市場調査レポート
商品コード
1347334

6G通信:RIS材料・ハードウェア市場(2024年~2044年)

6G Communications: Reconfigurable Intelligent Surface Materials and Hardware Markets 2024-2044

出版日: | 発行: Zhar Research | ページ情報: 英文 358 Pages | 納期: 即日から翌営業日

価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=158.97円
6G通信:RIS材料・ハードウェア市場(2024年~2044年)
出版日: 2023年09月12日
発行: Zhar Research
ページ情報: 英文 358 Pages
納期: 即日から翌営業日
  • 全表示
  • 概要
  • 目次
概要

2030年頃に到来する6Gワイヤレス通信は、RISを広く展開する必要があります。何年か後には2億平方メートル以上が展開され、RISハードウェアの売上は年間120億米ドルを超え、設置などの関連コストがこれに大きく上乗せされることになります。

5Gと同様、6Gも0.1~0.3THzという想定される帯域の下限から始めて大幅な性能向上を図り、このレポートで分析された大規模な課題が克服されたときに、より高い周波数のバージョンを追加して、2035年にフェーズ2が実施されると予測されます。その際には、0.3~1THzの処理能力、無電源クライアントデバイスを操作するアクティブ(電源付き)RIS、近赤外/可視光RIS、その他の進歩が追加される可能性があります。

その中で、グラフェン、3-5化合物、二酸化バナジウム、サファイア、特定の有機物など、細密で微細なパターニング、透明性、チップアレイ、その他の要件を満たす付加価値の高い材料に対する大きな需要が見込まれ、コモディティ化を避け、魅力的な市場となります。基板として通常のポリマーフィルムを使用できる領域が広いことも、その一面です。

当レポートでは、6G通信市場について調査し、必要とされる材料とハードウェアを特定し、最新の状況と今後の見通し、機会に関する最新の分析を提供しています。

目次

第1章 17の予測ラインによるエグゼクティブサマリーと結論(2023年~2043年)

  • このレポートの定義と目的
  • このレポートの目的と範囲
  • この分析の調査手法
  • インフォグラム:6G RISとその他のメタサーフェスが情勢全体で動作している
  • 15の主な結論
  • RISを支援する組織
  • RIS建設
  • RISによって有効になる追加機能
  • 付加価値RIS材料の機会
  • 新たに登場するRISに向けて優先される8つのチューニングデバイスファミリ
  • 将来の6G RIS設計の指針となる6G RIS SWOTの評価
  • 6G RISのロードマップと16の予測ライン(2024年~2044年)

第2章 イントロダクション

  • RISとは何か
  • RISの構造と機能
  • 全体像は6つの可能な動作モード
  • 代替システムアプローチ:デバイスからデバイスへ
  • 6G向けRIS、先行製品と中間製品の比較
  • 6Gと6G RISの目的は拡大しているが、現在はいくつかの焦点が必要
  • 緊急性と標準の問題
  • 6G THz周波数の選択はRIS設計に大きく影響する
  • テラヘルツギャップ:逃げ道
  • アクティブなRISとその他の6Gインフラによる電力消費のジレンマ
  • 次の章の形式

第3章 6G向けのメタ材料と製造技術、2023年からの大きな進歩と見方の変化

  • 概要
  • メタアトムとパターン化のオプション
  • 商業的、運用的、理論的、構造的オプションの比較
  • メタ材料のパターンと材料
  • メタ材料の6つの形式と例
  • メタサーフェスプライマー
  • ハイパーサーフェス
  • メタ材料全体の長期的な全体像
  • 6Gではメタサーフェスエナジーハーベスティングが実現する可能性が高い
  • GHz、THz、赤外線、光学メタ材料の用途
  • メタ材料とメタサーフェス一般のSWOT評価
  • 2023年からの6Gの認識、計画、進捗における大きな変化:15例の分析
  • 光学、低THz、高THzを問わない6G RIS向け製造技術

第4章 6G THz RIS:設計

  • 今後の課題
  • デザインコンテキスト
  • ビームフォーミングとステアリングがトレンドだが「ビーム」は婉曲表現
  • 将来を見据えたRISの進化
  • メタサーフェスRISハードウェアの動作方法
  • セミパッシブ・アクティブRISコンポーネント
  • RISと従来のアプローチとの比較
  • 2022年以降の進歩
  • 5G向けRIS
  • 6G向けRIS
  • 最近の調査パイプラインからのRIS向けの9つのチューニングデバイスファミリの評価
  • アクティブRIS vs. パッシブRIS、制御チャネルとその他の作業の除去
  • THzと光学向けのENZと低損失材料
  • 統合センシングを備えた6G RIS
  • レビュー(2023年)
  • 将来の6G RIS設計の指針となる6G RISのSWOT評価

第5章 動作中の6G THz RIS:材料、ハードウェア、場所、設置の問題

  • 情勢全体における動作中の6G RISとその他のメタサーフェス
  • 6G水中、地下、農業向け - 市場のギャップ
  • 商工業:スマートファクトリーとインダストリー6.0
  • 展開の課題
  • テスト、認定:Greenerwave, Rohde & Schwartzの例(2023年)
  • 精密なマッピング向けのRIS
  • 6G基地局向けRIS
  • RIS - 統合型ユーザー中心ネットワーク:アーキテクチャと最適化
  • 携帯電話の充電と電源のないユーザーデバイスへの電力供給に向けたRIS SWIPT WIET
  • ユビキタスRISと無線通信メタ材料
  • ハードウェアの機会
  • セキュリティ上の問題

第6章 6G光学RIS:近赤外と可視

  • 概要
  • LiFi RIS
  • 可能なハイブリッド光/THz 6G通信
  • 光学RIS一般
  • RISを強化または置き換える光学デバイス

第7章 企業と連携:地域別

  • 世界のRIS・THzハードウェアの取り組み
  • 北米 - 企業と取り組み
  • 関連するRIS関連技術を持つ北米の中小企業の評価
    • Echodyne
    • Evolv Technology
    • Fractal Antenna Systems
    • iQLP
    • Kymeta Corp.
    • Meta
    • Metacept Systems
    • Metawave
    • Pivotal Commware
    • SensorMetrix
  • 欧州:政府、学術、産業
    • 欧州連合
    • フィンランド
    • ドイツ
    • 英国
    • フランス
  • 東アジア:政府、学術、産業
    • 中国
    • インド
    • 日本
    • 韓国
    • パキスタン
    • シンガポール
    • 台湾
目次

6G wireless communication coming in around 2030 needs widely-deployed Reconfigurable Intelligent Surfaces RIS. Some years will see over 200 million square meters deployed, RIS hardware sales rising to over $12 billion yearly, related costs such as installation greatly adding to this. The new Zhar Research report, "6G Communications: Reconfigurable Intelligent Surface Materials and Hardware Markets: SubTHz, THz, Optical 2024-2044" gives the latest situation and prospects ahead. Uniquely focussing on clearly identifying the materials and hardware needed, free of the obscure software analysis and mathematics of other reports. It is based on close analysis of what is needed, what will possible, the research pipeline - much boosted in 2023 - and how the participants are repositioning. Reports not analysing these major changes from 2023 are relatively useless.

Dr. Peter Harrop, CEO of Zhar Research says, "We find that, without RIS, there will be no 6G. These metasurfaces empowering the propagation path and enhancing base stations will be key both to affordable 6G deployment and to delivering its essential business cases. 6G RIS will appear in many different forms and at many frequencies, from 0.1THz to 1THz and even potentially visible light in later years. Some RIS will even be transparent to retrofit on windows. However, 2023 saw radical changes in achievements and objectives. Uniquely this commercially-oriented report covers that, including many new RIS security issues and particularly presenting our latest analysis of materials and hardware opportunities, including gaps in the emerging market from 2024-2044."

The report advises that, like 5G, 6G will start at the bottom of an envisaged band - around 0.1-0.3THz - to get huge performance increase - then add higher frequency versions for stellar performance when the massive challenges analysed in this report are overcome, maybe a Phase 2 in 2035. That may involve adding 0.3-1THz capability, active (powered) RIS that operates unpowered client devices, near infrared and visible light RIS and other advances forecasted.

Within that, expect major demand for the value-added materials involved including graphene, 3-5 compounds, vanadium dioxide, sapphires and certain organics that are detailed and fine patterning, transparency, chip arrays and other requirements make the market attractive, avoiding commoditisation. Vast areas od regular polymer films as substrates are another aspect.

The Executive Summary and Conclusions has 35 information-packed pages, mostly 16 key conclusions, new infograms, tables, graphs and SWOT RIS appraisal. There is a detailed roadmap and 21 forecast lines 2024-2044.

The 99-page Introduction then gives unusually comprehensive coverage of the basics as seen in the very different light of 2023 onwards with a profusion of references for further reading. It includes basic RIS design and purpose, derisking investment for multiple applications, for this report is commercially oriented. See infograms of intended 6G and its RIS across land, sea and air plus what companies are likely to participate where. Understand the unsolved 6G rural challenge and difficulty providing extra infrastructure and many functions. Here you navigate the confusions of RIS terminology, metamaterials and metasurfaces involved, six operational and three directional modes. Such RIS and 6G are compared to traditional approaches and the need for better focus in objectives and standards becoming urgent, since RIS hardware lags progress in 6G system design. Because this is analysis not evangelism, there is a very close look at the pros and cons of frequency choices and RIS becoming part of the problem of this industry grabbing too much of the world's electricity supply, creating heat.

The 32 pages of Chapter 3 are on "Metamaterials and manufacturing technologies for 6G and major advances and changed views from 2023". Understand the meta-atom pattern behaves like an atom, the patterning commercial, operational, theoretical, structural and manufacturing options. Six formats metamaterial are here with materials examples leading to metasurfaces, hypersurfaces and the long-term picture of metamaterials overall, even metasurface energy harvesting likely for 6G then applications of GHz, THz, infrared and optical metamaterials. There is a SWOT assessment. However, vitally, half the chapter reveals major changes in 6G perceptions, plans and progress from 2023 starting with 15 examples analysed. New infograms and a SWOT make it easy to grasp.

Chapter 4 runs to a full 99 pages in order to drill down into detailed materials and device aspects of the different RIS designs needed for different frequency bands and so on. See appraisal of 9 tuning device families for RIS from the recent research pipeline and where the research will be headed in future. There is detail on beam forming, many operating principles affecting materials choices, the merits of semi-passive. Understand active RIS components including such things as High Electron Mobility Transistors HEMT, hybrid CMOS, phase change materials such as vanadium dioxide and chalcogenides and trials of graphene plasmonics in RIS. Learn more on coping with the terahertz gap and on making transparent RIS. Throughout, the latest advances from 2023 are particularly explored.

Chapter 5 (37 pages) concerns issues, opportunities and gaps in the market as we urgently progress from small scale demonstrations to proving and installing the necessarily large RIS across the landscape. Called, "6G THz reconfigurable intelligent surfaces in action: materials, hardware, location and installation issues" it covers 6G underwater, underground, for agriculture, smart factories including their transmissive windows and Industry-6.0. Learn RIS smart radio environments and the issues of selection of sites, components, materials. Be surprised by the cost breakdown of a typically planned RIS. Just how realistic is the dream of RIS Simultaneous Wireless Information and Power Transfer SWIPT enable unpowered, battery-less edge devices at later stage? Many new infograms make all this both clear and comprehensive. Then come comparison tables of opportunities with organic, inorganic and high added value constructs. The chapter ends with the many RIS security concerns coming center stage from 2023 onwards.

Chapter 6 is brief but important. Called, "6G optical reconfigurable intelligent surfaces: near IR and visible" its 20 pages show how the essential role of these frequencies in 5G and 6G in the form of fiber optics is only the beginning. Near IR and visible light can have a place in free space optical transmission and specifically indoor and outdoor LiFi to improve reach and performance. Learn how there is even promising work on handling THz and these frequencies in a single RIS. On the other hand there are optical devices potentially enhancing or replacing RIS.

The report ends with a 75-page chapter on RIS-related companies, collaborations and national and regional initiatives across the world. The new Zhar Research report, "6G Communications: Reconfigurable Intelligent Surface Materials and Hardware Markets: SubTHz, THz, Optical 2024-2044" is essential reading for those seeking to supply the added-value materials and components required. It also has much to interest investors, operations, system integrators and others in the emerging 6G value chain.

Table of Contents

1. Executive summary and conclusions with 17 forecast lines 2023-2043

  • 1.1. Definition and purpose of this report
    • 1.1.1. Definition and 6G need
    • 1.1.2. The 6G RIS dream
  • 1.2. Purpose and scope of this report
  • 1.3. Methodology of this analysis
  • 1.4. Infogram: 6G RIS and other metasurfaces in action across the landscape
  • 1.5. 15 Primary conclusions
  • 1.6. Organisations backing RIS
  • 1.7. RIS construction
  • 1.8. Extra functionality enabled by RIS
    • 1.8.1. Capabilities of the metasurfaces involved
    • 1.8.2. Different levels of beam management
    • 1.8.3. RIS directional options
    • 1.8.4. RIS for 6G low-latency edge computing
  • 1.9. Your opportunities for added-value RIS materials
  • 1.10. 8 tuning device families prioritised for RIS that are emerging
  • 1.11. 6G RIS SWOT appraisal that must guide future 6G RIS design
  • 1.12. 6G RIS roadmap and 16 forecast lines 2024-2044
    • 1.12.1. Assumptions
    • 1.12.2. 6G RIS roadmap and 16 forecast lines 2024-2044
    • 1.12.3. Planned RIS hardware evolution
    • 1.12.4. 6G reconfigurable intelligent surfaces market yearly area added bn. sq. m., price, value market table 2024-2044
    • 1.12.5. 6G reconfigurable intelligent surfaces market yearly area added bn. sq. m. 2024-2044 graph
    • 1.12.6. Average RIS price $/ square meter. ex-factory 2028-2044 graph with explanation
    • 1.12.7. 6G reconfigurable intelligent surfaces cumulative panels number deployed billion by year end 2024-2044 table and graph
    • 1.12.8. Global yearly RIS sales by five types and total $ billion 2024-2044 table
    • 1.12.9. Global yearly RIS sales by five types $ billion 2023-2043: graph with explanation
    • 1.12.10. Global 6G RIS value market $ billion 2028-2044 compared to other THz hardware
    • 1.12.11. Percentage share of global RIS hardware value market by four regions 2024-2044
    • 1.12.12. Global metamaterial/ metasurface market billion sq. m. civil comms vs other 2024-2044 table and graphs
    • 1.12.13. Global metamaterial, metasurface market $/ sq. m. ex-factory 2024-2044: table and graphs
    • 1.12.14. Market for 6G vs 5G base stations units millions yearly 3 categories 2024-2044: table and graphs
    • 1.12.15. Indium phosphide semiconductor market global with possible 6G impact $billion 2024-2044

2. Introduction

  • 2.1. What is a RIS?
    • 2.1.1. General
    • 2.1.2. RIS technologies are needed for many purposes beyond 6G derisking investment
    • 2.1.3. Infogram: Intended 6G and its RIS across land, sea and air
    • 2.1.4. 6G rural challenge
    • 2.1.5. Challenge to provide extra infrastructure and many transmission media
    • 2.1.6. Infogram: Likely 6G hardware and system providers across land, sea, air
    • 2.1.7. Infogram: Location of primary 6G material and component activity worldwide
    • 2.1.8. RIS terminology thicket
  • 2.2. RIS construction and capability
    • 2.2.1. Metamaterial and metasurface
    • 2.2.2. Two operational phases: control/ programming then normal operation.
    • 2.2.3. Three RIS directional modes, return, forward and STAR
  • 2.3. The bigger picture is six possible operating modes
    • 2.3.1. Reflection mode
    • 2.3.2. Refraction mode
    • 2.3.3. Absorption mode
    • 2.3.4. Backscattering mode
    • 2.3.5. Transmitting mode
    • 2.3.6. Receiving mode
  • 2.4. Alternative system approach: device to device
  • 2.5. RIS for 6G, predecessors and intermediary compared
  • 2.6. Broadening 6G and 6G RIS objectives but now some focus in needed
  • 2.7. Urgency and standards issues
    • 2.7.1. Realisation that hardware lags theory
    • 2.7.2. Major 6G standards initiative for RIS
    • 2.7.3. Overall 6G standards process settled but not the standards themselves
  • 2.8. 6G THz frequency choices will profoundly affect RIS design
    • 2.8.1. Overview
    • 2.8.2. Essential frequencies for 6G success and RIS deployment
    • 2.8.3. Lower frequencies still needed in 6G
    • 2.8.4. Transmission distance dilemma but belief that THz can be practicable outdoors in due course
    • 2.8.5. Unattractive 1-10THz
    • 2.8.6. Belief that THz will not be limited to indoors
    • 2.8.7. Longer distance sub-THz testing
    • 2.8.9. Optical frequency RIS now a serious consideration as well
  • 2.9. The Terahertz gap: escape routes
  • 2.10. Electricity consumption dilemma with active RIS and other 6G infrastructure
  • 2.11. Format of the next chapters

3. Metamaterials and manufacturing technologies for 6G and major advances and changed views from 2023

  • 3.1. Overview
  • 3.2. The meta- atom and patterning options
  • 3.3. Commercial, operational, theoretical, structural options compared
  • 3.4. Metamaterial patterns and materials
  • 3.5. Six formats of metamaterial with examples
  • 3.6. Metasurface primer
  • 3.7. Hypersurfaces
  • 3.8. The long-term picture of metamaterials overall
  • 3.9. Metasurface energy harvesting likely for 6G
  • 3.10. Applications of GHz, THz, infrared and optical metamaterials
  • 3.11. SWOT assessments for metamaterials and metasurfaces generally
  • 3.12. Major changes in 6G perceptions, plans and progress from 2023: 15 examples analysed
    • 3.12.1. Overview
    • 3.12.2. RIS use cases and preparation of standards
    • 3.12.3. Spectrum allocation and needs for RIS
    • 3.12.4. Improving transmission range
    • 3.12.5. Simplifying interfaces and configuration
    • 3.12.6. Demonstrations of RIS and its precursors
    • 3.12.7. Fully active RIS
    • 3.12.8. Trials and proposals mostly at 0.1-0.3THz opening frequencies
    • 3.12.9. World's first mmWave dynamic RIS trial
    • 3.12.10. World's first successful 0.3THz beamforming and high-speed data transmission
    • 3.12.11. New focus on transparent RIS
    • 3.12.12. RIS-aided sensing and localisation
    • 3.12.13. New international company collaboration verifies RIS modules, drives 6G research
    • 3.12.14. Addressing the multiplicative fading effect
    • 3.12.15. Enhancing 6G base stations with RIS
    • 3.12.16. Significant RIS events
  • 3.13. Manufacturing technologies for 6G RIS whether optical, low or high THz

4. 6G THz reconfigurable intelligent surfaces: design

  • 4.1. Challenges ahead
  • 4.2. Design context
  • 4.3. Trend to beam forming and steering but "beam" is a euphemism
    • 4.3.1. Basics
    • 4.3.2. Beamforming: major advances from 2023
  • 4.4. RIS evolution intended in the future
  • 4.5. How metasurface RIS hardware operates
  • 4.6. Semi-passive and active RIS components
    • 4.6.1. Overview
    • 4.6.2. PIN and Schottky diodes for semi-passive 6G RIS lowest THz frequencies
    • 4.6.3. High-Electron Mobility Transistor HEMT for higher up to 0.6THz
    • 4.6.4. CMOS and hybrid lll-V+CMOS approaches sub-THz
    • 4.6.5. RIS assisted wireless communication landscape
  • 4.7. RIS compared to traditional approaches
  • 4.8. Advances from 2022 onwards
  • 4.9. RIS for 5G
    • 4.9.1. Early work
    • 4.9.2. mm wave 5G RIS progress
    • 4.9.3. 5G RIS control issues
    • 4.9.4. Enabling real-time configuration
  • 4.10. RIS for 6G
    • 4.10.1. Comparison of options
    • 4.10.2. The terahertz gap
    • 4.10.3. 6G RIS control issues
    • 4.10.4. Transparent RIS
  • 4.11. Appraisal of 9 tuning device families for RIS from recent research pipeline
    • 4.11.1. Electronic, magnetic
    • 4.11.2. Photoactive, phase change, mechanical
    • 4.11.3. Layouts, materials, operating principles involved, latest achievements, future research trends
  • 4.12. Active vs passive RIS, removing control channels and other work
  • 4.13. ENZ and low loss materials for THz and optical
    • 4.13.1. ENZ
    • 4.13.2. Low loss
  • 4.14. 6G RIS with integral sensing
  • 4.15. Review in 2023
  • 4.16. 6G RIS SWOT appraisal that must guide future 6G RIS design

5. 6G THz reconfigurable intelligent surfaces in action: materials, hardware, location and installation issues

  • 5.1. 6G RIS and other metasurfaces in action across the landscape
  • 5.2. 6G underwater, underground and for agriculture - gaps in the market
    • 5.2.1. Underwater and underground
    • 5.2.2. Agriculture
  • 5.3. Commercial and industrial: smart factory and Industry-6.0
  • 5.4. Deployment challenges
    • 5.4.1. Five aspects cited by University of Oulu
    • 5.4.2. Five other aspects
    • 5.4.3. Overhead aware resource allocation
    • 5.4.4. Realisation that hardware lags theory
    • 5.4.5. Major 6G RIS standards initiative ETSI
    • 5.4.6. Cost hierarchy challenge
  • 5.5. Testing, accreditation: Greenerwave, Rohde & Schwartz example 2023
  • 5.6. RIS for fine mapping
  • 5.7. RIS for 6G base stations
  • 5.8. RIS- Integrated User-Centric Network: Architecture and Optimization
  • 5.9. RIS for charging your phone and powering unpowered user devices SWIPT WIET
  • 5.10. Ubiquitous RIS and wireless communication metamaterials
    • 5.10.1. Large area locations: smart cities and beyond
    • 5.10.2. Smaller area locations: smart transport, windows and wearables
    • 5.10.3. Choosing physical locations and layouts
    • 5.10.4. RIS smart radio environments
  • 5.11. Hardware opportunities
    • 5.11.1. General
    • 5.11.2. Should we have even more RIS hardware by pairing them?
    • 5.11.3. Semiconductor 6G RIS hardware opportunities by device and material
    • 5.11.4. Potential 6G RIS-related applications of 20 emerging inorganic compounds
    • 5.11.5. Potential 6G RIS-related applications of 20 elements in high-added value formats
    • 5.11.6. Potential 6G RIS-related applications of 20 emerging organic compounds
  • 5.12. Security issues

6. 6G optical reconfigurable intelligent surfaces: near-IR and visible

  • 6.1. Overview
  • 6.2. LiFi RIS
  • 6.3. Possible hybrid light/THz 6G Communications
  • 6.4. Optical RIS generally
  • 6.5. Optical devices enhancing or replacing RIS

7. Companies and collaboration by region

  • 7.1. Global RIS and THz hardware initiatives
    • 7.1.1. ETSI ISG RIS - 32 member organisations
    • 7.1.2. International Consortium for Development of High-Power THz Science and Technology
    • 7.1.3. ATIS global Next G Alliance
  • 7.2. North America - companies and initiatives
    • 7.2.1. Next G in USA and Canada
    • 7.2.2. Terahertz hardware in Canada
    • 7.2.3. DARPA THz Electronics project
    • 7.2.4. THz devices developed and sold
    • 7.2.5. University of Texas 6G Research Center with Samsung, Intel, Honda etc.
  • 7.3. Appraisal of small North American companies with relevant RIS-related technology
    • 7.3.1. Echodyne
    • 7.3.2. Evolv Technology
    • 7.3.3. Fractal Antenna Systems
    • 7.3.4. iQLP
    • 7.3.5. Kymeta Corp.
    • 7.3.6. Meta
    • 7.3.7. Metacept Systems
    • 7.3.8. Metawave
    • 7.3.9. Pivotal Commware
    • 7.3.10. SensorMetrix
  • 7.4. Europe: government, academia and industry
    • 7.4.1. European Union
    • 7.4.2. Finland
    • 7.4.3. Germany
    • 7.4.4. United Kingdom
    • 7.4.5. France
  • 7.5. East Asia: government, academia and industry
    • 7.5.1. China
    • 7.5.2. India
    • 7.5.3. Japan
    • 7.5.4. Korea
    • 7.5.5. Pakistan
    • 7.5.6. Singapore
    • 7.5.7. Taiwan