デフォルト表紙
市場調査レポート
商品コード
1738893

遮熱コーティング市場:材料タイプ、技術、用途、地域別、2026年~2032年

Thermal Barrier Coatings Market By Material Type, Technology (Air Plasma, High-velocity Oxy-Fuel Spray, Physical Vapor Deposition, Electrochemical Deposition), Application, Region for 2026-2032


出版日
ページ情報
英文 202 Pages
納期
2~3営業日
価格
価格表記: USDを日本円(税抜)に換算
本日の銀行送金レート: 1USD=144.76円
遮熱コーティング市場:材料タイプ、技術、用途、地域別、2026年~2032年
出版日: 2025年05月07日
発行: Verified Market Research
ページ情報: 英文 202 Pages
納期: 2~3営業日
GIIご利用のメリット
  • 全表示
  • 概要
  • 目次
概要

遮熱コーティング市場の評価、2026年~2032年

材料科学と表面コーティング技術における継続的な研究開発が、優れた遮熱コーティングの創出を促進しています。セラミック材料、成膜技術、コーティング処方における革新は、TBCの性能と応用範囲を向上させています。こうした進歩は、さまざまな産業におけるTBC応用の可能性を広げ、市場の成長をさらに刺激しています。このように、研究開発の進展が市場規模の成長を押し上げ、2024年には207億3,000万米ドルを突破し、2032年には332億9,000万米ドルの評価額に達します。

環境の持続可能性とエネルギー効率への注目が高まっています。遮熱コーティングは、より高い動作温度を可能にし、部品の耐久性を高めることで、排出ガスの削減、燃料効率の向上、エネルギー消費の削減に重要な役割を果たしています。環境性能と操業効率の向上に取り組む産業界では、こうした目標を達成するためにTBCを採用するケースが増えています。このように、環境の持続可能性とエネルギー効率の重視により、市場は2026年から2032年にかけてCAGR 6.73%で成長します。

遮熱コーティング市場定義/概要

遮熱コーティング(TBC)は、様々な産業において高温部品の寿命を延ばし、性能を向上させる上で重要な役割を果たしています。一般的に2層構造で構成されるこのコーティングは、酸化防止のボンドコートと熱絶縁性のトップコートを組み合わせたものです。このコーティングの主な機能は、熱絶縁と耐酸化性で、極端な温度や過酷な使用条件から金属部品を保護します。

高速酸素燃料(HVOF)溶射法は、特に炭化タングステン(WC)やコバルト(Co)を使用した高性能コーティングの成膜に普及しています。HVOF溶射では、微粒子が高速で基材に押し付けられ、緻密で硬い皮膜が形成されます。このプロセスにより、気孔率が最小限に抑えられ、密着性が向上するため、堅牢で耐久性の高いコーティングが実現します。フレーム溶射では、WC-12Coと自己融解型ニッケル(Ni)を混合し、炎を使って塗布します。塗布後、トーチでコーティングを溶かし、粒子を融合させます。この技法は気孔を減らし、ナノ粒子を再分散させ、より均質で効果的なコーティング層を形成します。

プラズマ・トランスファー・アーク(PTA)溶接は、鉱業や石油・ガスなどの産業で、厚い炭化タングステン・オーバーレイを施すために広く利用されています。この技術は、極度の摩耗や過酷な条件にも耐える高耐久性コーティングの製造能力で評価されており、要求の厳しい用途に最適です。

航空機セクターの需要拡大とガスタービン発電所の拡張は、遮熱コーティング市場の成長をどのように加速するか?

航空機産業は、極端な温度や腐食からエンジン部品を保護する遮熱コーティング(TBC)の主要な消費者です。航空機エンジンが高度化し、航空機旅行の需要が増加するにつれて、TBCのニーズは急激に高まっています。これらのコーティングは、高い熱負荷に耐えることで重要なエンジン部品の性能と寿命を向上させるため、業界の拡大を支え、先端コーティングの需要を牽引しています。ガスタービン発電所は、特に急速に都市化・工業化する地域における発電に不可欠です。ガスタービンの効率と寿命は、タービン部品を高温と摩耗から保護する遮熱コーティングによって大幅に改善されます。工業化と人口増加により、信頼性が高く効率的な発電の必要性が高まるにつれ、エネルギー分野におけるTBCの需要も相応に増加すると予想されます。

自動車分野では、熱伝導を抑え耐久性を高めることでエンジン性能を高めるために遮熱コーティングが利用されています。排ガス規制が強化され、低燃費車への需要が高まる中、自動車メーカーはこうした要件を満たすためにTBCの採用を増やしています。これらのコーティングは、エンジンの効率的な稼働と長寿命化に貢献するため、自動車用途での利用が促進され、市場の成長に寄与しています。発電所、工場、交通網などのインフラ・プロジェクトの開発は、遮熱コーティングの需要を促進しています。TBCは、インフラ部品を熱損傷や腐食から保護することで、その寿命を延ばすのに役立ちます。これによってメンテナンスコストが削減され、重要なインフラ資産の耐久性が向上するため、TBC市場を支えています。

遮熱コーティングは、高温や腐食環境に耐えることから、化学処理、鉄鋼製造、石油化学精製など、さまざまな産業分野で使用されるようになっています。これらの産業では、設備の信頼性を向上させ、ダウンタイムを減らし、操業効率を高める必要があるため、TBCの採用が進んでいます。過酷な産業条件下で性能と寿命を向上させるTBCの能力は、多様な用途でTBCの使用が拡大する一因となっています。

高い材料コストとアプリケーションコストが遮熱コーティング市場の成長を妨げる?

遮熱コーティング(TBC)の採用は、材料と塗布プロセスの両方に関連する高コストによって大きな制約を受けています。TBCは多くの場合、製造コストが高い高度なセラミック化合物や複雑な金属合金を使用します。さらに、これらのコーティングの適用には通常、溶射や物理的/化学的蒸着などの特殊な技術が必要です。これらの方法には、高価な設備と運用費がかかるため、予算が限られている業界や、厳しい財政的制約の下で運営されている業界にとっては、大きな障壁となり得る。高い材料コストとアプリケーションコストは、潜在的なユーザーを遠ざけ、TBCの普及を制限する可能性があります。

TBCは断熱材として設計され、金属部品を高温から保護するが、機械的摩耗、酸化、腐食、侵食などの要因により、その効果は時間とともに損なわれます。TBCの耐久性と信頼性は、用途や使用条件によって異なるため、長期的な性能に対する懸念につながる可能性があります。特に信頼性が重要視される高ストレスや過酷な環境において、長期間にわたって性能を維持する能力に疑問があれば、潜在的な顧客はTBCへの投資をためらうかもしれないです。

遮熱コーティングと関連する塗布装置を入手するために必要な多額の初期投資は、市場に大きな抑制要因をもたらしています。このような特殊なコーティングの開発と生産には広範な研究開発努力が必要であり、その結果、調達コストが高くなります。特に予算の制約が懸念される業界や用途では、TBCの調達と塗布に関連する費用が大きな障害となる可能性があります。

遮熱コーティングの製造には、セラミック化合物や混合金属合金を合成する高度なプロセスが必要であり、高価で資源集約的なものとなりうる。さらに、TBCの適用には、溶射システムや蒸着装置などの高度な技術や装置の使用が必要となります。これらの製造・塗布工程の複雑さとコストは、全体的な費用の高さにつながり、一部の分野ではTBCの利用が制限されています。様々な用途の具体的な要件に合わせて遮熱コーティングを調整することは困難です。さまざまな運転条件や部品の形状に合わせて正確にカスタマイズする必要があるため、開発と応用のコストが増大します。多様な用途に最適な性能を達成するためのこの複雑さは、潜在的な採用者、特に費用対効果の高いソリューションを求める人々にとって抑止力となっています。

目次

第1章 イントロダクション

  • 市場の定義
  • 市場セグメンテーション
  • 調査手法

第2章 エグゼクティブサマリー

  • 主な調査結果
  • 市場概要
  • 市場ハイライト

第3章 市場概要

  • 市場規模と成長の可能性
  • 市場動向
  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • ポーターのファイブフォース分析

第4章 遮熱コーティング市場:材料タイプ別

  • セラミック酸化物
  • MCrAlY合金

第5章 遮熱コーティング市場:技術別

  • エアプラズマスプレー(APS)
  • 高速酸素燃料(HVOF)スプレー
  • 物理蒸着(PVD)
  • 電気化学蒸着

第6章 遮熱コーティング市場:用途別

  • 航空宇宙
  • 自動車
  • 発電
  • 産業

第7章 地域別分析

  • 北米
  • 米国
  • カナダ
  • メキシコ
  • 欧州
  • 英国
  • ドイツ
  • フランス
  • イタリア
  • アジア太平洋
  • 中国
  • 日本
  • インド
  • オーストラリア
  • ラテンアメリカ
  • ブラジル
  • アルゼンチン
  • チリ
  • 中東・アフリカ
  • 南アフリカ
  • サウジアラビア
  • アラブ首長国連邦

第8章 市場力学

  • 市場促進要因
  • 市場抑制要因
  • 市場機会
  • COVID-19の市場への影響

第9章 競合情勢

  • 主要企業
  • 市場シェア分析

第10章 企業プロファイル

  • OC Oerlikon Management AG
  • Chromalloy Gas Turbine LLC
  • Saint-Gobain
  • Praxair S.T. Technology, Inc.
  • Air Products & Chemicals, Inc.
  • The Welding Institute(TWI)Ltd.
  • H.C. Starck, Inc.
  • ASB Industries Inc.
  • Metallisation Ltd.
  • Flame Spray Coating Co.
  • Precision Coating, Inc.
  • MesoCoat Inc.
  • Cincinnati Thermal Spray, Inc.

第11章 市場の展望と機会

  • 新興技術
  • 今後の市場動向
  • 投資機会

第12章 付録

  • 略語リスト
  • 出典と参考文献
目次
Product Code: 41255

Thermal Barrier Coatings Market Valuation - 2026-2032

Ongoing research and development in material science and surface coating technologies are fostering the creation of superior thermal barrier coatings. Innovations in ceramic materials, deposition techniques, and coating formulations are enhancing the performance and application range of TBCs. These advancements are expanding the possibilities for TBC applications across various industries, further stimulating market growth. Thus, the advancements in research and development surge the growth of the market size surpassing USD 20.73 Billion in 2024 to reach a valuation of USD 33.29 Billion by 2032.

The growing focus on environmental sustainability and energy efficiency. Thermal barrier coatings play a critical role in reducing emissions, improving fuel efficiency, and lowering energy consumption by enabling higher operating temperatures and enhancing component durability. Industries committed to enhancing their environmental performance and operational efficiency are increasingly adopting TBCs to meet these goals. Thus, the emphasis on environmental sustainability and energy efficiency enables the market to grow at a CAGR of 6.73% from 2026 to 2032.

Thermal Barrier Coatings Market: Definition/ Overview

Thermal barrier coatings (TBCs) play a crucial role in extending life and improving the performance of high-temperature components across various industries. These coatings, typically consisting of a two-layered structure, combine an oxidation-protective bond coat with a thermally insulating top coat. Their primary function is to provide thermal insulation and resist oxidation, thereby safeguarding metallic components from extreme temperatures and harsh operating conditions.

The high-velocity oxygen fuel (HVOF) spraying method is popular for depositing high-performance coatings, particularly those with tungsten carbide (WC) and cobalt (Co). In HVOF spraying, fine particles are propelled at high velocities onto the substrate, forming a dense and hard coating. This process minimizes porosity and enhances adhesion, resulting in robust and durable coatings. Flame spraying involves mixing WC-12Co with self-fluxing nickel (Ni) and applying it using a flame. Following the application, the coating is melted with a torch to fuse the particles. This technique reduces porosity and redistributes nanoparticles, creating a more homogeneous and effective coating layer.

Plasma-transfer Arc (PTA) Welding is widely utilized in industries such as mining and oil & gas for applying thick tungsten carbide overlays. This technique is valued for its ability to produce highly durable coatings that can withstand extreme wear and harsh conditions, making it ideal for demanding applications.

How does the Growing Demand for the Aircraft Sector and the Expansion of Gas Turbine Power Plants Surge the Growth of the Thermal Barrier Coatings Market?

The aircraft industry is a major consumer of thermal barrier coatings (TBCs), which protect engine components from extreme temperatures and corrosion. As aircraft engines become more advanced and the demand for air travel increases, the need for TBCs is rising sharply. These coatings enhance the performance and longevity of critical engine parts by withstanding high thermal loads, thus supporting the industry's expansion and driving demand for advanced coatings. Gas turbine power plants are crucial for electricity generation, especially in rapidly urbanizing and industrializing regions. The efficiency and lifespan of gas turbines are significantly improved by thermal barrier coatings, which protect turbine components from high temperatures and wear. As the need for reliable and efficient power generation grows, driven by industrialization and population growth, the demand for TBCs in the energy sector is expected to increase correspondingly.

In the automotive sector, thermal barrier coatings are utilized to enhance engine performance by reducing heat transfer and increasing durability. With stricter emissions regulations and a rising demand for fuel-efficient vehicles, automakers are increasingly adopting TBCs to meet these requirements. These coatings help engines run more efficiently and last longer, thus driving their use in automotive applications and contributing to market growth. The development of infrastructure projects such as power plants, factories, and transportation networks is driving the demand for thermal barrier coatings. TBCs help extend the lifespan of infrastructure components by protecting them from thermal damage and corrosion. This reduces maintenance costs and enhances the durability of vital infrastructure assets, thereby supporting the market for TBCs.

Thermal barrier coatings are increasingly used in various industrial sectors, including chemical processing, steel manufacturing, and petrochemical refining, due to their ability to withstand high temperatures and corrosive environments. The need to improve equipment reliability, reduce downtime, and enhance operational efficiency in these industries is driving the adoption of TBCs. The ability of TBCs to enhance performance and longevity in harsh industrial conditions contributes to their growing use across diverse applications.

How the High Material and Application Cost Impede the Growth of the Thermal Barrier Coatings Market?

The adoption of thermal barrier coatings (TBCs) is significantly constrained by the high costs associated with both the materials and the application processes. TBCs often involve the use of advanced ceramic compounds or complex metal alloys that are expensive to produce. Furthermore, the application of these coatings typically requires specialized techniques such as thermal spraying or physical/chemical vapor deposition. These methods involve costly equipment and operational expenses, which can be a substantial barrier for industries with limited budgets or those operating under tight financial constraints. The high material and application costs can deter potential users and restrict the widespread adoption of TBCs.

While TBCs are designed to provide thermal insulation and protect metal components from high temperatures, their effectiveness can be compromised over time due to factors such as mechanical wear, oxidation, corrosion, and erosion. The durability and reliability of TBCs can vary depending on the application and operating conditions, which may lead to concerns about their long-term performance. Potential customers might be hesitant to invest in TBCs if there are doubts about their ability to maintain performance over extended periods, especially in high-stress or demanding environments where reliability is crucial.

The substantial initial investment required for acquiring thermal barrier coatings and the associated application equipment poses a significant restraint on the market. The development and production of these specialized coatings demand extensive research and development efforts, resulting in high procurement costs. The expense associated with sourcing and applying TBCs can be a major obstacle, particularly for industries and applications where budget constraints are a concern.

The production of thermal barrier coatings involves sophisticated processes to synthesize ceramic compounds or mixed metal alloys, which can be expensive and resource-intensive. Additionally, the application of TBCs necessitates the use of advanced technologies and equipment, such as thermal spray systems or vapor deposition apparatus. The complexity and cost of these production and application processes further contribute to the high overall expenses, limiting the accessibility of TBCs for some sectors. Tailoring thermal barrier coatings to meet specific requirements of various applications can be challenging. The need for precise customization to fit different operational conditions and component geometries increase the development and application costs. This complexity in achieving optimal performance for diverse applications acts as a deterrent for potential adopters, particularly those seeking cost-effective solutions.

Category-Wise Acumens

How do Extreme Thermal Stress and Broad Compatibility with Substrate Materials Surge the Growth of the Ceramic Oxides Segment?

The ceramic oxides segment shows significant growth in the thermal barrier coatings market owing to their exceptional ability to withstand extreme thermal stresses and their broad compatibility with various substrate materials. Ceramic coatings are particularly valued for their thermal expansion properties, which closely align with those of metal alloys used in critical components such as gas turbine blades and nozzles. This compatibility ensures that ceramic coatings can effectively insulate underlying superalloys from the intense combustion temperatures encountered in jet engines and power plants.

Key ceramic coatings, such as zirconia partially stabilized with yttria (YSZ) and alumina (Al2O3), are renowned for their high resistance to sintering and creep, even at elevated temperatures. These materials are capable of maintaining their structural integrity and performance in continuous firing conditions exceeding 800°C. Their inherent resistance to corrosion and oxidation in hostile environments further enhances their suitability as durable thermal barrier coatings. This robust performance allows gas turbines and other high-temperature machinery to operate more efficiently at higher temperatures, which is crucial for maximizing operational efficiency and longevity.

The growing adoption of ceramic coatings across industries, particularly in automotive and aerospace applications, is expected to drive further market growth. In the automotive sector, ceramic coatings are increasingly used in exhaust systems to improve heat resistance and durability. Similarly, in the aerospace industry, the demand for ceramic coatings is fueled by the need for advanced materials that can withstand the harsh conditions of jet engine environments. The superior thermal resistance and protective qualities of ceramic oxides make them an indispensable component in these high-performance applications, reinforcing their dominant position in the thermal barrier coatings market.

How the Exceptional Deposition Rates and Versatile Application of HVOP Spraying Surge the Growth of High-Velocity Oxy-Fuel (HVOF) Spray Segment?

The high-velocity oxygen-fuel (HVOF) spraying segment is a leading technology in the thermal barrier coatings (TBCs) market, known for its exceptional deposition rates and versatile applications. HVOF can achieve deposition rates up to ten times faster than traditional thermal spray methods, significantly accelerating the coating process and reducing overall costs. This high efficiency makes HVOF a preferred choice for many industries requiring rapid and cost-effective coating solutions.

HVOF deposits a wide range of materials, including ceramics, metals, and alloys. This versatility allows it to be used across various sectors, including power generation, oil & gas, water treatment, mining, chemical engineering, petrochemicals, aerospace, paper manufacturing, and general manufacturing. Its ability to handle diverse materials makes it adaptable to numerous industrial applications.

The HVOF process provides several performance advantages. It enables the deposition of coatings with controlled microstructures and strong mechanical interlocking with the substrate. This results in dense coatings with reduced oxide content and residual stresses, leading to improved performance and efficiency. Coatings applied via HVOF are noted for their superior hardness and lower porosity compared to those produced by alternative methods such as plasma spraying. The deposition mechanism of HVOF involves igniting fuel and oxygen to create a supersonic combustion gas jet. This jet accelerates powder particles to extremely high velocities. Upon impact, these particles deform plastically, embedding themselves firmly onto the coated part. This process results in coatings with enhanced durability and resistance to thermal fatigue. Studies have shown that components coated with HVOF can last 3 to 5 times longer than those treated with other spraying technologies.

HVOF allows precise manipulation of coating structures, achieving lower porosity and higher hardness. The technology also supports the co-deposition of bond coat materials with top coat ceramics, creating a graded interface that is less prone to delamination. This results in coatings with better performance in harsh chemical environments and at extreme temperatures.

Country/Region-wise Acumens

How the Commercial Aircraft Fleet and Robust Aircraft Engine Manufacturing Sectors Surge the Growth of Thermal Barrier Coatings Market in North America?

North America stands as the leading region in the thermal barrier coatings (TBCs) market, owing to its extensive commercial aircraft fleet and robust aircraft engine manufacturing sector. Major metropolitan areas such as Seattle, Los Angeles, and Chicago are key hubs for aircraft parts production and engine manufacturing, driving substantial demand for thermal barrier coatings. These cities are pivotal in the aerospace industry, generating significant needs for high-performance coatings to ensure the durability and efficiency of aircraft components. The developed economies of the U.S. and Canada, along with the growing market presence in Mexico, contribute to the dominance of North America in the TBC market. The region benefits from a highly skilled workforce, substantial disposable incomes, and a strong economy, all of which foster the growth of the aerospace industry and drive demand for thermal barrier coatings.

The aerospace sector in North America, particularly in the United States, is well-developed and contributes significantly to the thermal barrier coatings market. The U.S. is home to some of the world's largest aerospace manufacturers and coating suppliers, who are adept at meeting the stringent quality and testing requirements of the industry. This expertise supports the high demand for advanced coatings capable of withstanding extreme conditions in aerospace applications. North America boasts a robust infrastructure of well-established coating manufacturers. These companies are capable of meeting the rigorous standards required for aerospace and other high-performance applications. Additionally, many international firms have established manufacturing plants in the U.S. to cater to both domestic and export markets, further strengthening the region's market position.

The positive economic outlook and increasing passenger traffic in North America have prompted aircraft manufacturers to scale up production. This rise in production activity is driving the consumption of thermal barrier coatings, as these coatings are crucial for enhancing the performance and longevity of aircraft engines and other components. The demand for thermal barrier coatings extends beyond aerospace to various sectors, including stationary power plants, automotive, and oil and gas industries. This broad range of applications creates lucrative opportunities for market growth. In particular, the aerospace sector remains a significant driver, supported by the high level of air traffic and the substantial investments in aviation infrastructure.

How the Rapid Industrialization and High Energy Consumption in China Surge the Growth of Thermal Barrier Coatings (TBCs) Market in Asia Pacific?

Asia Pacific is projected to experience the fastest growth in the thermal barrier coatings (TBCs) market, during the forecast period. Rapid industrialization and significant advancements in the aerospace and automotive sectors are major contributors to this growth. The increasing population across developing nations like China and India is leading to higher energy consumption, further driving the demand for thermal barrier coatings. The region's growing focus on localized manufacturing is expected to further stimulate the demand for thermal barrier coatings. As countries like China and India expand their manufacturing capabilities and increase their power generation projects, the need for protective coatings in these sectors will rise. This creates ample opportunities for both international and domestic TBC producers to enhance their market presence.

The Asia Pacific region is a pivotal hub for the automotive and aerospace industries, which are among the largest consumers of thermal barrier coatings. The automotive sector's focus on manufacturing fuel-efficient and lightweight vehicles is creating a rising demand for TBCs. Similarly, the aerospace industry's need for enhanced safety and performance in aircraft components is boosting the consumption of these coatings. Investments in technological advancements, particularly in the production of electric vehicles (EVs), are fueling the demand for thermal barrier coatings. The drive toward cleaner and more efficient transportation solutions is encouraging the use of TBCs in automotive applications, enhancing the performance and longevity of EV components.

The growing energy needs in developing countries like China and India are increasing the demand for power generation technologies. As a major manufacturing hub for gas turbines, the region's investments in power projects and industrial applications are driving the need for thermal barrier coatings. These coatings are essential for protecting gas turbines and other high-temperature equipment, thus supporting their performance and durability. The rapid development of the aerospace industry in the Asia Pacific, particularly in countries like China, India, and Japan, is contributing to the market's expansion. International aircraft manufacturers have established assembly plants in these countries to leverage low-cost skilled labor and access larger domestic markets. This trend is leading to increased localized production of thermal barrier coatings to meet the needs of these assembly facilities.

Competitive Landscape

The Thermal Barrier Coatings (TBC) Market is characterized by a blend of specialized materials companies, aerospace and energy conglomerates, and coating service providers. The industry is highly technical, requiring significant R&D investments and expertise in materials science and coating application processes.

The organizations are focusing on innovating their product line to serve the vast population in diverse regions. Some of the prominent players operating in the thermal barrier coatings market include:

  • OC Oerlikon Management AG
  • Chromalloy Gas Turbine LLC
  • Saint-Gobain
  • Praxair S.T. Technology, Inc.
  • Air Products & Chemicals, Inc.
  • The Welding Institute (TWI) Ltd
  • H.C. Starck, Inc.
  • ASB Industries, Inc.
  • Metallisation Ltd
  • Flame Spray Coating Co
  • Precision Coating, Inc.
  • MesoCoat, Inc.
  • Cincinnati Thermal Spray, Inc

Latest Developments:

  • In December 2022, OC Oerlikon Management AG announced to build a cutting-edge assembly and production facility in Switzerland for its surface solutions and equipment businesses, offering customers Oerlikon Metco solutions such as thermal barrier coatings.
  • In May 2022, Air Products, a global leader in industrial gases, established Female Engineers & Technical Associates (FETA), a unique program aimed at developing the next generation of female talent in Saudi Arabia. Initiatives like this aim to develop skilled coating specialists in the Middle East, leading to increased market penetration.
  • In March 2021, Praxair Surface Technologies (PST) and Siemens reached a new deal. Praxair Surface Technologies, Inc. is a major player in the ever-expanding realm of wear and corrosion-resistant coatings. Siemens is a German multinational conglomerate and the largest industrial manufacturing firm.

Thermal Barrier Coatings Market, By Category

  • Material Type:
  • Ceramic Oxides
  • MCrALY Alloys
  • Mullite-based
  • Technology:
  • Air Plasma (APS)
  • High-velocity oxy-fuel (HVOF) Spray
  • Physical Vapor Deposition (PVD)
  • Electrochemical Deposition
  • Application:
  • Aerospace
  • Automotive
  • Power Generation
  • Stationary Power Plants
  • Region:
  • North America
  • Europe
  • Asia-Pacific
  • South America
  • Middle East & Africa

TABLE OF CONTENTS

1. Introduction

  • Market Definition
  • Market Segmentation
  • Research Methodology

2. Executive Summary

  • Key Findings
  • Market Overview
  • Market Highlights

3. Market Overview

  • Market Size and Growth Potential
  • Market Trends
  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Porter's Five Forces Analysis

4. Thermal Barrier Coatings Market, By Material Type

  • Ceramic Oxides
  • MCrAlY Alloys

5. Thermal Barrier Coatings Market, By Technology

  • Air Plasma Spray (APS)
  • High-Velocity Oxy-Fuel (HVOF) Spray
  • Physical Vapor Deposition (PVD)
  • Electrochemical Deposition

6. Thermal Barrier Coatings Market, By Application

  • Aerospace
  • Automotive
  • Power Generation
  • Industrial

7. Regional Analysis

  • North America
  • United States
  • Canada
  • Mexico
  • Europe
  • United Kingdom
  • Germany
  • France
  • Italy
  • Asia-Pacific
  • China
  • Japan
  • India
  • Australia
  • Latin America
  • Brazil
  • Argentina
  • Chile
  • Middle East and Africa
  • South Africa
  • Saudi Arabia
  • UAE

8. Market Dynamics

  • Market Drivers
  • Market Restraints
  • Market Opportunities
  • Impact of COVID-19 on the Market

9. Competitive Landscape

  • Key Players
  • Market Share Analysis

10. Company Profiles

  • OC Oerlikon Management AG
  • Chromalloy Gas Turbine LLC
  • Saint-Gobain
  • Praxair S.T. Technology, Inc.
  • Air Products & Chemicals, Inc.
  • The Welding Institute (TWI) Ltd.
  • H.C. Starck, Inc.
  • ASB Industries Inc.
  • Metallisation Ltd.
  • Flame Spray Coating Co.
  • Precision Coating, Inc.
  • MesoCoat Inc.
  • Cincinnati Thermal Spray, Inc.

11. Market Outlook and Opportunities

  • Emerging Technologies
  • Future Market Trends
  • Investment Opportunities

12. Appendix

  • List of Abbreviations
  • Sources and References