表紙:6G通信におけるZED (ゼロエネルギーデバイス):市場・技術・材料の機会 (2024-2044年)
市場調査レポート
商品コード
1448838

6G通信におけるZED (ゼロエネルギーデバイス):市場・技術・材料の機会 (2024-2044年)

6G Communications Zero Energy Devices ZED: Markets, Technology, Materials Opportunities 2024-2044

出版日: | 発行: Zhar Research | ページ情報: 英文 365 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=156.58円
6G通信におけるZED (ゼロエネルギーデバイス):市場・技術・材料の機会 (2024-2044年)
出版日: 2024年03月12日
発行: Zhar Research
ページ情報: 英文 365 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要
レポート統計
チャプター 7
SWOT評価: 9
2024-2044年の予測ライン 23
企業 105
インフォグラム、表、グラフ 107

当レポートでは、6G通信におけるZED (ゼロエネルギーデバイス) の市場・技術・材料を調査し、技術の定義、背景、6G ZEDインフラおよびクライアントデバイスの実現技術、研究パイプラインなどをまとめています。

キャプション

6G通信におけるZED (ゼロエネルギーデバイス) の重要性 - 出典:"6G Communications Zero Energy Devices ZED: Markets, Technology, Materials Opportunities 2024-2044"

目次

第1章 エグゼクティブサマリー・総論

第2章 イントロダクション

  • 概要
  • 6Gの基本
  • 6Gフェーズ1および2におけるZEDのニーズと機会
  • 6G ZED 2024および2023に関連する詳細情報

第3章 6G ZEDインフラとクライアントデバイスの実現技術:メタマテリアル、IRS、RIS、構造エレクトロニクス

  • ゼロ&低電力インテリジェントサーフェスとソーラーの強化により6G ZEDを実現するメタマテリアルとメタサーフェス
    • メタマテリアル、IRS、RISの概要
    • 例:5Gと6GのメタマテリアルIRS ZEDウィンドウ
    • メタマテリアルツールキットの主な例、6つのフォーマットと6G ZEDの関連性
    • メタ原子の材料、デザイン、パターン化のオプション
    • 6G用途に向けて進化する商業的、運用的、理論的、構造的オプション
    • 6G RISサブTHz、THz、光学バージョンに適合したメタマテリアル製造技術
    • 再構成可能なインテリジェントサーフェスおよびその他の目的のためのメタサーフェス
    • 6G IRSおよびRISで使用される主な素材
    • 6G RISの構築方法と動作方法
    • 6G RIS用の8つのチューニングデバイスファミリとその材料要件
    • ディスクリート基板、積層フィルムから完全なスマートマテリアル統合、構造エレクトロニクスへのトレンド
    • 6G ZEDに役立つメタサーフェスエナジーハーベスティングの強化
  • メタマテリアルベースの6G ZED技術:3つのSWOT評価

第4章 6G ZEDの実現技術:SWIPT・AmBC・CD-ZED

  • 概要:6G ZEDを実現する後方散乱とSWIPT
  • ハイブリッドビームフォーミングベースのSWIPT
  • AmBCおよびCD-ZED

第5章 6G ZEDの実現技術:6Gインフラとクライアントデバイス向けエナジーハーベスティング

  • 概要:変化するニーズと13の技術
  • 電磁放射ハーベスティング:太陽光発電、周囲RF
  • 機械排出ハーベスティング:超低周波音、音響、振動、電気力学、圧電、摩擦電気、その他の技術を使用したその他の運動
  • 熱電、焦電、水力発電、バイオ燃料電池、その他のオプション
    • 概要
    • 熱電
    • 焦電性
    • 火力水力発電
    • バイオ燃料電池
    • その他

第6章 6G ZEDの実現可能性を高めるための超低消費電力電気・電子

  • 概要
  • システムレベルの省エネ
  • コンポーネントレベルの省エネ:超低消費電力IC・低消費電力ディスプレイなど

第7章 電池不要の6G ZEDのための電池の排除、スーパーキャパシタ、バリアント、質量ゼロエネルギー

  • 概要
  • 選択範囲- コンデンサ、スーパーコンデンサ、電池
  • リチウムイオンキャパシタの特長
  • スーパーキャパシタとその派生品の実際および潜在的な主要用途
  • ZED向け電池レス蓄電技術のSWOT評価
  • スーパーキャパシタとそのバリアント別実現されるZEDの例
  • 質量のないエネルギー:スーパーキャパシタ構造エレクトロニクス
  • 研究パイプライン:スーパーキャパシタ
  • 研究パイプライン:ハイブリッドアプローチ
  • 研究パイプライン:擬似コンデンサ
目次
REPORT STATISTICS
Chapters:7
SWOT appraisals :9
Forecast lines 2024-2044:23
Companies:105
Infograms, tables, graphs:107

6G Communications will become more viable by adopting zero energy devices ZED in its infrastructure. In addition, many 6G business cases are based on it enabling client devices at the edge of its networks to be zero energy. Here ZED means more useful and sold in far larger numbers, from personal and professional devices to Internet of Things IOT nodes.

ZED are energy autonomous devices with particular attention on those that have much longer life and greener credentials, this usually implying battery-free. The industry chooses to include in the ZED definition those devices that are powered only by a whisper of electricity from a signal beam when in use. All are analysed in the new Zhar Research report, "6G Communications Zero Energy Devices ZED: Markets, Technology, Materials Opportunities 2024-2044". Commercially-oriented, the 365-page report reveals your materials and device opportunities.

Primary author Dr. Peter Harrop says, "With its higher frequencies and therefore shorter- range emissions, 6G will fail without empowering devices in the transmission path, mostly intelligent reflective surfaces IRS and reprogrammable intelligent surfaces RIS in difficult-to-access places calling for energy autonomy. On the other hand, 6G is promised to enable IOT to become a genuinely new, large market at last. That can only happen if the nodes are ZED because the envisaged numbers and locations are so challenging. In a later stage, 6G is intended to permit unpowered edge devices and maybe charge your phone as you use it. For any of these things, many new systems need to be adopted together with many new materials technologies. On the 20-year view, metamaterials and structural electronics will be particularly impactful in many ways but there is much more to this story."

The report carefully explains all this including the implications of the large research pipeline right into 2024, distilling new roadmaps, forecasts, comparisons and appraisals. On-board multi-mode energy harvesting, ultra-low power electronics, structural supercapacitors and lithium-ion capacitors? It is all here, together with specification compromises and frugal new systems approaches such as ambient backscatter communications AmBC and how most of them can and will be combined. Your billion-dollar opportunity awaits.

Report structure

The 35-page Executive Summary and Conclusions is a quick read for those in a hurry, with follow-on pages giving 23 forecast lines as tables and graphs. See 20 key conclusions, the 20-year roadmap and many new infograms of the key trends, impediments and opportunities.

The 53-page Introduction embraces 6G basics, promises and threats. See challenges ahead such as its cost, runaway electricity consumption and frequency problems. There is a SWOT appraisal of 6G Communications as currently understood and a 6G general roadmap 2024-2044 then it focuses on ZED needs and opportunities in 6G Phase 1 and 2, illustrating such things as zero-energy device networks with wireless-powered RIS, ZED Machine Type Communications MTC and other ZED empowered 6G opportunities. Latest research references, many from 2024 close the chapter.

The rest of the report is a deep dive into the 6G ZED enabling technologies that are your business opportunity. They start with two chapters where certain technologies are impactful at both system and device level then three chapters are mainly concerned with device technology.

Joined-up world of IRS, RIS and metamaterials

Chapter 3 (38 pages) explains how 6G IRS are ZED and 6G RIS must be made ZED. Called, "6G ZED infrastructure and client device enabling technology: metamaterials, IRS, RIS, structural electronics" it is mostly about how metamaterials are enormously important here. They are the basis of IRS and RIS. They can increase the power from on-board photovoltaics in two ways. They can act as internal energy harvesting but there is more. What materials and construction are involved? All is explained with a profusion of latest research references and company achievements and intentions. Three SWOT appraisals concerning IRS, RIS and metamaterials end the chapter.

Enabling systems approaches

The 20 close packed pages of Chapter 4 are almost entirely involved in systems approaches making 6G ZED a reality for example by reducing or eliminating power requirements of client devices. Called, "6G ZED enabling technology: Simultaneous wireless and information transfer SWIPT, ambient backscatter communications technology AmBC, crowd-detectable zero energy devices CD-ZED", it explains all this again with 2024 and 2023 references and intentions and the activity of named universities and companies.

Energy harvesting - the full choice

Now come detailed device technologies that must be brought to bear in combination because the challenges are formidable as greater functionality so often calls for more electricity, personal electronics and RIS, the most important devices in the propagation path, being notorious examples. Nothing less than many forms of energy harvesting combined into smart materials are needed together with other contributions covered in the other chapters. Most treatises pretend there are only a few harvesting options but here we need 117 pages because we address 13 of them in great detail. After all, 6G ZED may be buried in our bodies, operating underwater or otherwise challenged so the report considers even the new hydrovoltaics and the use of printed biofuel cells powering our smart skin patches all 6G connected, or such is the dream. Learn what mechanical and electromagnetic frequencies and what forms of heat are realistic to harvest, for example. Other modes? What forms of energy harvesting are already being combined in single devices? Again, analysis and many new references bring it all alive.

Ultra-low power electronics

Chapter 6. (63 pages) "Ultra-low power electronics and electrics to make 6G ZED more feasible" takes 31 pages to sweep through such things as ultra-low power "Lithionic" and 2 nanometer chips, wireless sensor networks with simplified specifications using less power and other approaches with, in research, ultra-low power radio modules and smartphones resulting.

Storage without batteries

The report then ends with the best battery-free energy storage options for 6G, notably supercapacitors and lithium-ion capacitors but there is more and again the structural formats come to the fore. Indeed, there is a close look at the considerable research on making dumb material such as the case of your device into energy storage and even storage with energy harvesting still without increasing space or weight. It is called, "massless energy" and it is of considerable importance for both 6G ZED infrastructure and client devices. Self-healing versions anyone?

Only the report, "6G Communications Zero Energy Devices ZED: Markets, Technology, Materials Opportunities 2024-2044" can efficiently lead you to that $1 billion opportunity. May be more.

CAPTION

Significance of Zero Energy Devices ZED in 6G Communications. Source, "6G Communications Zero Energy Devices ZED: Markets, Technology, Materials Opportunities 2024-2044".

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose and scope of this report
  • 1.2. Methodology of this analysis
  • 1.3. 20 Primary conclusions
  • 1.4. Context of ZED: overlapping and adjacent technologies and examples of long-life energy independent devices
  • 1.5. Primary 6G infrastructure and client devices becoming zero-energy and battery-free, longer life
    • 1.5.1. Infrastructure: CP, IRS, RIS, relays etc.
    • 1.5.2. Client devices/ edge computing: IOT, smartphones and derivatives, other
  • 1.6. Primary enabling technologies for battery-free 6G ZED
    • 1.6.1. Device architecture: 13 energy harvesting technologies, ultra-low-power electronics
    • 1.6.2. Device battery-free storage: supercapacitors, LIC,
    • 1.6.3. Smart materials: metamaterials, self-healing materials, structural electronics, "massless storage"
    • 1.6.4. System: SWIPT, AmBC, CD-ZED other
  • 1.7. Eight options that can be combined
  • 1.8. Significance of Zero Energy Devices ZED in 6G Communications
  • 1.9. Roadmap of 6G ZED and its enabling technologies 2024-2044
  • 1.10. Market forecasts 2024-2044
    • 1.10.1. 6G ZED IOT vs other client devices compared to RFID, EAS units billion 2024-2044
    • 1.10.2. Backscatter SWIPT ZED compared to RFID, EAS $ billion 2024-2044
    • 1.10.3. 6G ZED IRS compared to 6G ZED RIS market $ billion 2024-2044
    • 1.10.4. 6G RIS market by five types $ billion 2024-2044
    • 1.10.5. Smartphones and derivatives ZED vs non-ZED numbers billion 2024-2044
    • 1.10.6. X-Reality hardware market 6G ZED vs non-ZED versions $ billion 2024-2044
    • 1.10.7. Background RIS forecasts 2024-2044

2. Introduction

  • 2.1. Overview
  • 2.2. 6G basics
    • 2.2.1. Background
    • 2.2.2. Why do we need 6G?
    • 2.2.3. Disruptive 6G aspects
    • 2.2.4. Wireless powered IoE for 6G
    • 2.2.5. Arguments against 6G
    • 2.2.6. Challenges ahead: cost, runaway electricity consumption and frequency
    • 2.2.7. SWOT appraisal of 6G Communications as currently understood
    • 2.2.8. 6G general roadmap 2024-2044
  • 2.3. ZED needs and opportunities in 6G Phase 1 and 2
    • 2.3.1. Background
    • 2.3.2. Specific ZED needs in 6G communications
    • 2.3.3. 3GPP and Kristiaanstad University vision of options for 6G ZED and wireless powered IoE for 6G
    • 2.3.4. Zero-Energy Device Networks With Wireless-Powered RIS
    • 2.3.5. ZED Machine Type Communications MTC
    • 2.3.7. Other ZED empowered 6G opportunities
    • 2.3.6. Zero-energy air interface for advanced 5G and for 6G
    • 2.3.7. Other ZED empowered 6G opportunities
    • 2.3.8. First real-time backscatter communication demonstrated for 6G in 2023
  • 2.4. Further reading relevant to 6G ZED 2024 and 2023

3. 6G ZED infrastructure and client device enabling technology: metamaterials, IRS, RIS, structural electronics

  • 3.1. Metamaterials and metasurfaces enabling 6G ZED by providing zero and low power intelligent surfaces and solar enhancement
    • 3.1.1. Overview of metamaterials, IRS and RIS
    • 3.1.2. Example: Metamaterial IRS ZED window for 5G then 6G
    • 3.1.3. Metamaterial toolkit primary examples, six formats and 6G ZED relevance
    • 3.1.4. The meta-atom materials, design and patterning options
    • 3.1.5. Commercial, operational, theoretical, structural options evolving for 6G use
    • 3.1.6. Metamaterial manufacturing technologies matched to 6G RIS sub-THz, THz and optical versions
    • 3.1.7. Metasurfaces for reconfigurable intelligent surfaces and other purposes
    • 3.1.8. Primary materials used in 6G IRS and RIS
    • 3.1.9. How a 6G RIS is constructed and how it operates
    • 3.1.10. 8 tuning device families for 6G RIS and their materials requirements
    • 3.1.11. Trend from discrete boards, stacked films to full smart material integration, structural electronics
    • 3.1.12. Metasurface energy harvesting enhancement useful for 6G ZED
  • 3.2. Three SWOT appraisals of metamaterial-based 6G ZED technologies
    • 3.2.1. SWOT appraisal for metamaterials and metasurfaces generally
    • 3.2.2. SWOT appraisal that must guide future 6G RIS design including ZED versions
    • 3.2.3. SWOT appraisal of 6G Communications IRS and RIS opportunities

4. 6G ZED enabling technology: Simultaneous wireless and information transfer SWIPT, Ambient backscatter communications technology AmBC, crowd-detectable zero energy devices CD-ZED

  • 4.1. Overview: backscatter and SWIPT to enable 6G ZED
  • 4.2. Hybrid beamforming-based SWIPT
  • 4.3. Ambient backscatter communications AmBC and crowd detectable CD-ZED
    • 4.3.1. General
    • 4.3.2. Orange AmBC and CD-ZED
    • 4.3.3. Battery-free AmBC: University of California San Diego
    • 4.3.4. Crowd-detectable CD-ZED research
    • 4.3.5. Further research from 2024 and 2023 - 34 selected papers

5. 6G ZED enabling technology: energy harvesting for 6G infrastructure and client devices

  • 5.1. Overview: changing needs and 13 technologies
    • 5.1.1. Context
    • 5.1.2. The increasing electricity consumption of electronics and matching harvesting for ZED
    • 5.1.3. Energy harvesting performance comparison: power per unit volume
    • 5.1.4. 13 families of energy harvesting technology considered for ZED 2024-2044
  • 5.2. Harvesting electromagnetic emissions: photovoltaic, ambient RF
    • 5.2.1. Photovoltaic
    • 5.2.2. Harvesting ambient RF power for devices and communication by recycling existing emissions
  • 5.3. Harvesting mechanical emissions: infrasound, acoustic, vibration, other motion using electrodynamic, piezoelectric, triboelectric, other technologies
    • 5.3.1. Overview
    • 5.3.2. Electrodynamic
    • 5.3.3. Piezoelectric
    • 5.3.4. Triboelectric
    • 5.3.5. Other
  • 5.4. Thermoelectric, pyroelectric, hydrovoltaic, biofuel cell and other options
    • 5.4.1. Overview
    • 5.4.2. Thermoelectric
    • 5.4.2. Pyroelectric
    • 5.4.3. Thermal hydrovoltaic
    • 5.4.4. Biofuel cell
    • 5.4.5. Other options

6. Ultra-low power electronics and electrics to make 6G ZED more feasible

  • 6.1. Overview
  • 6.2. System level energy saving
    • 6.2.1. Intermittency tolerant electronics Bfree
    • 6.2.2. Ultra-low-power phononic in-sensor computing
    • 6.2.3. Improved energy efficiency in 6G Communications: European Commission Hexa-X Project
    • 6.2.4. Static context header compression and fragmentation for ZED
    • 6.2.5. Wireless sensor networks
    • 6.2.6. Ultra-low power radio module and smartphone
    • 6.2.7. Other energy efficient sensing, processing and new power transfer options for 6G and IOT
  • 6.3. Component-level energy saving: Ultra-low power integrated circuits, low power displays and other
    • 6.3.1. Overview
    • 6.3.2. Ultra-low power integrated circuits
    • 6.3.3. Low power displays and other

7. Battery elimination, supercapacitors, variants and massless energy for battery-free 6G ZED

  • 7.1. Overview
  • 7.2. Spectrum of choice - capacitor to supercapacitor to battery
  • 7.3. Lithium-ion capacitor features
  • 7.4. Actual and potential major applications of supercapacitors and their derivatives 2024-2044
  • 7.5. SWOT appraisal of batteryless storage technologies for ZED
  • 7.6. Examples of ZED enabled by supercapacitors and variants
    • 7.6.1. Bicycle dynamo with supercapacitor or electrolytic capacitor
    • 7.6.2. IOT ZED enabled by LIC hybrid supercapacitor
    • 7.6.3. Supercapacitors in medical devices
  • 7.7. Massless energy - supercapacitor structural electronics
    • 7.7.1. Review
    • 7.7.2. Imperial College London, Texas A&M University, University of California San Diego, 5 others
    • 7.7.3. Structural supercapacitors for electronics and devices: Vanderbilt University USA
    • 7.7.4. Transparent structural supercapacitors on optoelectronic devices
  • 7.8. Research pipeline: Supercapacitors
  • 7.9. Research pipeline: Hybrid approaches
  • 7.10. Research pipeline: Pseudocapacitors