市場調査レポート
商品コード
1509814

6G通信:RIS (Reconfigurable Intelligent Surface) およびリフレクトアレイ材料とハードウェアの市場および技術 (2025-2045年)

6G Communications: Reconfigurable Intelligent Surface RIS and Reflect-array Materials and Hardware Markets, Technology 2025-2045

出版日: | 発行: Zhar Research | ページ情報: 英文 457 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=155.13円
6G通信:RIS (Reconfigurable Intelligent Surface) およびリフレクトアレイ材料とハードウェアの市場および技術 (2025-2045年)
出版日: 2024年06月30日
発行: Zhar Research
ページ情報: 英文 457 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

6G通信は2030年に到来します。そのために不可欠なRIS (Reconfigurable Intelligent Surface) は、伝搬経路を強化し、到達距離と浸透力を増大させます。この技術はまず、サブテラヘルツを扱い、次にテラヘルツ、近赤外線、光周波数を追加する見通しです。基地局も強化され、成層圏を移動するソーラードローンにも搭載されます。RISの360度の全方位の対応性、不可視性、長寿命性、自己適応性、自己発電性を備えた多機能スマート素材の開発が急速に進んでいおり、これらはセンシング、ポジショニング、無電源クライアントデバイスの操作といったビジネスケースを生み出しています。

当レポートでは、6G通信に不可欠なRIS (Reconfigurable Intelligent Surface) およびリフレクトアレイ材料とハードウェアの市場および技術を調査し、RISの定義と概要、材料とデバイス、製造技術とR&Dの動向、コスト分析、5Gおよび6GのRISロードマップ、市場規模の推移・予測、各種用途における展望と課題、参入企業の分析などをまとめています。

目次

第1章 エグゼクティブサマリー・結論

  • 本レポートの目的
  • 調査手法
  • 2つのインフォグラムによるRISの定義、設計、展開
  • 主な結論:6G通信とRIS設計および展開
  • 主な結論:RISチューニングのための材料とデバイス
  • 主な結論:6G RISおよびリフレクトアレイの製造技術
  • 主な結論:長期的視点
  • RISコスト分析
  • 5Gと6Gの研究と企業開発の優先順位の違い
  • 6G RIS SWOT評価
  • RISの進化
  • 5Gおよび6G RISロードマップ
  • RISコンポーネントインボックスからスマート材料へのトレンド
  • 市場予測
  • 6G RISの市場規模の予測 (数量・金額・価格)
  • 6G RISの年間販売量の予測
  • 6G RISの市場規模の予測 (金額):カテゴリー別
  • 6G RISの累計パネル導入数の予測
  • 6G完全パッシブメタマテリアルリフレクトアレイ市場の規模
  • 6G RISの市場規模

第2章 定義・起源・重要性・主な問題・必要な能力

  • 定義・分類
  • 用語
  • 1Gから6Gへの旅
  • RISの説明・目的
  • ビームフォーミングとステアリングのトレンド:「ビーム」は婉曲表現
  • ハードウェアへの配慮不足、究極のパフォーマンス目標の重要性
  • システムとセキュリティの観点から見たRIS
  • 6Gの世界アーキテクチャの提案、補完システム、範囲のジレンマ
  • インフォグラム:最近の研究を参考にしたRISを使用した6Gおよび補完システム
  • インフォグラム:6Gハードウェアと関連メーカー
  • RISと従来のアプローチの比較:混合アプローチ
  • 再構成可能でインテリジェントなメタサーフェスの多様な機能と用途
  • 世界の6G RISイニシアチブの例
    • ETSI ISG RIS
    • RISE 6G Europe
    • 英国と韓国の協力
    • 日本
    • 中国

第3章 究極の6G RISハードウェア目標:不可視性・独立性・遍在性・多機能性・永続性

  • 概要
  • 6Gで期待されるメタサーフェスエネルギー収集
  • RISはゼロエネルギーデバイスとなり、ZEDクライアントデバイスが使用可能に
  • 自己発電型の長寿命RISへの道
  • 6G ZEDの実現技術と材料
  • 6G ZEDインフラとクライアントデバイス向けのハーベスティング技術
  • 6GアクティブRISおよびUM MIMO基地局の電力需要とエネルギーハーベスティングオプションのマッチング
  • エネルギーハーベスティングを利用した「永久」RIS
  • 長寿命:装着して忘れる自己修復素材
  • 多機能RIS:ソリッドステート冷却機能によりRISの受容性と回収率を向上
  • 多機能RISがエネルギー収集を支援
  • 統合センシングISACと位置決め機能を備えた多機能RIS
  • システムセキュリティを保証するRIS:セミパッシブRISとアクティブRISの統合

第4章 透明パッシブリフレクトアレイとオールラウンドSTAR RIS

  • 概要
  • 6G伝送処理サーフェスの透明化の状況
  • 透明または不透明にできる6Gビーム処理サーフェスのオプション
  • 透明IRSとRISはほぼどこにでも行ける
  • 透明パッシブインテリジェント反射サーフェスIRS:Meta Nanoweb-R Sekisui
  • 透明RIS
  • 同時透過・反射型STAR RIS
  • 2024年以降分析されたその他の研究論文
  • 2023年以降分析されたその他の研究論文
  • 以前の研究- 例

第5章 基地局・UAV・広域MIMO RIS

  • 基地局と航空RISの定義と関連性
  • UAVドローンとRIS
  • 航空RIS基地局の研究
  • 2024年のUAV RIS関連の研究:その他の52件
  • 小型セル基地局としてのRIS
  • RIS対応、自立型、超大規模6G UM-MIMO基地局の設計
  • その他のMIMO大面積RISの進歩
  • 大規模MIMO基地局向けRIS:Tsinghua University、Emerson
  • 次回のELAAの進捗予定

第6章 サブTHz・THzでの伝搬経路を強化する6G RISハードウェアおよびシステム設計

  • ニーズ・主な障害
  • 5Gと6Gの研究と企業開発の優先順位の違い
  • RISの動作モード
  • 特定の業界や変化に合わせたRIS設計:カスタム設計および自己適応型RIS
  • RISチューニングハードウェアオプションの比較
  • 限定的な6G 0.1-0.3THz機能を備えた5G RISチューニングオプション:HEMT、CMOS、PIN、ショットキー
  • 6G RIS 0.1-1THzおよびNearIR向けの有望なチューニング材料とそれほど有望ではないチューニング材料
  • 2024年のTHz RIS以下のその他の研究論文の分析
  • 2024年のTHz RIS以下のその他の研究論文の分析

第7章 光キャリア:NIRおよび可視周波数での伝搬経路を強化する6G ORISハードウェアおよびシステム設計

  • NIRおよび可視光ORISおよび関連デバイス設計の概要
  • 研究と企業開発の優先順位
  • 6Gにおける可視光通信の重要性
  • FSOとVLCが取り組む課題
  • 空気中での減衰とタイプ0.1THzから可視光までの補完性
  • 屋内、屋外、水中でのORIS
  • 成層圏通信の一部とそれ以降
  • LiFiを含む6G RISおよびLED光通信技術
  • LEDおよび潜在的に6G LiFiおよび6G光学RIS材料
  • 屋内および屋外のシナリオで想定されるRIS対応6G LiFi用途
  • LED通信全般
  • RIS支援屋内VLCシステムのシステムモデル
  • 6G通信およびシステム設計のためのメタマテリアルORIS
  • 6G通信用メタレンズ
  • ミラーアレイORISの設計
  • 最高のQOSを実現する光/THz 6G通信の組み合わせが可能
  • 2024年と2023年のその他の研究の評価
  • 重要な先行研究

第8章 主な実現ハードウェア:メタマテリアル・メタサーフェス

  • 概要
  • 6G通信やその他のOTA、TIRS向けの電気的に機能化された透明ガラス
  • メタアトムとパターン化オプション
  • 商業的、運用的、理論的、構造的オプションの比較
  • メタマテリアルのパターンと材料
  • 通信メタマテリアルの6つの形式とその例
  • 調整可能なメタマテリアル
  • メタサーフェスプライマー
  • メタマテリアル全体の長期的な展望
  • GHz、THz、赤外線、光メタマテリアルの新しい用途
  • メタマテリアルとメタサーフェス全般のSWOT評価

第9章 6G RISとリフレクトアレイの製造・テスト・コストの内訳・参入中小企業

  • 薄膜と透明エレクトロニクスの最先端技術
  • ディスクリート基板、積層フィルムから完全なスマート材料統合へのトレンド
  • フレキシブル、層流、2Dエネルギーハーベスティングとセンシングの重要性
  • 6G RIS光、低THz、高THzの製造技術の違い
  • 計画中の6G RISデバイスおよびシステムの製造フォーマット
  • 全金属テラヘルツメタサーフェス
  • 全誘電体テラヘルツメタサーフェス:2024年の新たな進歩
  • 超高速レーザー加工別イオンメタサーフェス
  • 6G RISテスト
  • RISコスト分析
  • 6G製造技術に携わる中小の非通信企業
    • Echodyne USA
    • Evolv Technology USA
    • Fractal Antenna Systems USA
    • Greenerwave France
    • iQLP USA
    • Kymeta Corp. USA
    • Meta Materials Canada
    • Metacept Systems USA
    • Metawave USA
    • Pivotal Commware USA
    • SensorMetrix USA
    • Teraview USA
目次

Summary

This major commercially-oriented report serves the needs of investors, materials and device suppliers, product and system integrators, but there is also much to interest academics, regulators and others in the emerging value chain.

New virtuosity

6G Communications arrives 2030. Its essential Reconfigurable Intelligent Surfaces will increase range and penetration, enhancing the propagation path. First, they will handle sub-terahertz then add terahertz, near infrared and optical frequencies. They will even enhance the base stations and appear in the stratosphere on loitering solar drones. There is rapid progress in making RIS 360-degrees all-round capable, invisible, long lasting, self-adaptive, self-powered and even multifunctional smart materials adding sensing, positioning, operating unpowered client devices and other business cases. Indeed, the flood of new research in 2024 makes earlier analysis misleading.

Two reports in one

The report is really two reports in one. Those seeking just the materials and device aspects can get them from about 200 pages, mainly of new infograms, forecasts, roadmaps, comparison tables and PhD level commentary. Those seeking all aspects including signal processing and system design will value the full text.

The report has 6 SWOT appraisals, 9 chapters, 21 forecast lines to 2045, 25 key conclusions, 31 new infograms, over 92 companies mentioned and hundreds of latest research papers analysed, particularly from 2024 and 2023, in 457 pages.

Questions answered include:

  • Cost analysis?
  • Gaps in the market?
  • Merits and issues of RIS alternatives?
  • Becoming multipurpose in what ways?
  • Major RIS milestones, when, where to 2045?
  • Countries, companies, researchers to watch?
  • 6G RIS vs 6G reflect-arrays - technologies, forecasts?
  • 6G THz, NearIR and visible frequencies, when and why?
  • Potential partners and acquisitions and their RIS progress?
  • 6G RIS panels, area, cost, & market value by year to 2045?
  • Which formulations, configurations, manufacturing win, why?
  • What metamaterials, metasurfaces, tuning materials and devices?
  • 20-year roadmaps of decision making, technical capability and adoption?

The 36-page Executive Summary and Conclusions takes 38 pages for those wanting the whole picture at speed including roadmaps 2025-2045. 11 pages then present those 21 forecast lines as tables and graphs with commentary. Chapter 2 (45 pages) then introduces the subject addressing definitions, origin, importance, key issues, required capabilities and some important regional initiatives but what is the ultimate objective? That is covered in Chapter 3 (39 pages) "Ultimate 6G RIS hardware objectives: invisible, independent, ubiquitous, multifunctional, everlasting". Here you will learn of the now-considerable body of work on such things as Transparent Amplifying Intelligent Surface TAIS providing Simultaneous Wireless and Information Transfer SWIPT with advanced backscatter and Simultaneous Terahertz Imaging with Information and Power Transfer STIIPT. See eight options that can be combined for energy independent long-life, 13 energy harvesting options potentially making RIS into Zero Energy Devices. Ambient backscatter communications AmBC and crowd detectable CD-ZED? RIS ensuring 6G system security: combined semi-passive and active RIS? Winning materials? It is here with analysis of many latest research papers and our own ideas.

Transparent versions attract

Transparent RIS is now a strong trend so Chapter 4 (38 pages) goes deeper with "Transparent passive reflect-arrays and all-round STAR RIS". In addition, there is much new work on how RIS technology will help to address the many problems of the large, power-hungry 6G base stations planned and Chapter 5, "Base station, UAV and large area MIMO RIS" covers these linked topics in 22 pages including the extremely large-scale antenna array (ELAA).

Heart of the subject

Chapter 6 concerns the heart of the subject - materials, devices and new principles for, "6G RIS hardware and system design enhancing the propagation path at sub-THz, THz". In 130 pages it makes sense of the tsunami of new research and initiatives, presenting many summaries, comparisons and predictions including winning materials. See indoor vs outdoor RIS and RIS customised to specific industries. However, the largest part is RIS tuning hardware options compared, making sense of many new research advances and initiatives, identifying winners and losers. Whereas some early 6G RIS will use 5G RIS tuning materials and devices, higher THz frequencies need disruptive new approaches including liquid crystal, graphene, vanadium dioxide and chalcogenide tuning particularly full integration into the metasurfaces. Goodbye to flip chipping discretes.

6G becomes largely optical

To succeed commercially, most 6G must offer widespread superlative performance so such things as defaulting to satcoms and WiFi at mere GHz risks the whole enterprise. Enter 6G near-infrared and visible light communication and the attendant need for RIS at these frequencies, all addressed in Chapter 7 "Optical carriers: 6G ORIS hardware and system design enhancing the propagation path at near infrared and visible frequencies". Its 42 pages lead you to your opportunities with these materials and devices. Learn the place of LiFi, Optical Wireless Communication and more.

Enabling metamaterials, manufacturing and small companies

For those needing the basics of required added value materials, the 28 pages of Chapter 8 cover, "Key enabling hardware: metamaterials, metasurfaces". Chapter 9 adds, "6G RIS and reflect-array manufacture, testing, cost breakdown, small companies involved". What resolution, feature size, printing technology? Cost breakdown for hardware through installation for indoor and outdoor RIS systems? 12 small to medium sized companies, with something to offer, are assessed - your potential partners or acquisitions. The newest activities of the giant telcos and others and hundreds of research institutions have already been covered throughout the text.

Table of Contents

1. Executive summary and conclusions

  • 1.1. Purpose of this report
  • 1.2. Methodology of this analysis
  • 1.3. Reconfigurable intelligent surfaces definition, design, deployment with two infograms
    • 1.3.1. Definition and basics
    • 1.3.2. Infogram:6G RIS and other metamaterial in action: the dream
    • 1.3.3. Infogram: Ubiquitous 6G and complementary systems using RIS with references to recent research
    • 1.3.4. RIS-enabled, self-sufficient ultra-massive 6G UM-MIMO base station design
    • 1.3.5. Choosing complementary 6G frequencies all capable of better performance
    • 1.3.6. Infogram: The Terahertz Gap demands 6G tuning materials and devices different from 5G
  • 1.4. Key conclusions: 6G Communications and its RIS design and deployment 2025-2045
  • 1.5. Key conclusions: materials and devices for RIS tuning
  • 1.6. Key conclusions: Manufacturing technology for 6G RIS and reflect-arrays
    • 1.6.1. Manufacture overview
    • 1.6.2. Printing options for metamaterials and their tuning materials
    • 1.6.3. Near-infrared and visible light ORIS and allied device design and manufacture
  • 1.7. Key conclusions; the long view
    • 1.7.1. Summary
    • 1.7.2. SWIPT, STIIPT, AmBC, CD-ZED with 17 2024, 2023 research papers analysed
    • 1.7.3. STAR RIS SWOT appraisal
  • 1.8. RIS cost analysis
    • 1.8.1. Outdoor semi-passive and active RIS cost analysis at high areas of deployment
    • 1.8.2. Indoor semi-passive RIS cost analysis at volume
  • 1.9. The different prioritisation of research and company development for 5G and 6G
  • 1.10 6G RIS SWOT appraisal
  • 1.11. RIS evolution 2025-2045
  • 1.12 5G and 6G RIS roadmap 2025-2045
  • 1.13. Trend from RIS components-in-a-box to smart materials 2025-2045
  • 1.14. Market forecasts 2025-2045
  • 1.14.1 6G RIS market yearly area added bn. sq. m., price $ ex factory $/ square meter, semi-passive ,active and total market value table 2029-2045: table
  • 1.14.2 6G RIS Area sales yearly billion square meters 2029-2045: graph with explanation
    • 1.14.3. Average 6G RIS price expressed as $/ square m. ex-factory including electronics 2029-2045
    • 1.14.4. RIS value market $ billion by active and three semi-passive categories 2029-2045: table
  • 1.14.5 6G RIS value market $ billion by active and three semi-passive categories 2029-2045 graph with explanation
  • 1.14.6 6G reconfigurable intelligent surfaces cumulative panels number deployed billion by year end 2029-2045
  • 1.14.7 6G fully passive metamaterial reflect-array market $ billion 2029-2045
  • 1.14.8 6G RIS value market, base station part, other terahertz electronics market $ billion
    • 1.14.9. Percentage share of global RIS hardware value market by four regions 2029-2045
    • 1.14.10. Market for 6G vs 5G base stations units millions yearly 2029-2045

2. Definition, origin, importance, key issues, required capabilities

  • 2.1. Definitions and nomenclature
  • 2.2. Terminology thicket
  • 2.3 1G to 6G journey
  • 2.4. RIS explanation and purposes
    • 2.4.1. Explanation
    • 2.4.2. ITU proposals and 3GPP initiatives
    • 2.4.3. RIS assisted wireless communication landscape
    • 2.4.4. RIS patenting
  • 2.5. Trend to beam forming and steering but "beam" is a euphemism
  • 2.6. Inadequate attention to hardware, importance of ultimate performance targets
  • 2.7. RIS from the systems and security viewpoint
  • 2.8 6G global architecture proposals, complementary systems and the range dilemma
  • 2.9. Infogram of 6G and complementary systems using RIS with references to recent research
  • 2.10. Infogram of likely 6G hardware and allied manufacturers
  • 2.11. RIS compared to traditional approaches: mixed approaches
  • 2.12. Diverse functionalities and applications of reconfigurable and intelligent metasurfaces
  • 2.13. Examples of 6G RIS initiatives worldwide
    • 2.13.1. ETSI ISG RIS with 32 member organisations , other initiatives
    • 2.13.2. RISE 6G Europe
    • 2.13.3. UK-Korea collaboration
    • 2.13.4. Japan
    • 2.13.5. China

3. Ultimate 6G RIS hardware objectives: invisible, independent, ubiquitous, multifunctional, everlasting

  • 3.1. Overview
    • 3.1.1. The journey to vanishing cleverer longer-lasting RIS
    • 3.1.2. Eight options that can be combined for energy independent long-life 6G RIS etc.
  • 3.2. Metasurface energy harvesting likely for 6G
  • 3.3. RIS will become zero energy devices and they will enable ZED client devices
  • 3.4. Routes to self-powered, long life RIS
  • 3.4.1 6G ZED enabling technologies and materials
    • 3.4.2. Maturity of primary ZED enabling technologies in 2025
    • 3.4.3. Ranking of most popular 6G ZED compounds and carbon allotropes in research
    • 3.4.4. Context of ZED: overlapping and adjacent technologies and examples of long-life energy independence
    • 3.4.5. SWIPT, STIIPT, AmBC, CD-ZED, battery elimination, with 17 2024, 2023 research papers analysed
  • 3.4.6 13. harvesting technologies for 6G ZED infrastructure and client devices 2025-2045
  • 3.4.7 6G active RIS and UM MIMO base station power demands matched to energy harvesting options
  • 3.4.8 "Perpetual" RIS using energy harvesting
    • 3.4.9. Device battery-free storage: supercapacitors, LIC, massless energy
    • 3.4.10. SWOT appraisal of batteryless storage technologies for ZED RIS and more
    • 3.4.11. SWOT appraisal of circuits and infrastructure that eliminate storage
  • 3.5. Long life: self-healing materials for fit-and-forget
  • 3.6. Multifunctional RIS: solid-state cooling functionality can enhance RIS acceptability, payback
  • 3.7. Multifunctional RIS assists energy harvesting
  • 3.8. Multifunctional RIS with integral sensing ISAC and positioning
  • 3.9. RIS ensuring system security: combined semi-passive and active RIS

4. Transparent passive reflect-arrays and all-round STAR RIS

  • 4.1. Overview
  • 4.2. Situation with transparent 6G transmission-handling surfaces in 2024-5
  • 4.3. Options for 6G beam-handling surfaces that can be visually transparent or opaque
  • 4.4. Transparent IRS and RIS can go almost anywhere
  • 4.5. Transparent passive intelligent reflecting surface IRS: Meta Nanoweb-R Sekisui
  • 4.6. Transparent RIS
    • 4.6.1. Overview
    • 4.6.2. NTT DOCOMO transparent RIS
    • 4.6.3. Cornell University RIS prototype and later work elsewhere
  • 4.7. Simultaneous transmissive and reflective STAR RIS
    • 4.7.1. Overview
    • 4.7.2. STAR-RIS optimisation
    • 4.7.3. STAR-RIS-ISAC integrated sensing and communication system
    • 4.7.4. TAIS Transparent Amplifying Intelligent Surface and SWIPT active STAR-RIS
    • 4.7.5. STAR-RIS with energy harvesting and adaptive power
    • 4.7.6. Potential STAR-RIS applications including MIMO and security
    • 4.7.7. STAR RIS SWOT appraisal
  • 4.8. Other research papers analysed from 2024
  • 4.9. Other research papers analysed from 2023
  • 4.10. Earlier work - examples

5. Base station, UAV and large area MIMO RIS

  • 5.1. Definitions and the link between base station and aerial RIS
  • 5.2. UAV drones and RIS
    • 5.2.1. Small local and large stratospheric, RIS relay and base station
    • 5.2.2. Large stratospheric HAPS RIS
  • 5.3. Aerial RIS base station research
  • 5.4. Research in 2024 related to UAV RIS: 52 other papers
  • 5.5. RIS as small cell base station
  • 5.6. RIS-enabled, self-sufficient, ultra-massive 6G UM-MIMO base station design
  • 5.7. Other MIMO large area RIS advances
  • 5.8. RIS for massive MIMO base station: Tsinghua University, Emerson
  • 5.9. Next advances planned ELAA

6. 6G RIS hardware and system design enhancing the propagation path at sub-THz, THz

  • 6.1. Needs, primary impediments
  • 6.2. The different prioritisation of research and company development for 5G and 6G
  • 6.3. RIS operation modes
    • 6.3.1. Time and processing
    • 6.3.2. Direction and absorption
    • 6.3.3. Single- or multi- functional
    • 6.3.4. Frequency choices: 6G in the electromagnetic EM spectrum
    • 6.3.5. Alternative architectures reducing cost, complexity, and power consumption
  • 6.4. RIS design for specific industries and changes: custom designed and self-adaptive RIS
    • 6.4.1. Introduction and environment adaptive example
    • 6.4.2. Multi-user RIS
    • 6.4.3. Indoor RIS design
    • 6.4.4. Agricultural RIS design
    • 6.4.5. High speed rail RIS design
    • 6.4.6. Industry 5.0 RIS design
  • 6.5. RIS tuning hardware options compared
    • 6.5.1. Infogram: RIS specificity, tuning criteria, physical principles, activation options
    • 6.5.2. Examples of how electrical and optical RIS tuning control are preferred
    • 6.5.3. Infogram: The Terahertz Gap demands different tuning materials and devices
  • 6.5.4 5G RIS tuning options with limited 6G 0.1-0.3THz capability: HEMT, CMOS, PIN, Schottky - 7 pages
    • 6.5.5. Detailed comparison of various RIS controlling techniques and popular tuning material parameters
  • 6.6. Detail on some promising and less-promising tuning materials for 6G RIS 0.1-1THz and NearIR
    • 6.6.1. Winners on current evidence
    • 6.6.2. Why 5G RIS tuning is of limited relevance to 6G needs
    • 6.6.3. Why magnetics, mechanics, MEMS and microfluidics are weaker candidates for 6G RIS
    • 6.6.4. Vanadium dioxide tuning: major progress in 2024 - 16 pages
    • 6.6.5. Chalcogenide phase change materials notably GST and GeTe tuning - 8 pages
    • 6.6.6. Graphene tuning: graphene plasmonics and gated graphene; major progress in 2024 - 21 pages
    • 6.6.7. Other 2D material tuning - one page
    • 6.6.8. Liquid crystal tuning: major progress in 2024- 13 pages
  • 6.7. Analysis of other research papers in 2024 for THz RIS and below
  • 6.8. Analysis of other research papers in 2024 for THz RIS and below

7. Optical carriers: 6G ORIS hardware and system design enhancing the propagation path at near infrared and visible frequencies

  • 7.1. Overview of near-infrared and visible light ORIS and allied device design
  • 7.2. Prioritisation of research and company development are inappropriate; analysis
  • 7.3. Importance of visible light communication for 6G
  • 7.4. Challenges addressed by FSO and VLC
  • 7.5. How attenuation in air by frequency and type 0.1THz to visible is complementary
  • 7.6. ORIS indoor, outdoor and underwater
  • 7.7. Part of stratospheric communications and beyond
  • 7.8 6G RIS and LED optical communication technologies including LiFi
  • 7.9. LED and potentially 6G LiFi and 6G optical RIS materials
  • 7.10. Envisioned RIS-enabled 6G LiFi applications in indoor and outdoor scenarios.
  • 7.11. LED communication generally
  • 7.12. System model for a RIS-aided indoor VLC system
  • 7.13. Metamaterial ORIS for 6G Communication and system design
  • 7.14. Metalenses for 6G Communication
  • 7.15. Mirror array ORIS design
  • 7.16. Possible combined light/THz 6G Communications for best QOS
  • 7.17. Appraisal of other research in 2024 and 2023
  • 7.18. Significant earlier research

8. Key enabling hardware: metamaterials, metasurfaces

  • 8.1. Overview
  • 8.2. Electrically-functionalised transparent glass for 6G Communications and other OTA, TIRS
  • 8.3. The meta-atom and patterning options
  • 8.4. Commercial, operational, theoretical, structural options compared
  • 8.5. Metamaterial patterns and materials
  • 8.6. Six formats of communications metamaterial with examples
  • 8.7. Tunable metamaterials
  • 8.8. Metasurface primer
    • 8.8.1. Metasurface design, operation and RIS
    • 8.8.2. RIS and reflect-array construction and potential capability
    • 8.8.3. How metamaterial RIS hardware operates
    • 8.8.4. Categories of reconfigurable and programmable metasurfaces
    • 8.8.5. Metamaterial reflect arrays (also called intelligent reflective surfaces IRS or fully-passive RIS) for 6G
    • 8.8.6. Hypersurfaces and bifunctional metasurfaces
  • 8.9. The long-term picture of metamaterials overall
  • 8.10. Emerging applications of GHz, THz, infrared and optical metamaterials
  • 8.11. SWOT appraisal for metamaterials and metasurfaces generally

9. 6G RIS and reflect-array manufacture, testing, cost breakdown, small companies involved

  • 9.1. Thin film and transparent electronics state-of-the-art
  • 9.2. Trend from discrete boards, stacked films to full smart material integration
  • 9.3. Importance of flexible, laminar and 2D energy harvesting and sensing
  • 9.4. How manufacturing technologies differ for 6G RIS optical, low or high THz
  • 9.5. Formats for manufacturing planned 6G RIS devices and systems
  • 9.6. All-metal terahertz metasurfaces
  • 9.7. All-dielectric terahertz metasurfaces: new advances in 2024
  • 9.8. Ionic metasurfaces by ultra-fast laser tailoring
  • 9.9 6G RIS testing
  • 9.10. RIS cost analysis
    • 9.10.1. Outdoor semi-passive and active RIS cost analysis at high areas of deployment
    • 9.10.2. Indoor semi-passive RIS cost analysis at volume
  • 9.11. Small and medium non-telco companies involved in 6G manufacturing technologies
    • 9.11.1. Echodyne USA
    • 9.11.2. Evolv Technology USA
    • 9.11.3. Fractal Antenna Systems USA
    • 9.11.4. Greenerwave France
    • 9.11.5. iQLP USA
    • 9.11.6. Kymeta Corp. USA
    • 9.11.7. Meta Materials Canada
    • 9.11.8. Metacept Systems USA
    • 9.11.9. Metawave USA
    • 9.11.10. Pivotal Commware USA
    • 9.11.11. SensorMetrix USA
    • 9.11.12. Teraview USA