, furthering the environmental cleanup process.

Why Purchase the Report?

  • To visualize the global nuclear reactor decommissioning market segmentation based on technology, reactor size, type, reactor type, phase and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of nuclear reactor decommissioning market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as excel consisting of key products of all the major players.

The global nuclear reactor decommissioning market report would provide approximately 77 tables, 81 figures and 211 Pages.

Target Audience 2023

  • Manufacturers/ Buyers
  • Industry Investors/Investment Bankers
  • Research Professionals
  • Emerging Companies

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet By Technology
  • 3.2. Snippet By Reactor Size
  • 3.3. Snippet By Type
  • 3.4. Snippet By Reactor type
  • 3.5. Snippet By Phase
  • 3.6. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Advancing technology drives nuclear reactor decommissioning industry evolution
      • 4.1.1.2. Health and environmental concerns drive nuclear reactor decommissioning
    • 4.1.2. Restraints
      • 4.1.2.1. Impending surge of nuclear facility shutdowns
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Technology

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 7.1.2. Market Attractiveness Index, By Technology
  • 7.2. Decontamination (DECON)*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. Safe Storage (SAFSTOR)
  • 7.4. Other

8. By Reactor Size

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 8.1.2. Market Attractiveness Index, By Reactor Size
  • 8.2. Large Reactors*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Small Reactors

9. By Type

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 9.1.2. Market Attractiveness Index, By Type
  • 9.2. Immediate Dismantling*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Safe Enclosure
  • 9.4. Entombment

10. By Reactor Type

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 10.1.2. Market Attractiveness Index, By Reactor Type
  • 10.2. Pressurized Water Reactor*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Gas-Cooled Reactor
  • 10.4. Fast Neutron Reactor
  • 10.5. Boiling Water Reactor
  • 10.6. Others

11. By Phase

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase
    • 11.1.2. Market Attractiveness Index, By Phase
  • 11.2. Pre-Decommissioning*
    • 11.2.1. Introduction
    • 11.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 11.3. Decontamination & Dismantling (D&D)
  • 11.4. Waste Management
  • 11.5. Site Restoration
  • 11.6. Defueling & Storage
  • 11.7. Other

12. By Region

  • 12.1. Introduction
    • 12.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 12.1.2. Market Attractiveness Index, By Region
  • 12.2. North America
    • 12.2.1. Introduction
    • 12.2.2. Key Region-Specific Dynamics
    • 12.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 12.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 12.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase
    • 12.2.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.2.8.1. U.S.
      • 12.2.8.2. Canada
      • 12.2.8.3. Mexico
  • 12.3. Europe
    • 12.3.1. Introduction
    • 12.3.2. Key Region-Specific Dynamics
    • 12.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 12.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 12.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase
    • 12.3.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.3.8.1. Germany
      • 12.3.8.2. UK
      • 12.3.8.3. France
      • 12.3.8.4. Italy
      • 12.3.8.5. Russia
      • 12.3.8.6. Rest of Europe
  • 12.4. South America
    • 12.4.1. Introduction
    • 12.4.2. Key Region-Specific Dynamics
    • 12.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 12.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 12.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase
    • 12.4.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.4.8.1. Brazil
      • 12.4.8.2. Argentina
      • 12.4.8.3. Rest of South America
  • 12.5. Asia-Pacific
    • 12.5.1. Introduction
    • 12.5.2. Key Region-Specific Dynamics
    • 12.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 12.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 12.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase
    • 12.5.8. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 12.5.8.1. China
      • 12.5.8.2. India
      • 12.5.8.3. Japan
      • 12.5.8.4. Australia
      • 12.5.8.5. Rest of Asia-Pacific
  • 12.6. Middle East and Africa
    • 12.6.1. Introduction
    • 12.6.2. Key Region-Specific Dynamics
    • 12.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Technology
    • 12.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Size
    • 12.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Type
    • 12.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By Reactor Type
    • 12.6.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Phase

13. Competitive Landscape

  • 13.1. Competitive Scenario
  • 13.2. Market Positioning/Share Analysis
  • 13.3. Mergers and Acquisitions Analysis

14. Company Profiles

  • 14.1. SNC-Lavalin Group*
    • 14.1.1. Company Overview
    • 14.1.2. Product Portfolio and Description
    • 14.1.3. Financial Overview
    • 14.1.4. Key Developments
  • 14.2. Westinghouse Electric Company
  • 14.3. AECOM
  • 14.4. Orano
  • 14.5. Studsvik
  • 14.6. Babcock International Group
  • 14.7. Bechtel Corporation
  • 14.8. Energy Solutions
  • 14.9. Magnox Ltd
  • 14.10. NorthStar Group Services

LIST NOT EXHAUSTIVE

15. Appendix

  • 15.1. About Us and Services
  • 15.2. Contact Us