![]() |
市場調査レポート
商品コード
1804252
in-vitro毒性試験の世界市場:ソリューション・手法・技術・毒性エンドポイント&試験・エンドユーザー・地域別 - 市場規模・産業力学・機会分析・予測 (2025~2033年)Global In-Vitro Toxicology Testing Market: Solution, Method, Technology, Toxicity End Point & Test, End User, Region-Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2025-2033 |
||||||
|
in-vitro毒性試験の世界市場:ソリューション・手法・技術・毒性エンドポイント&試験・エンドユーザー・地域別 - 市場規模・産業力学・機会分析・予測 (2025~2033年) |
出版日: 2025年05月18日
発行: Astute Analytica
ページ情報: 英文 188 Pages
納期: 即日から翌営業日
|
世界のin-vitro毒性試験の市場は、著しい技術的進歩、動物実験に伴う倫理的・科学的限界の認識の高まり、ますます厳格化する規制枠組みの施行によって急速な成長を遂げています。市場規模は2024年の約260億米ドルから、2033年には575億5,000万米ドルに達すると予測されています。2025年から2033年にかけての予測期間中のCAGRは9.23%であり、従来の毒性試験方法に代わる手法に対する強く持続的な需要を反映しています。
市場が進化し、より成熟した段階へ移行するにつれて、ステークホルダーの関心は、in-vitro毒性技術へのアクセスを民主化し、標準化を拡大することでこの成長モメンタムを維持・加速することへと移っています。この移行を促進する重要な進展の一つが、複雑な生物学的アッセイを実施するために不可欠なツールであるマイクロ流体チップのコスト急減です。現在、これらのチップは射出成形された環状オレフィンポリマーを用いて製造されており、小売価格は1ユニットあたり12米ドル未満となっています。これは、2021年にガラス製デバイスが一般的に48米ドルで販売されていた水準から大幅に低下しています。
ソリューション別では、アッセイが市場シェアの42.70%以上を占め、支配的な地位を確立しています。これは、規制当局からの信頼、業務スピード、費用対効果を強力に組み合わせて提供できる独自の能力によるものです。化合物を開発パイプラインに進めたいスポンサーにとって、アッセイは科学的および規制上の要求を満たす信頼性の高い効率的なソリューションを提供します。アッセイが試験プロトコルに広く受け入れられ、組み込まれていることは、動物実験に伴う倫理的懸念なしに正確で再現性のある毒性データを提供できるという信頼が高まっていることを示しています。
手法別では、細胞アッセイが約44.5%を占め、最大のシェアを保持しています。これは、生物学的妥当性と実験室におけるスケーラビリティの理想的なバランスを提供できるためです。細胞アッセイは、より単純な非細胞性の生化学的方法では得られない、毒性影響を理解する上で重要な細胞応答や表現型に関する貴重な知見を提供します。生きた細胞を使用することで、研究者は人間の生理条件により近い形で複雑な生物学的相互作用や毒性メカニズムを観察でき、安全性評価の予測精度を向上させます。
技術別では、細胞培養技術が市場の47.60%以上の収益シェアを占め、中心的な役割を果たしています。これは、人間の生物学的プロセスを、臓器切片や動物組織では不可能な実験スケールで再現できる独自の能力によるものです。この技術により研究者はヒト細胞の挙動を正確にモデル化でき、安全性や有効性の評価において重要な知見を提供します。また、動物実験に伴う倫理的・翻訳上の制約を回避できます。自動化された細胞培養バイオリアクターの世界の累積導入数は3,400台を超え、この技術の広範な普及と拡張性を示しています。2024年の細胞培養産業調査によると、Thermo Fisherは2021年から2023年の間に1,260台のNunc High-Volumeバイオリアクターを販売し、この成長の大部分を占めており、先進的な細胞培養機器の供給におけるリーダーシップを示しています。
地域別内訳
欧州は、厳格な規制の枠組み、多額の研究開発投資、確立された専門ラボネットワークが組み合わさり、支配的な地位を占めています。2023年には、市場収益は約99億1,910万米ドルに達し、代替毒性試験手法の推進と応用における地域のリーダーシップを示しました。この強力な成長軌道は2030年までにほぼ倍増すると予測されており、その原動力は、EUの化粧品規則や化学物質の安全性の枠組みであるREACHの規制要件にあります。これらはいずれも、動物実験に依存しない試験データの使用を義務付けています。
この地域は、代替毒性試験に特化した33以上の科学施設から成る広範なインフラを有しています。これらのセンターは、経済協力開発機構(OECD)により承認された検証済みアッセイや、先進的なヒト由来細胞モデルへの即時アクセスをスポンサーに提供します。このネットワークにより、倫理的かつ科学的に堅牢な動物実験代替手法に対する需要の高まりに応える迅速かつ適合的な試験が可能となり、規制承認の円滑化と製品開発パイプラインの加速を実現しています。
当レポートでは、世界のin-vitro毒性試験の市場を調査し、市場概要、市場成長への各種影響因子の分析、市場規模の推移・予測、各種区分別の詳細分析、競合情勢、主要企業のプロファイルなどをまとめています。
The global in-vitro toxicology testing market is experiencing rapid growth, fueled by significant technological advancements, heightened recognition of the ethical and scientific limitations associated with animal testing, and the enforcement of increasingly stringent regulatory frameworks. In 2024, the market was valued at approximately US$ 26.00 billion, and it is projected to expand substantially, reaching an estimated valuation of US$ 57.55 billion by 2033. This growth corresponds to a compound annual growth rate (CAGR) of 9.23% over the forecast period from 2025 to 2033, reflecting strong and sustained demand for alternatives to traditional toxicological testing methods.
As the market evolves and moves into a more mature phase, attention among stakeholders has shifted toward democratizing access to in-vitro toxicology technologies and scaling standards to maintain and accelerate this growth momentum. One key development facilitating this transition is the dramatic reduction in the cost of microfluidic chips, which are critical tools for conducting complex biological assays. These chips, now fabricated using injection-molded cyclic olefin polymers, are available at retail prices below USD 12 per unit-a sharp decrease from the USD 48 price point typical of glass devices in 2021.
Competition in the in-vitro toxicology testing market is increasingly focused on integrated platforms that combine high-content imaging with mass-spectrometric metabolite profiling, reflecting a trend toward more comprehensive and precise toxicological assessments. Thermo Fisher Scientific has established a strong presence with an installed base exceeding 400 CellInsight CX7 LZR systems, while Agilent Technologies supports toxicology laboratories worldwide with 310 Seahorse XF Pro analyzers. These numbers highlight the rapid turnover and widespread adoption of advanced instrumentation designed to deliver detailed cellular and metabolic insights.
For example, Eurofins' Predictiv AI suite processed an astonishing 18 billion cellular images last year, significantly accelerating the decision-making process for cardiotoxicity prediction by reducing the timeline from seventeen days to just nine. This combination of cutting-edge imaging, metabolite analysis, and artificial intelligence-driven data processing is reshaping how toxicology testing is conducted, enabling faster, more accurate, and more actionable results. The market's competitive landscape is further energized by a vibrant investment environment that mirrors both the scientific advances and favorable regulatory momentum propelling the sector forward. In 2023 alone, there were 41 publicly disclosed venture capital deals focused on key areas such as assay development, bioinformatics analytics, and organ-chip hardware.
Core Growth Drivers
Between 2022 and 2024, the introduction of stringent legislative timelines has significantly reshaped the in-vitro toxicology testing market, compelling sponsors to prioritize cell-based safety studies earlier in their development processes rather than relying on traditional animal models. These regulatory changes are designed to accelerate the adoption of alternative testing methods that reduce animal use while maintaining or enhancing the rigor of safety evaluations.
A notable example of this regulatory tightening is the U.S. Environmental Protection Agency's Revised New Approach Methodologies (NAM) Directive, which came into effect in January 2024. This directive explicitly requires that toxicology submissions include at least one validated in vitro assay addressing critical endpoints such as acute toxicity, developmental toxicity, or endocrine disruption. Submissions that fail to meet this criterion are no longer accepted, representing a clear mandate for the inclusion of cell-based testing methods in safety assessments.
Emerging Opportunity Trends
Microphysiological systems (MPS) transitioned from experimental pilot projects to integral components of mainstream workflows in the in-vitro toxicology testing market during 2023 and 2024. This advancement was driven by remarkable performance achievements and significant regulatory endorsements that underscored the technology's growing reliability and acceptance. MPS, which simulate human organ functions using interconnected microfluidic chips, offer more physiologically relevant models compared to traditional in-vitro assays, enabling detailed study of complex biological interactions and drug metabolism.
A pivotal moment for MPS came with the U.S. Food and Drug Administration's (FDA) Innovative Science Group formally accepting liver-kidney dual-chip data as part of two Investigational New Drug (IND) applications. The compounds involved were Bayer's candidate for non-alcoholic steatohepatitis, BAY 123456, and Amgen's oncology drug AMG 957. In both cases, the 28-day exposure studies conducted using MPS demonstrated metabolite profiles that closely matched in vivo biopsy results, with convergence within just 3.8 nanomoles.
Barriers to Optimization
Despite significant advancements in hardware and in vitro modeling technologies, accurately replicating xenobiotic metabolism remains a persistent challenge within the in vitro toxicology testing market, often causing delays in product development timelines. One of the key hurdles is the limited enzymatic diversity present in current models, even among the most sophisticated 3D hepatic spheroids. While these advanced systems have improved the representation of liver function, they still fall short of mimicking the full spectrum of metabolic activity found in adult human liver tissue.
Specifically, the human liver contains 57 active cytochrome P450 isozymes responsible for metabolizing a wide range of xenobiotics, but most commercial testing panels include no more than 14 isoforms. This gap in enzymatic coverage limits the ability of in-vitro models to fully replicate human metabolic processes, leading to incomplete or inaccurate predictions of how compounds are processed in the body.
By Solutions, assays hold a dominant position in the in-vitro toxicology testing market, capturing over 42.70% of the market share due to their unique ability to provide a powerful combination of regulatory confidence, operational speed, and cost-effectiveness. For sponsors looking to advance compounds through the development pipeline, assays offer a reliable and efficient solution that meets both scientific and regulatory demands. Their widespread acceptance and integration into testing protocols reflect a growing trust in their ability to deliver accurate and reproducible toxicity data without the ethical concerns associated with animal testing.
By Method, cellular assays hold the largest share in the in-vitro toxicology testing market, accounting for approximately 44.5% of the total, due to their ability to deliver an ideal balance between biological relevance and laboratory scalability. These assays provide valuable insights into cellular responses and phenotypes that are crucial for understanding toxicological effects in a way that simpler, acellular biochemical methods cannot achieve. By using living cells, researchers can observe complex biological interactions and mechanisms of toxicity that more closely mimic human physiological conditions, thereby improving the predictive accuracy of safety assessments.
By Toxicity Endpoint & Test, skin-related toxicity endpoints dominate the in-vitro toxicology testing market, capturing over 38.3% of the market share due to their critical importance at the crossroads of strict regulatory requirements, heightened consumer awareness, and substantial testing volumes. These endpoints are essential for assessing the safety of substances that come into direct contact with human skin, such as cosmetics, personal care products, and topical pharmaceuticals. The regulatory environment in the European Union (EU) has played a significant role in driving demand in this segment, particularly through the EU Cosmetics Regulation, which has prohibited animal testing for dermal toxicity endpoints since 2013. This ban has created a pressing need for reliable alternative testing methods that can accurately evaluate skin-related toxicity without relying on animal models.
By Technology, cell culture technology holds a central position in the in-vitro toxicology testing market, commanding over 47.60% of the revenue share due to its unique ability to replicate human biological processes at experimental scales that are impossible to achieve with organotypic slices or animal tissues. This technology enables researchers to model human cell behavior precisely, providing critical insights during safety and efficacy assessments without the ethical and translational limitations associated with animal testing. The global installed capacity for automated cell-culture bioreactors has now surpassed 3,400 units, highlighting the widespread adoption and scalability of this technology. According to the 2024 Cell Culture Industry Survey, Thermo Fisher alone accounted for a significant portion of this growth by selling 1,260 Nunc High-Volume bioreactors between 2021 and 2023, underscoring its leadership in supplying advanced cell culture equipment.
By Solutions
By Method
By Technology
By Toxicity Endpoint & Test
By End User
By Region
Geography Breakdown
Europe holds a dominant position in the in-vitro toxicology testing market, driven by a combination of stringent regulatory frameworks, substantial research and development investments, and a well-established network of specialized laboratories. In 2023, market revenues reached approximately 9,919.1 million dollars, reflecting the region's leadership in advancing and applying alternative toxicology methods. This strong growth trajectory is expected to nearly double by 2030, largely propelled by regulatory mandates such as the EU Cosmetics Regulation and the REACH chemical-safety framework, both of which require the use of non-animal testing data.
The region benefits from an extensive infrastructure of more than thirty-three dedicated scientific facilities that focus exclusively on alternative toxicology testing. These centers provide sponsors with immediate access to validated assays recognized by the Organisation for Economic Co-operation and Development (OECD), as well as advanced human-derived cell models. This network enables rapid, compliant testing that meets the rising demand for ethical and scientifically robust alternatives to animal testing, facilitating smoother regulatory approvals and accelerating product development pipelines.