市場調査レポート
商品コード
1533185

6G通信:光学、オプトロニクス、航空宇宙材料およびデバイス市場 (2025-2045年)

6G Communications: Optical, Optronics and Aerospace Materials and Devices Markets 2025-2045

出版日: | 発行: Zhar Research | ページ情報: 英文 367 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=147.72円
6G通信:光学、オプトロニクス、航空宇宙材料およびデバイス市場 (2025-2045年)
出版日: 2024年08月13日
発行: Zhar Research
ページ情報: 英文 367 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

6G通信は常に300GHzまでの周波数を使用しますが、商業的成功を収めるためには光学機器を採用する必要があります。これは航空宇宙、陸上 (屋内を含む) 、水中など、多くの場所で利用できるようにする必要があるためです。これらの場所のほとんどはケーブルを敷設できず、無線周波数はほとんど届かず、1Tbpsに近づくことができません。そのため、赤外線と可視光通信の追加が必須であり、RFインフラはますます光学的に透明になっていくでしょう。6Gのスマートウィンドウや透明な建物のファサードが信号をブーストしたりリダイレクトしたりしても、美観を損なうという理由で拒絶されることはありませんし、最高の6G RISは光学的透明性によって全方位に電波が届きます。

6Gインフラは、衛星、ドローン、島々などへとますます遠隔化し、数が多く、高価で、電力を消費し、高温となるものとなっています。そのためインフラとクライアントデバイスの両方において、据付け後に放置できる自家発電・自己冷却機能が非常に重要となります。

章構成: 8
SWOT評価: 18
2045年までの予測ライン: 25
主な結論: 21
新しいインフォグラム: 27
企業: 112
ページ数: 367

本レポートでは、6G通信の光学、オプトロニクス、航空宇宙材料およびデバイスの市場を調査し、6Gの伝送、冷却、自家発電における近赤外線/可視光材料およびデバイスの重要性、航空宇宙材料とハードウェアにおける6Gの機会、6G材料およびハードウェアのロードマップ、6G材料およびハードウェア市場の予測、各種技術の研究・進歩・展望などをまとめています。

目次

第1章 エグゼクティブサマリー・結論

  • 調査手法
  • 重要な結論:6Gが光学技術の大規模な導入によってのみ成功できる理由
  • 6G伝送、冷却、自己発電に不可欠な近赤外線/可視光材料とデバイス
  • 6Gの成功には光学材料とデバイスが不可欠
  • 6G通信に有用な光学材料の化合物および炭素同素体:最近の研究進歩レベルのランキング
  • 主な結論:航空宇宙材料とハードウェアにおける6Gの機会
  • 6G向け航空宇宙機-7種類の伝送オプション
  • 主な結論:6G向け光無線通信OWC
  • 6Gに適用されたOWCのSWOT評価
  • 6G向けVLCのSWOT評価
  • 重要な結論:信号処理を超えた6G光学材料
  • トピックと技術成熟度別の固体冷却の研究パイプライン
  • 6G携帯電話、タブレット、アクティブRIS、UM MIMO基地局の電力需要の増加とエネルギーハーベスティングオプションのマッチング
  • 6G材料とハードウェアのロードマップ
  • 6G材料およびハードウェア市場の予測:~2045年

第2章 イントロダクション

  • 光学技術を示す概要と情勢のインフォグラム
  • 6Gフェーズ1:段階的成長
  • 6Gフェーズ2:混乱を招き、極めて困難に
  • 多くの光学機能の重要性を示す6G材料のニーズとツールキット
  • 補完的な6G周波数の選択
  • 6G RISの進化
  • 6G基地局の進化
  • 6Gマテリアル・機器メーカーの例

第3章 6G衛星通信とHAPS通信、低空ドローン向け6G

  • 概要
  • 6G-NTN:地上および非地上コンポーネントの6Gへの統合を検討
  • 6G向け航空宇宙プラットフォームの比較
  • 空中6G基地局の研究「天空の塔」
  • 6G向けHAPSとその他の通信&センシングの最新動向
  • 6Gなどの通信に関わるUAVの研究:2024年の論文48件を調査
  • 衛星による6Gの進歩:
  • ドローンサービスを支援する地上6G・低高度ソーラーやその他のドローンも6Gを導入する可能性

第4章 6G OWC (光無線通信)

  • 定義・利点・例
  • 6G通信向けOWC
  • 5G FSOからの教訓
  • 6Gを含むOWC研究の進展:2024年
  • OWCのコンポーネントとその材料
  • FSOハードウェアおよびシステムのサプライヤー32社の例・国別分析

第5章 VLC (可視光通信):航空宇宙、地上、水中

  • VLCの基礎と6Gとの重要性の変化する見解
    • 競合上の地位と潜在的用途
    • 6Gとの重要性
  • VLCの形式
    • 概要
    • LiFi
    • インタラクティブiVLC
    • 組織光通信
  • VLC技術の進歩と展望
    • 過去のパラメータの改善
    • ハイブリッドシステム
    • VLC光源の成果と現実的な目標
    • VLC受信機の成果と現実的な目標
    • 2024年の干渉管理
    • 2024年の発光型太陽光集光器の使用
    • 2024年の屋内VLCシステムの最適化
    • MIMO VLCの進歩:2024年
  • 水中6G通信:VLCの状況と進歩と代替手段
    • 概要
    • 2024年の主な進歩
    • 水中無線通信技術の比較
  • 6G VLCに関する一般的な推奨事項
  • 6G向けVLCのSWOT評価

第6章 ORIS:近赤外線および可視周波数での伝搬経路を強化する6G ORISハードウェアとシステム設計

  • 概要
  • ORIS:屋内、屋外、水中
  • 研究・企業開発の優先順位付け
  • 近赤外線および可視光ORISと関連デバイス設計の概要
  • 遠赤外線THz、近赤外線、可視光周波数でのRISチューニングのための材料とデバイス
    • インフォグラム:RISの特異性、チューニング基準、物理的原理、アクティベーションオプション
    • 6G RISチューニング材料の利点と課題の比較
    • 6G RIS研究で勝利したRISチューニング材料の比較
    • 液晶ORIS研究の例
    • その他のメタマテリアルORISの材料とデザイン
    • 最近の225の研究論文と企業活動の分析
  • 進歩する近赤外線および可視光ORISおよび関連デバイス設計:2024年
  • ORISが取り組む課題
  • 空気中の減衰がどのように補完的であるか
  • 成層圏通信の一部とそれ以降
  • ORISシステム技術とアーキテクチャ:2024年までの進捗

第7章 6G 0.3THzから可視光6G伝送のための誘電体、光学材料、半導体

  • 概要
  • リスクの軽減と回折光学素子DOEの例
  • 誘電体
  • 6Gオプトロニクス向け半導体と競争力のある材料の選択
  • テラヘルツ導波ケーブルおよび小型ユニット
  • 6G向け近赤外線光ファイバーの将来

第8章 6Gインフラおよびクライアントデバイス向けの新しい光冷却と太陽光オンボード電源

  • 6Gインフラおよびデバイス向け固体冷却の次世代技術
  • 自己発電型6Gインフラとクライアントデバイス向け太陽光発電
目次

Summary

6G Communications will always use frequencies up to 300GHz but, to succeed commercially, it must strongly adopt optical equipment. Reasons include the need to be far more available - in aerospace, on land, including indoors, and underwater - without defaulting to mere GHz performance. You cannot run cables to most of that, radio frequencies cannot reach much of that and the promised 1Tbps cannot be approached. Consequently infrared and visible light communication must be added. Indeed, RF infrastructure will increasingly become optically transparent - invisible. The 6G smart window and transparent building facade boosting and redirecting the signals do not get rejected for ugliness. Indeed, the best 6G reconfigurable intelligent surfaces have all-round reach enabled by optical transparency.

6G infrastructure will increasingly be more remote (satellites, drones, islands), numerous, expensive and power-hungry meaning hotter. Fit-and-forget self-powering and self-cooling of both infrastructure and client devices become very important. That photovoltaics and solid-state cooling also involves manipulation of infrared and visible light. Next generation fiber optics and maybe far infrared THz cables now being researched will be the 6G intermediaries - more optics. Aerospace technology optically provides both reach and customers. Time for a report on both. This is it. The 369 page, commercially oriented report, "6G Communications: Optical, Optronics and Aerospace Materials and Devices Markets 2025-2045" has it all. Vitally, that includes the flood of research breakthroughs and changes of strategy through 2024.

   Chapters:8
   SWOT appraisals:18
   Forecast lines to 2045:25
   Key conclusions:21
   New Infograms:27
   Companies:112
   Pages:367

The Executive Summary and Conclusions takes 33 pages to present the total picture including the roadmaps and 26 forecast lines. Infograms and comparison tables make it an easy read. The 38-page Introduction then explains how 6G will start with incremental improvement but a difficult, disruptive Phase Two will be essential to fully deliver on the promises and paybacks. Learn how this strongly introduces optics. See many of the manufacturers getting involved, some latest advances and an initial taster of your materials and device opportunities emerging.

The rest of the report consists of one chapter on aerospace 6G, four chapters on optical communication being prepared for 6G, and finally a chapter on that essential photovoltaics and optronic solid state cooling for both 6G infrastructure and client devices.

Chapter 3, "6G satellite and HAPS communication and 6G for low-level drones" is 46 pages. It includes new low-level solar drones announced in 2024 and use of 6G to manage drones. It strongly investigates high-altitude pseudo satellite HAPS, drones and dirigibles, aloft for years on advanced photovoltaic power. At least in part, they will use optical communication to vastly extend 6G reach. They hold position, reposition to serve disaster areas and to get around weather when signalling to Earth. They even land for repair and repurposing and they beat the cost, latency and Doppler challenges of Low Earth Orbit LEO satellites that are also key for ubiquitous 6G and are covered here. Learn about HAPS acting as both base stations and relays.

Chapters 4 and 5 respectively cover the overall picture of optical wireless communications then the subset of visible light communications. Chapter 4. "6G Optical Wireless Communication OWC" (40 pages) concentrates mainly on issues, progress in 2024, materials and devices. Learn how, across space, many optical frequencies can be used, certainly far infrared to visible, but, through air, such as satellite and HAPS to Earth communications, near infrared is currently favoured for high bit rate. Can LiFi succeed for streetlights and indoors, forming a part of 6G?

Chapter 5, "Visible Light Communication VLC: aerospace, terrestrial, underwater" is 39 pages. For example, it reports new advances in underwater high data rate communication where it is visible light that penetrates best with several hundred meters now in prospect.

Chapter 6, "Optical reconfigurable intelligent surfaces: 6G ORIS hardware and system design enhancing the propagation path at infrared and visible frequencies" (47 pages) Learn here of much research on Far IR THz RIS and far more on Near IR/visible but the analysis shows too little focus on hardware aspects of ORIS overall. See how much of the visible light work involves moving micro-mirror arrays, particularly that in 2024. However, the superior life, reliability and functionality of solid-state options described is essential. Enjoy much analysis of the tuning materials.

Chapter 7, "Dielectrics, optical materials, semiconductors for 6G 0.3THz to visible light 6G transmission" needs 75 pages. This is because it is a deep dive into low loss dielectrics, semiconductors and alternatives in optical transmission but also the optical hardware intermediary options meaning next generation fiber optic cable materials and the new work on Far IR THz waveguides even as cables.

The report closes with 33 pages of Chapter 8, "New photonic cooling and photovoltaic on-board power for 6G infrastructure and client devices". The optronic cooling choices here include passive daylight radiative cooling PDRC, Janus and Anti-Stokes. Observe how the appropriate photovoltaics is moving to triple and quadruple junctions, sometimes bifacial and certainly ultra-light weight. The emerging materials and likely progress are closely assessed.

Overall, the essential report, "6G Communications: Optical, Optronics and Aerospace Materials and Devices Markets 2025-2045" provides PhD level analysis and a great deal of further reading and insights from 2024. It is particularly focussed on your materials, device and systems opportunities emerging as all these optical needs arrive, optically providing transmission, detection, wider reach, power, and cooling.

CAPTION 6G fully passive transparent metamaterial reflect-array market $ billion 2029-2045. Source: "6G Communications: Optical, Optronics and Aerospace Materials and Devices Markets 2025-2045".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Methodology of this analysis
  • 1.2. Key conclusions: Why 6G can only succeed by massive adoption of optics
  • 1.3. Near IR/ visible light materials and devices essential for 6G transmission, cooling and self-powering
  • 1.4. How optical materials and devices are essential for 6G success
  • 1.5. Ranking of number of recent research advances by compound and carbon allotrope for optical materials useful in 6G Communications
  • 1.6. Key conclusions: 6G opportunities for aerospace materials and hardware
  • 1.7. Aerospace vehicles for 6G - transmission options for 7 types
  • 1.8. Key conclusions: Optical wireless communication OWC for 6G
  • 1.9. SWOT appraisal of OWC as applied to 6G
  • 1.10. SWOT appraisal of VLC for 6G
  • 1.11. Key conclusions: 6G optical materials beyond signal handling
  • 1.12. Research pipeline of solid-state cooling by topic and technology readiness level
  • 1.13. Increased 6G mobile phone, tablet, active RIS and UM MIMO base station power demands matched to energy harvesting options
  • 1.14. Roadmaps of 6G materials and hardware 2025-2045
  • 1.15. Market forecasts for 6G materials and hardware to 2045 in 15 lines and graphs
    • 1.15.1. Market for 6G vs 5G base stations units millions yearly 2024-2045
    • 1.15.2. Market for 6G base stations market value $bn if successful 2025-2045
    • 1.15.3. 6G RIS value market $ billion: active and three semi-passive categories 2029-2045: table, graphs
    • 1.15.4. 6G fully passive transparent metamaterial reflect-array market $ billion 2029-2045
    • 1.15.5. 6G added value materials value market by segment: Thermal, Low Loss, Other 2028-2045
    • 1.15.6. 6G infrastructure/ client device market for materials manipulating IR and visible light: four categories $ billion 2029-2045
    • 1.15.7. Smartphone billion units sold globally 2023-2045 if 6G is successful
    • 1.15.8. Fiber optic cable market global with possible 6G impact $billion 2025-2045
    • 1.15.9. Indium phosphide semiconductor market global with possible 6G impact $billion 2025-2045
    • 1.15.10. Global metamaterial and metasurface market billion square meters 2025-2045
    • 1.15.11. Terahertz hardware market excluding 6G $ billion globally 2025-2045

2. Introduction

  • 2.1. Overview and landscape infogram showing optics technology
  • 2.2. 6G Phase One will be incremental
    • 2.2.1. Overview
    • 2.2.2. New needs, 5G inadequacies, massive overlap 4G, 5G, 6G
  • 2.3 6G Phase Two will be disruptive and extremely difficult
    • 2.3.1. Overview
    • 2.3.2. Some objectives of 6G mostly not achievable at start
    • 2.3.3. View of a Japanese MNO heavily involved in hardware
    • 2.3.4. ITU proposals and 3GPP initiatives also go far beyond what is achievable at start
    • 2.3.5. Ultimate objectives and perceptions of those most heavily investing in 6G
  • 2.4. Some 6G material needs and toolkit showing importance of many optical functions
  • 2.5. Choosing complementary 6G frequencies
    • 2.5.1. Overview
    • 2.5.2. How attenuation in air by frequency and type 0.1THz to visible is complementary
    • 2.5.3. Infogram: The Terahertz Gap and optics demands 6G RIS tuning materials and devices different from 5G
    • 2.5.4. Spectrum for 6G Phase One and Two in context of current general use of spectrum
    • 2.5.5. Essential frequencies for 6G success and some hardware resulting
  • 2.6. Evolution of 6G reconfigurable intelligent surfaces RIS
    • 2.6.1. Multifunctional and using many optical technologies
    • 2.6.2. Infogram: RIS specificity, tuning criteria, physical principles, activation options
    • 2.6.3. 6G RIS tuning material benefits and challenges compared
    • 2.6.4. RIS will become zero energy devices and they will enable ZED client devices
    • 2.6.5. Examples of 2024 research advances with far infrared THz RIS
    • 2.6.6. 6G RIS SWOT appraisal
  • 2.7. Evolution of 6G base stations
    • 2.7.1. Trend to use more optical technology
    • 2.7.2. 6G Self-powered ultra-massive UM-MIMO base station design
  • 2.8. Examples of manufacturers of 6G materials and equipment
    • 2.8.1. Across the landscape infogram
    • 2.8.2. Mapped across the globe

3. 6G satellite and HAPS communication and 6G for low-level drones

  • 3.1. Overview
  • 3.2. 6G-NTN examines integration of terrestrial and non-terrestrial components into 6G
  • 3.3. Aerospace platforms for 6G compared
  • 3.4. Aerial 6G base station research "tower in the sky"
  • 3.5. Latest advances in HAPS for 6G and other communication and sensing
    • 3.5.1. SWOT appraisal of HAPS as a 6G aerospace platform
    • 3.5.2. HAPS for 6G Networks: Potential Use Cases, Open Challenges, Possible Solutions
    • 3.5.3. HAPS Alliance progressing HAPS communication
    • 3.5.4. AVIC China Caihong (Rainbow) CH-T4
    • 3.5.5. AALTO HAPS UK, Germany, France
    • 3.5.6. BAE Systems Prismatic UK PHASA-35
    • 3.5.7. EuroHAPS, CIRA, ESG, TAO Europe
    • 3.5.8. Softbank Japan HAPS communication research in 2024
    • 3.5.9. Thales Alenia Space France Italy Stratobus
  • 3.6. Research on UAV involved in 6G and other communication: 48 papers from 2024 examined
  • 3.7. Progress towards 6G with satellites: relevant advances in 2024
    • 3.7.1. Overview
    • 3.7.2. SpaceX Starlink and Omnispace objection
    • 3.7.3. Research through 2024: 13 papers examined
  • 3.8. Terrestrial 6G aiding drone services and low level solar and other drones potentially deploying 6G announced in 2024
    • 3.8.1. Company initiatives in 2024 and new research
    • 3.8.2. Artificial Intelligence Reflective Surface AIRS enhancing drone management
    • 3.8.3. Three 2024 research advances in potential collaboration between 6G terrestrial base stations and aerial RIS
    • 3.8.4. 2024 breakthroughs in low-level solar drones
    • 3.8.5. 44 other relevant research advances announced in 2024

4. 6G Optical Wireless Communication OWC

  • 4.1. Definitions, justification, examples
    • 4.1.1. Context
    • 4.1.2. Definitions and scope of OWC and its subsets
    • 4.1.3. Infogram: Potential 6G transmission systems using OWC
    • 4.1.4. FSO attenuation in air: physics, issues and solutions
    • 4.1.5 Actual and emerging applications of OWC before 6G arrives
    • 4.1.6. Recent example of FSO inter-space/ stratosphere
    • 4.1.7. Other emerging OWC applications
    • 4.1.8. Infrared IR, visible light VL and ultraviolet UV for 6G in air: issues and parameters
  • 4.2. OWC for 6G Communications
    • 4.2.1. Most promising frequencies
    • 4.2.2. Massively heterogeneous
    • 4.2.3. Non-coherent vs coherent
    • 4.2.4. Importance of FSOC for 6G by location and interconnect
    • 4.2.5. SWOT appraisal of OWC as applied to 6G
  • 4.3. Lessons from 5G FSO
  • 4.4. OWC research advances in 2024 including those oriented to 6G
  • 4.5. OWC components and their materials
  • 4.6. 32 examples of suppliers of FSO hardware and systems with country analysis

5. Visible Light Communication VLC: aerospace, terrestrial, underwater

  • 5.1. VLC basics and changing views on its relevance to 6G
    • 5.1.1. Competitive position and potential applications
    • 5.1.2. Relevance to 6G
  • 5.2. Forms of VLC
    • 5.2.1. Overview
    • 5.2.2. LiFi
    • 5.2.4. Interactive iVLC
    • 5.2.5. Through the tissue optical communications
  • 5.3. VLC technological progress and prospects
    • 5.3.1. Past improvement of parameters
    • 5.3.2. Hybrid systems
    • 5.3.3. Achievements and realistic objectives for VLC light sources
    • 5.3.3. Achievements and realistic objectives for VLC receivers
    • 5.3.4. Interference management in 2024
    • 5.3.5. Use of luminescent solar concentrators in 2024
    • 5.3.6. Indoor VLC system optimisation in 2024
    • 5.3.6. MIMO VLC advances in 2024
  • 5.4. Underwater 6G Communication: VLC situation and progress vs alternatives
    • 5.4.1. Overview
    • 5.4.2. Major advances in 2024
    • 5.4.3. Comparison of underwater wireless communication technologies
  • 5.5. General recommendations concerning 6G VLC
  • 5.6. SWOT appraisal of VLC for 6G

6. Optical reconfigurable intelligent surfaces: 6G ORIS hardware and system design enhancing the propagation path at near infrared and visible frequencies

  • 6.1. Overview
  • 6.2. ORIS indoor, outdoor and underwater
  • 6.3. Prioritisation of research and company development are inappropriate; analysis
  • 6.4. Overview of near-infrared and visible light ORIS and allied device design
    • 6.4.1. How metasurface RIS hardware operates
    • 6.4.2. Basic RIS and its potential capabilities
    • 6.4.3. Metamaterial ORIS for 6G Communication
  • 6.5. Materials and devices for RIS tuning at Far IR THz, Near IR and visible light frequencies
    • 6.5.1. Infogram: RIS specificity, tuning criteria, physical principles, activation options
    • 6.5.2. 6G RIS tuning material benefits and challenges compared
    • 6.5.3. Comparison of RIS tuning materials winning in 6G RIS-related research
    • 6.5.4. Examples of liquid crystal ORIS research
    • 6.5.5. Other metamaterial ORIS materials and designs
    • 6.5.6. Analysis of 225 recent research papers and company activity
  • 6.6. Near-infrared and visible light ORIS and allied device design with advances in 2024
  • 6.7. Challenges addressed by ORIS
  • 6.8. How attenuation in air by frequency and type 0.1THz to visible is complementary
  • 6.9. Part of stratospheric communications and beyond
  • 6.10. ORIS system technologies and architectures: progress through 2024

7. Dielectrics, optical materials and semiconductors for 6G 0.3THz to visible light 6G transmission

  • 7.1. Overview
  • 7.2. Derisking and example Diffractive Optical Elements DOE
  • 7.3. Dielectrics
    • 7.3.1. Overview
    • 7.3.2. Dielectric requirements at 6G far IR, near IR and visible light frequencies with examples
    • 7.3.3. Low loss and allied materials for RIS by popularity in research
    • 7.3.4. Different dielectrics from 5G to 6G: better parameters, lower costs, larger areas
    • 7.3.5. SWOT appraisal of low-loss dielectrics for 6G infrastructure and client devices
    • 7.3.6. Dielectric optimisation for 6G in four tables and infograms
    • 7.3.7. Example: Development of advanced polyimide dielectrics
    • 7.3.8. The quest for high and low permittivity 6G low loss materials
    • 7.3.9. Permittivity 0.1-1THz for 19 low loss compounds simplified
    • 7.3.10. Dissipation factor optimisation across THz frequency for 19 material families
    • 7.3.11. Examples of research in 2024
    • 7.3.12. Seeking THz low loss through composites and porosity
    • 7.3.13. Special case: high resistivity silicon for 6G at 1THz
  • 7.4. Semiconductor and competitive material choices for 6G optronics beyond earlier coverage
    • 7.4.1. Overview
    • 7.4.2. Status of 11 semiconductor and active layer candidates
    • 7.4.3. Liquid crystal adopting many more 6G optronic roles: advantages, challenges
    • 7.4.4. Vanadium dioxide adopting many more 6G optronic roles: advantages, challenges
  • 7.5. Terahertz waveguide cables and small units
    • 7.5.1. Need, and state of play
    • 7.5.2. Advances in THz waveguides in 2025 (pre-publication), 2024 and 2023
    • 7.5.3. Design and materials of 6G waveguide cables including fluoropolymers and polypropylenes
    • 7.5.4. THz waveguides from InAs, GaP, sapphire etc. for boosting emitters, sensing etc.
    • 7.5.5. Manufacturing polymer THz cable in long reels
    • 7.5.6. THz waveguide gratings etched on metal-wires
    • 7.5.7. SWOT appraisal of terahertz cable waveguides in 6G systems
  • 7.6. Future near IR fiber optics for 6G
    • 7.6.1. 5G experience
    • 7.6.2. Fundamental types
    • 7.6.3. Vulnerability of fiber optic cable: Serious attacks occurring
    • 7.6.4. Limiting use of the fiber and its electronics to save cost
    • 7.6.5. Fiber optic cable design and materials
    • 7.6.6. SWOT appraisal of fiber optics in 6G system design

8. New photonic cooling and photovoltaic on-board power for 6G infrastructure and client devices

  • 8.1. Next technologies for solid-state cooling 6G infrastructure and devices
    • 8.1.1. Overview
    • 8.1.2. Infogram: Cooling toolkit with 6 optical and part-optical technologies for 6G starred
    • 8.1.3. 2024 research announcing new multifunctional composites providing cooling by manipulating near IR, mid IR and visible light
    • 8.1.4. Research pipeline of solid-state cooling by topic and technology readiness level
    • 8.1.5. The most needed compounds for future solid-state cooling from 211 recent researches
    • 8.1.6. Eight SWOT appraisals for solid-state cooling in general and seven emerging versions
    • 8.1.7. Thermoelectric temperature control materials for 6G chips, lasers with SWOT appraisal
  • 8.2. Photovoltaics for self-powered 6G infrastructure and client devices
    • 8.2.1. Overview
    • 8.2.2. Increased 6G mobile phone, tablet, active RIS and UM MIMO base station power demands matched to energy harvesting options
    • 8.2.3. Best photovoltaic research efficiencies trend to 2025
    • 8.2.4. 2024 proposal of "Perpetual" 6G RIS using energy harvesting
    • 8.2.5. 2024: 23 examples of new tandem and triple junction photovoltaics and allied research advances suitable for 6G
    • 8.2.6. Prospect of doubling the power per unit area of photovoltaics for 6G infrastructure and clint devices